Nitrous Oxide, aka “Laughing gas”, Could be an Indication of Life in an Exoplanet

Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech
Illustration showing the possible surface of TRAPPIST-1f, one of the newly discovered planets in the TRAPPIST-1 system. Credits: NASA/JPL-Caltech

A team of astronomers have proposed to hunt for signs of life by looking for the signature of nitrous oxide in alien atmospheres. It’s laughing gas, but it’s no joke.

Continue reading “Nitrous Oxide, aka “Laughing gas”, Could be an Indication of Life in an Exoplanet”

Is the Concept of a Habitable Zone Too Wide?

Planetary system comparison
This size and scale of the Kepler-452 system compared alongside our own solar system, plus another planetary system with a habitable-zone planet known as Kepler-186f. The Kepler-186 system has a faint red dwarf star and a planet whose orbit would fit inside the orbit of Mercury.

In our search for exoplanets, we have found more than three dozen potentially habitable worlds. It’s estimated that there are 8 to 20 billion potentially habitable, Earth-like worlds in our galaxy alone. But there is a big difference between potentially habitable and actually habitable, and scientists are starting to narrow their definitions.

Continue reading “Is the Concept of a Habitable Zone Too Wide?”

German Impact Crater Could Have Hosted Early Life On Earth

Aerial view of Nördlinger Ries crater in Germany, a formation so subtle it was not even known as an impact crater until the 1960s. Credit: Credit: Jesse Allen/NASA/GSFC/METI/ERSDAC/JAROS/ASTER

Could life thrive in the devastated rock left behind after a meteorite impact? A new study hints that possibly, that could be the case. Researchers discovered what they think are geological records of biological activity inside of Nördlinger Ries, a crater in Germany that is about 15 miles (24 kilometers) wide.

What the researchers say could be microbial trace fossils — specifically, tiny “tubular features” — were spotted inside the impact glass created after the meteorite impact melted the surrounding rock. These features are tiny — one-millionth to three-millionths of a meter in diameter — and were examined with spectroscopy and scanning electron microscopy to confirm the findings, the team stated.

“The simplest and most consistent explanation of the data is that biological activity played a role in the formation of the tubular textures in the Ries glasses, likely during post-impact hydrothermal activity,” stated post-doctoral fellow Haley Sapers, a post-doctoral scholar at the University of Western Ontario who led the research.

The researchers suggest that on other planets, looking in impact glass might be a good spot to search for tubular features such as the ones they found. The findings are peer-reviewed, but we’ll be interested to see what independent research teams make of the data collected.

You can read more about the research in the journal Geology.

Source: University of Western Ontario