This Jupiter-Sized Exoplanet is Unusual for Several Reasons

Artist illustration of a warm Jupiter gas-giant exoplanet (right) orbiting its parent star, along with several smaller exoplanets. (Credit: Detlev Van Ravenswaay/Science Photo Library)

In a recent study published in the Monthly Notices of the Royal Astronomical Society, a team of international researchers examined exoplanet TOI-4860 b, which is located approximately 80 parsecs (261 light-years) from Earth and has an orbital period of approximately 1.52 days around a low-mass star, or a star smaller than our Sun. Exoplanets orbiting so close to their parent stars aren’t uncommon and commonly known as “hot Jupiters”.

However, TOI-4860 b is unique due its relative size compared to its parent star, along with its lower surface temperatures compared to “hot Jupiters” and possessing large amounts of heavy elements. These attributes are why researchers are classifying TOI-4680 b as a “warm Jupiter”, and could challenge traditional planetary systems formation models while offering new insights into such processes, as well.

Continue reading “This Jupiter-Sized Exoplanet is Unusual for Several Reasons”

An Unfortunate Planet is Undergoing “Extreme Evaporation,” Melting Under the Extreme Heat From its Star

Illustration of a bursting planet about to flare. Credit: Sergei Nayakshin/Vardan Elbakyan, University of Leicester

FU Orionis is an unusual variable star. It was first seen as a magnitude 16 star in the early 1900s, but in the mid-1930s it rapidly brightened to a magnitude 9 star. The rapid brightening of a star was not unheard of, but in this case, FU Orionis did not fade to its original brightness. Since 1937 it has remained around magnitude 9, varying only slightly over time. For decades the mysterious star was thought to be unique, but in the 1970s similar stars were observed, and are now known as FU Orionis objects. Astronomers still had no real idea what could cause such a dramatic change, but a new study argues that it could be caused by a dying young planet.

Continue reading “An Unfortunate Planet is Undergoing “Extreme Evaporation,” Melting Under the Extreme Heat From its Star”

Can We Predict if a System Will Have Giant Planets?

Prediction is one of the hallmarks of scientific endeavors. Scientists pride themselves on being able to predict physical realities based on inputs. So it should come as no surprise that a team of scientists at Notre Dame has developed a theory that can be used to predict the existence of giant planets on the fringes of an exoplanetary system.

Continue reading “Can We Predict if a System Will Have Giant Planets?”

The Planet That Shouldn’t Exist

Artist illustration of TOI-5205b orbiting its parent star. (Artwork Credit: Katherine Cain/Carnegie Institution for Science)

As of this writing, almost 5300 exoplanets spanning approximately 4000 planetary systems have been confirmed to exist in our universe. With each new exoplanet discovery, scientists continue to learn more about planetary formation and evolution that has already shaken our understanding of this process down to its very core. One such example is “Hot Jupiters”, which are Jupiter-sized exoplanets, or larger, that orbit closer to their parents stars than Mercury does to our own. This is in stark contrast to our own Solar System, which has rocky planets closer towards our Sun and the gas giant planets much farther out.

Continue reading “The Planet That Shouldn’t Exist”

Astronomers are Watching a gas Giant Grow, Right in Front of Their Eyes

In the vastness of space, astronomers are likely to find instances of almost every astronomical phenomena if they look hard enough.  Many planetary phenomena are starting to come into sharper focus as the astronomy community continues to focus on finding exoplanets.  Now a team led by Yifan Zhou at UT Austin has directly imaged a gas giant still in formation.

Continue reading “Astronomers are Watching a gas Giant Grow, Right in Front of Their Eyes”

A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive

An artist's impression of K2-25b orbiting its host star, and M-dwarf in the Hyades cluster. Image Credit: NOIRLab/NSF/AURA/J. Pollard

Astronomers have found another strange exoplanet in a distant solar system. This one’s an oddball because its size is intermediate between Earth and Neptune, yet it’s 50% more massive than Neptune.

Astronomers have found what they call “puff planets” in other Solar Systems. Those are planets that are a few times more massive than Earth, but with radii much larger than Neptune’s. But this planet is the opposite of that: it’s much more massive than Neptune, but it also has a much smaller radius. Super-dense, not super-puffy.

This oddball planet is calling into question our understanding of how planets form.

Continue reading “A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive”

A Neptune-class exoplanet has been found with its atmosphere stripped away

Voyager 2 captured this image of Neptune in 1982, when it was over 7 million km (4.4 million miles) away from the planet. The Great Dark Spot in the middle of the image was the first storm ever seen on Neptune. Image: By NASA (JPL image) [Public domain], via Wikimedia Commons

What happens when a giant planet gets stripped of its atmosphere? It leaves behind a giant core, rich in iron and other metals. A team using NASA’s TESS mission recently found such a remnant core, orbiting a star just 730 light-years away.

Continue reading “A Neptune-class exoplanet has been found with its atmosphere stripped away”

Huge Stars Can Destroy Nearby Planetary Disks

The brilliant tapestry of young stars flaring to life resembles a glittering fireworks display in this Hubble Space Telescope image. The sparkling centerpiece of this fireworks show is a giant cluster of thousands of stars called Westerlund 2. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina. Hubble's Wide Field Camera 3 pierced through the dusty veil shrouding the stellar nursery in near-infrared light, giving astronomers a clear view of the nebula and the dense concentration of stars in the central cluster. The cluster measures between six light-years and 13 light-years across. Credits: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI) and the Westerlund 2 Science Team

Westerlund 2 is a star cluster about 20,000 light years away. It’s young—only about one or two million years old—and its core contains some of the brightest and hottest stars we know of. Also some of the most massive ones.

There’s something unusual going on around the massive hot stars at the heart of Westerlund 2. There should be huge, churning clouds of gas and dust around those stars, and their neighbours, in the form of circumstellar disks.

But in Westerlund 2’s case, some of the stars have no disks.

Continue reading “Huge Stars Can Destroy Nearby Planetary Disks”

This is an Actual Image of a Planet-Forming Disc in a Distant Star System

An image of AB Aurigae from the ESO's VLT and its SPHERE instrument, showing what scientists think is a baby planet forming. Image Credit: ESO/Boccaletti et al.

In 2017, astronomers used ALMA (Atacama Large Millimeter/sub-millimeter Array) to look at the star AB Aurigae. It’s a type of young star called a Herbig Ae star, and it’s less then 10 million years old. At that time, they found a dusty protoplanetary disk there, with tell-tale gaps indicating spiral arms.

Now they’ve taken another look, and found a very young planet forming there.

Continue reading “This is an Actual Image of a Planet-Forming Disc in a Distant Star System”