Even More Evidence that Europa has Geysers

A "true color" image of the surface of Jupiter's moon Europa as seen by the Galileo spacecraft. In 2030, the Europa Clipper mission will start its close flybys of this ocean world. Image credit: NASA/JPL-Caltech/SETI Institute
A "true color" image of the surface of Jupiter's moon Europa as seen by the Galileo spacecraft. In 2030, the Europa Clipper mission will start its close flybys of this ocean world. Image credit: NASA/JPL-Caltech/SETI Institute

Earlier this week, we shared some stunning, newly reprocessed images of Europa from NASA’s Galileo spacecraft, which visited Jupiter and its moons from December 1995 to September 2003. Now, as scientists continue to revisit Galileo’s data, even more details are coming into focus about Jupiter’s enticing moon. Not only is there evidence within the past few years of geysers shooting from Europa’s surface, twenty years ago, Galileo may have also witnessed a cryovolcanic eruptions  — or plumes of water — spewing from the icy moon.

Continue reading “Even More Evidence that Europa has Geysers”

Water Vapor Was Just Found on Europa, More Evidence There’s Liquid Water Beneath All that Ice

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

What’s been long-suspected has now been confirmed: Jupiter’s moon Europa has water. As we’ve learned more about the outer Solar System in recent years, Europa has become a high-priority target in the search for life. With this discovery, NASA has just painted a big red bulls-eye on Jupiter’s smallest Galilean moon.

Continue reading “Water Vapor Was Just Found on Europa, More Evidence There’s Liquid Water Beneath All that Ice”

AI Could Help the Europa Clipper Mission Make New Discoveries!

Artist's concept of a Europa Clipper mission. Credit: NASA/JPL

In 2023, NASA plans to launch the Europa Clipper mission, a robotic explorer that will study Jupiter’s enigmatic moon Europa. The purpose of this mission is to explore Europa’s ice shell and interior to learn more about the moon’s composition, geology, and interactions between the surface and subsurface. Most of all, the purpose of this mission is to shed light on whether or not life could exist within Europa’s interior ocean.

This presents numerous challenges, many of which arise from the fact that the Europa Clipper will be very far from Earth when it conducts its science operations. To address this, a team of researchers from NASA’s Jet Propulsion Laboratory (JPL) and Arizona State University (ASU) designed a series of machine-learning algorithms that will allow the mission to explore Europa with a degree of autonom.

Continue reading “AI Could Help the Europa Clipper Mission Make New Discoveries!”

Even Ganymede is Showing Tectonic Activity. We’re Going to Need Another Icy Moon Orbiter

Jupiter's moon Ganymede, the largest moon in the Solar System, seen orbiting Jupiter, the largest planet in the Solar System. This image was taken by the Cassini spacecraft. Image Credit: NASA/JPL/University of Arizona
Jupiter's moon Ganymede, the largest moon in the Solar System, seen orbiting Jupiter, the largest planet in the Solar System. This image was taken by the Cassini spacecraft. Image Credit: NASA/JPL/University of Arizona

Ganymede was shaped by pronounced periods of tectonic activity in the past, according to a new paper. It’s no longer active and its surface is more-or-less frozen in place now. But this discovery opens the door to better planning for future missions to Jupiter’s other frozen moon Europa. Unlike Ganymede, Europa is still tectonically active, and understanding past geological activity on Ganymede helps us understand present-day Europa.

Continue reading “Even Ganymede is Showing Tectonic Activity. We’re Going to Need Another Icy Moon Orbiter”

Europa is Going to be Tough to Land on, it Could Have Towering Walls of Ice Spikes Across its Surface

The fascinating surface of Jupiter’s icy moon Europa looms large in this newly-reprocessed color view, made from images taken by NASA's Galileo spacecraft in the late 1990s. This is the color view of Europa from Galileo that shows the largest portion of the moon's surface at the highest resolution. Credits: NASA/JPL-Caltech/SETI Institute

Jupiter’s moon Europa has been the subject of fascination ever since the Pioneer 10 and 11 and Voyager 1 and 2 missions passed through the system back in the 1970s. While the moon has no viable atmosphere and is bombarded by intense radiation from Jupiter’s powerful magnetic field, scientists believe that one of the most likely places to find life beyond Earth exists beneath its icy surface.

Little wonder then why multiple missions are being planned to study this moon up-close. However, if and when those missions reach Europa sometime in the next decade, they will have to contend with some sharp surface features that could make it hard to land. Such is the conclusion of a new study by researchers from Britain, the US and NASA’s Ames Research Center, which indicates that Europa’s surface is covered in bladed terrain.

Continue reading “Europa is Going to be Tough to Land on, it Could Have Towering Walls of Ice Spikes Across its Surface”

Life on Europa Would be Protected by Just a Few Centimeters of Ice

Radiation from Jupiter can destroy molecules on Europa's surface. Material from Europa's ocean that ends up on the surface will be bombarded by radiation, possibly destroying any biosignatures, or chemical signs that could imply the presence of life. Credit: NASA/JPL-Caltech

Ever since the Galileo probe provided compelling evidence for the existence of a global ocean beneath the surface of Europa in the 1990s, scientists have wondered when we might be able to send another mission to this icy moon and search for possible signs of life. Most of these mission concepts call for an orbiter or lander than will study Europa’s surface, searching the icy sheet for signs of biosignatures turned up from the interior.

Unfortunately, Europa’s surface is constantly bombarded by radiation, which could alter or destroy material transported to the surface. Using data from the Galileo and Voyager 1 spacecraft, a team of scientists recently produced a map that shows how radiation varies across Europa’s surface. By following this map, future missions like NASA’s Europa Clipper will be able to find the spots where biosignatures are most likely to still exist.

As many missions have revealed by studying Europa’s surface, the moon experiences periodic exchanges between the interior and the surface. If there is life in its interior ocean, then biological material could theoretically be brought to the surface where it could be studied. Since radiation from Jupiter’s magnetic field would destroy this material, knowing where it is most intense, how deep it goes, and how it could affect the interior are all important questions.

Artist’s impression of water bubbling up from Europa’s interior ocean and breaching the surface ice. Credit: NASA/JPL-Caltech

As Tom Nordheim, a research scientist at NASA’s Jet Propulsion Laboratory, explained in a recent NASA press release:

“If we want to understand what’s going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation. When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?”

To address these question, Nordheim and his colleagues examined data from Galileo‘s flybys of Europa and electron measurements from NASA’s Voyager 1 spacecraft. After looking closely at the electrons blasting the moon’s surface, Nordheim and his team found that the radiation doses vary by location. The harshest radiation is concentrated in zones around the equator, and the radiation lessens closer to the poles.

The study which describes their findings recently appeared in the scientific journal Nature under the title “Preservation of potential biosignatures in the shallow subsurface of Europa“. The study was led by Nordheim and was co-authored by Kevin Hand (also with the JPL) and Chris Paranicas from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

“This is the first prediction of radiation levels at each point on Europa’s surface and is important information for future Europa missions,” said Paranicas. Now that scientists know where to find regions least altered by radiation, they will be able to designate areas of study for the Europa Clipper, a JPL-led mission that is expected to launch as early as 2022.

For the sake of their study, Nordheim and his team went beyond a conventional two-dimensional map to build 3D models that examined how far below the surface the radiation penetrates. To test how deep organic material would have to be buried in order to survive, Nordheim and his team tested the effect of radiation on amino acids (the basic building blocks for proteins) to figure out how Europa’s exposure to radiation would affect potential biosignatures.

The results indicate how deep scientists will need to dig or drill during a potential future Europa lander mission in order to find any biosignatures that might be preserved. In the highest-radiation zones around the equator, the depth at which biosignatures could be found ranged from 10 to 20 cm (4 to 8 inches). At the middle- and high-latitudes, closer to the poles, the depths decrease to about 1 cm (0.4 inches). As Hand indicated:

“The radiation that bombards Europa’s surface leaves a fingerprint. If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.”

Artist’s impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SwRI

When the Europa Clipper mission reaches the Jovian system, the spacecraft will orbit Jupiter and conducting about 45 close flybys of Europa. It’s advanced suite of scientific instruments will include cameras, spectrometers, plasma and radar instruments which will investigate the composition of the moon’s surface, its ocean, and material that has been ejected from the surface.

“Europa Clipper’s mission team is examining possible orbit paths, and proposed routes pass over many regions of Europa that experience lower levels of radiation,” Hand said. “That’s good news for looking at potentially fresh ocean material that has not been heavily modified by the fingerprint of radiation.”

With this new radiation map, the mission team will be able to narrow the range of possible research sites. This, in turn, will increase the likelihood that the orbiter mission will be able to settle the decades-old mystery of whether or not there is life in the Jovian system.

Further Reading: NASA, Nature

NASA Simulation Shows How Europa’s “Fossil Ocean” Rises to the Surface Over Time

Based on new evidence from Jupiter's moon Europa, astronomers hypothesize that chloride salts bubble up from the icy moon's global liquid ocean and reach the frozen surface where they are bombarded with sulfur from volcanoes on Jupiter's innermost large moon Io. The new findings propose answers to questions that have been debated since the days of NASA's Voyager and Galileo missions. This illustration of Europa (foreground), Jupiter (right) and Io (middle) is an artist's concept. Credit: NASA/JPL-Caltech

In the 1970s, the Jupiter system was explored by a succession of robotic missions, beginning with the Pioneer 10 and 11 missions in 1972/73 and the Voyager 1 and 2 missions in 1979. In addition to other scientific objectives, these missions also captured images of Europa’s icy surface features, which gave rise to the theory that the moon had an interior ocean that could possibly harbor life.

Since then, astronomers have also found indications that there are regular exchanges between this interior ocean and the surface, which includes evidence of plume activity captured by the Hubble Space Telescope. And recently, a team of NASA scientists studied the strange features on Europa’s surface to create models that show how the interior ocean exchanges material with the surface over time.

The study, which recently appeared in the the Geophysical Research Letters under the title “Band Formation and Ocean-Surface Interaction on Europa and Ganymede“, was conducted by Samuel M. Howell and Robert T. Pappalardo – two researchers from the NASA Jet Propulsion Laboratory. For their study, the team examined both Ganymede and Europa to see what the moons surface features indicated about how they changed over time.

Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech

Using the same two-dimensional numerical models that scientists have used to solve mysteries about motion in the Earth’s crust, the team focused on the linear features known as “bands” and “groove lanes” on Europa and Ganymede. The features have long been suspected to be tectonic in nature, where fresh deposits of ocean water have risen to the surface and become frozen over previously-deposited layers.

However, the connection between this band-forming processes and exchanges between the ocean and the surface has remained elusive until now. To address this, the team used their 2-D numerical models to simulate ice shell faulting and convection.Their simulations also produced a beautiful animation that tracked the movement of “fossil” ocean material, which rises from the depths, freezes into the base of the icy surface, and deforms it over time.

Whereas the white layer at the top is the surface crust of Europa, the colored band in the middle (orange and yellow) represents the stronger sections of the ice sheet. Over time, gravitational interactions with Jupiter cause the ice shell to deform, pulling the top layer of ice apart and creating faults in the upper ice. At the bottom is the softer ice (teal and blue), which begins to churn as the upper layers pull apart.

This causes water from Europa’s interior ocean, which is in contact with the softer lower layers of the icy shell (represented by white dots), to mix with the ice and slowly be transported to the surface. As they explain in their paper, the process where this “fossil” ocean material becomes trapped in Europa’s ice shell and slowly rises to the surface can take hundreds of thousands of years or more.

Artist’s concept of a Europa Clipper mission. Credit: NASA/JPL

As they state in their study:

“We find that distinct band types form within a spectrum of extensional terrains correlated to lithosphere strength, governed by lithosphere thickness and cohesion. Furthermore, we find that smooth bands formed in weak lithosphere promote exposure of fossil ocean material at the surface.”

In this respect, once this fossil material reaches the surface, it acts as a sort of geological record, showing how the ocean was millions of years ago and not as it is today. This is certainly significant when it comes to future missions to Europa, such as NASA’s Europa Clipper mission. This spacecraft, which is expected to launch sometime in the 2020s, will be the first to study Europa exclusively.

In addition to studying the composition of Europa’s surface (which will tell us more about the composition of the ocean), the spacecraft will be studying surface features for signs of current geological activity. On top of that, the mission intends to look for key compounds in the surface ice that would indicate the possible presence of life in the interior (i.e. biosignatures).

Artist’s impression of a hypothetical ocean cryobot (a robot capable of penetrating water ice) in Europa. Credit: NASA

If what this latest study indicates is true, then the ice and compounds the Europa Clipper will be examining will essentially be “fossils” from hundreds of thousands or even millions of years ago. In short, any biomarkers the spacecraft detects – i.e. signs of potential life – will essentially be dated. However, this need not deter us from sending missions to Europa, for even evidence of past life would be groundbreaking, and a good indication that life still exists there today.

If anything, it makes the case for a lander that can explore Europa’s plumes, or perhaps even a Europa submarine (cryobot), all the more necessary! If there is life beneath Europa’s icy surface, we are determined to find it – provided we don’t contaminate it in the process!

Further Reading: NASA, Geophysical Research Letters

There was Evidence for Europa’s Geysers Hiding in Plain Sight in Old Spacecraft Data From 1997

Artist’s illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa’s surface. Credits: NASA/JPL-Caltech/Univ. of Michigan

Jupiter’s moon Europa continues to fascinate and amaze! In 1979, the Voyager missions provided the first indications that an interior ocean might exist beneath it’s icy surface. Between 1995 and 2003, the Galileo spaceprobe provided the most detailed information to date on Jupiter’s moons to date. This information bolstered theories about how life could exist in a warm water ocean located at the core-mantle boundary.

Even though the Galileo mission ended when the probe crashed into Jupiter’s atmosphere, the spaceprobe is still providing vital information on Europa. After analyzing old data from the mission, NASA scientists have found independent evidence that Europa’s interior ocean is venting plumes of water vapor from its surface. This is good news for future mission to Europa, which will attempt to search these plumes for signs of life.

The study which describes their findings, titled “Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures“, recently appeared in the journal Nature Astronomy. The study was led by Xianzhe Jia, a space physicist from the Department of Climate and Space Sciences and Engineering at the University of Michigan, and included members from UCLA and the University of Iowa.

Artist’s concept of the Galileo space probe passing through the Jupiter system. Credit: NASA

The data was collected in 1997 by Galileo during a flyby of Europa that brought it to within 200 km (124 mi) of the moon’s surface. At the time, its Magnetometer (MAG) sensor detected a brief, localized bend in Jupiter’s magnetic field, which remained unexplained until now. After running the data through new and advanced computer models, the team was able to create a simulation that showed that this was caused by interaction between the magnetic field and one of the Europa’s plumes.

This analysis confirmed ultraviolet observations made by NASA’s Hubble Space Telescope in 2012, which suggested the presence of water plumes on the moon’s surface. However, this new analysis used data collected much closer to the source, which indicated how Europa’s plumes interact with the ambient flow of plasma contained within Jupiter’s powerful magnetic field.

In addition to being the lead author on this study, Jia is also the co-investigator for two instruments that will travel aboard the Europa Clipper mission – which may launch as soon as 2022 to explore the moon’s potential habitability. Jia’s and his colleagues were inspired to reexamine data from the Galileo mission thanks to Melissa McGrath, a member of the SETI Institute and also a member of the Europa Clipper science team.

During a presentation to her fellow team scientists, McGrath highlighted other Hubble observations of Europa. As Jiang explained in a recent NASA press release:

“The data were there, but we needed sophisticated modeling to make sense of the observation. One of the locations she mentioned rang a bell. Galileo actually did a flyby of that location, and it was the closest one we ever had. We realized we had to go back. We needed to see whether there was anything in the data that could tell us whether or not there was a plume.”

Artist’s impression of a water vapor plume on Europa. Credit: NASA/ESA/K. Retherford/SWRI

When they first examined the information 21 years ago, the high-resolution data obtained by the MAG instrument showed something strange. But it was thanks to the lessons provided by the Cassini mission, which explored the plumes on Saturn’s moon Enceladus, that the team knew what to look for. This included material from the plumes which became ionized by the gas giant’s magnetosphere, leaving a characteristic blip in the magnetic field.

After reexamining the data, they found that the same characteristic bend (localized and brief) in the magnetic field was present around Europa. Jia’s team also consulted data from Galileo’s Plasma Wave Spectrometer (PWS) instrument to measure plasma waves caused by charged particles in gases around Europa’s atmosphere, which also appeared to back the theory of a plume.

This magnetometry data and plasma wave signatures were then layered into new 3D modeling developed by the team at the University of Michigan (which simulated the interactions of plasma with Solar system bodies). Last, they added the data obtained from Hubble in 2012 that suggested the dimensions of the potential plumes. The end result was a simulated plume that matched the magnetic field and plasma signatures they saw in the Galileo data.

As Robert Pappalardo, a Europa Clipper project scientist at NASA’s Jet Propulsion Laboratory (JPL), indicated:

“There now seem to be too many lines of evidence to dismiss plumes at Europa. This result makes the plumes seem to be much more real and, for me, is a tipping point. These are no longer uncertain blips on a faraway image.” 

Artist’s concept of a Europa Clipper mission, which will study Europa in 2022-2025 to search for signs of life. Credit: NASA/JPL

The findings are certainly good news for the Europa Clipper mission, which is expected to make the journey to Jupiter between 2022 and 2025. When this probe arrives in the Jovian system, it will establish an orbit around Jupiter and conduct rapid, low-altitude flybys of Europa. Assuming that plume activity does take place on the surface of the moon, the Europa Clipper will sample the frozen liquid and dust particles for signs of life.

“If plumes exist, and we can directly sample what’s coming from the interior of Europa, then we can more easily get at whether Europa has the ingredients for life,” Pappalardo said. “That’s what the mission is after. That’s the big picture.”

At present, the mission team is busy looking at potential orbital paths for the Europa Clipper mission. With this new research in hand, the team will choose a path that will take the spaceprobe above the plume locations so that it is in an ideal position to search them for signs of life. If all goes as planned, the Europa Clipper could be the first of several probes that finally proves that there is life beyond Earth.

And be sure to check out this video of the Europa Clipper mission, courtesy of NASA:

Further Reading: NASA, Nature

Trump Proposes $19.1 Billion 2018 NASA Budget, Cuts Earth Science and Education

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

NASA acting administrator Robert Lightfoot outlines NASA’s Fiscal Year 2018 budget proposal during a ‘State of NASA’ speech to agency employees held at NASA HQ on May 23, 2017. Credit: NASA TV/Ken Kremer

The Trump Administration has proposed a $19.1 Billion NASA budget request for Fiscal Year 2018, which amounts to a $0.5 Billion reduction compared to the recently enacted FY 2017 NASA Budget. Although it maintains many programs such as human spaceflight, planetary science and the Webb telescope, the budget also specifies significant cuts and terminations to NASA’s Earth Science and manned Asteroid redirect mission as well as the complete elimination of the Education Office.

Overall NASA’s FY 2018 budget is cut approximately 3%, or $560 million, for the upcoming fiscal year starting in October 2017 as part of the Trump Administration’s US Federal Budget proposal rolled out on May 23, and quite similar to the initial outline released in March.

The cuts to NASA are smaller compared to other Federal science agencies also absolutely vital to the health of US scientific research – such as the NIH, the NSF, the EPA, DOE and NIST which suffer unconscionable double digit slashes of 10 to 20% or more.

The highlights of NASA’s FY 2018 Budget were announced by NASA acting administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV.

Lightfoot’s message to NASA and space enthusiasts was upbeat overall.

“What this budget tells us to do is to keep going!” NASA acting administrator Robert Lightfoot said.

“Keep doing what we’ve been doing. It’s very important for us to maintain that course and move forward as an agency with all the great things we’re doing.”

“I want to reiterate how proud I am of all of you for your hard work – which is making a real difference around the world. NASA is leading the world in space exploration, and that is only possible through all of your efforts, every day.”

“We’re pleased by our top line number of $19.1 billion, which reflects the President’s confidence in our direction and the importance of everything we’ve been achieving.”

Lightfoot recalled the recent White House phone call from President Trump to NASA astronaut & ISS Station Commander Peggy Whitson marking her record breaking flight for the longest cumulative time in space by an American astronaut.

Thus Lightfoot’s vision for NASA has three great purposes – Discover, Explore, and Develop.

“NASA has a historic and enduring purpose. It can be summarized in three major strategic thrusts: Discover, Explore, and Develop. These correspond to our missions of scientific discovery, missions of exploration, and missions of new technology development in aeronautics and space systems.”

Lightfoot further recounted the outstanding scientific accomplishments of NASA’s Mars rover and orbiters paving the path for the agencies plans to send humans on a ‘Journey to Mars’ in the 2030s.

“We’ve had a horizon goal for some time now of reaching Mars, and this budget sustains that work and also provides the resources to keep exploring our solar system and look beyond it.”

Lightfoot also pointed to upcoming near term science missions- highlighting a pair of Mars landers – InSIGHT launching next year as well as the Mars 2020 rover. Also NASA’s next great astronomical observatory – the James Webb Space Telescope (JWST).

“In science, this budget supports approximately 100 missions: 40 missions currently preparing for launch & 60 operating missions.”

“The James Webb Space Telescope is built!” Lightfoot gleefully announced.

“It’s done testing at Goddard and now has moved to Johnson for tests to simulate the vacuum of space.”

JWST is the scientific successor to the Hubble Space Telescope and slated for launch in Oct. 2018. The budget maintains steady support for Webb.

The 18-segment gold coated primary mirror of NASA’s James Webb Space Telescope is raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on Nov. 2, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

The Planetary Sciences division receives excellent support with a $1.9 Billion budget request. It includes solid support for the two flagship missions – Mars 2020 and Europa Clipper as well as the two new Discovery class missions selected -Lucy and Psyche.

“The budget keeps us on track for the next selection for the New Frontiers program, and includes formulation of a mission to Jupiter’s moon Europa.”

SLS and Orion are making great progress. They are far beyond concepts, and as I mentioned, components are being tested in multiple ways right now as we move toward the first flight of that integrated system.”

NASA is currently targeting the first integrated launch of SLS and Orion on the uncrewed Exploration Mission-1 (EM-1) for sometime in 2019.

Top NASA managers recently decided against adding a crew of two astronauts to the flight after conducting detailed agency wide studies at the request of the Trump Administration.

NASA would have needed an additional $600 to $900 to upgrade EM-1 with humans.

Unfortunately Trump’s FY 2018 NASA budget calls for a slight reduction in development funding for both SLS and Orion – thus making a crewed EM-1 flight fiscally unviable.

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

The budget request does maintain full funding for both of NASA’s commercial crew vehicles planned to restore launching astronauts to low Earth orbit (LEO) and the ISS from US soil on US rockets – namely the crewed Dragon and CST-100 Starliner – currently under development by SpaceX and Boeing – thus ending our sole reliance on Russian Soyuz for manned launches.

“Working with commercial partners, NASA will fly astronauts from American soil on the first new crew transportation systems in a generation in the next couple of years.”

“We need commercial partners to succeed in low-Earth orbit, and we also need the SLS and Orion to take us deeper into space than ever before.”

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

However the Trump Administration has terminated NASA’s somewhat controversial plans for the Asteroid Redirect Mission (ARM) – initiated under the Obama Administration – to robotically retrieve a near Earth asteroid and redirect it to lunar orbit for a visit by a crewed Orion to gather unique asteroidal samples.

“While we are ending formulation of a mission to an asteroid, known as the Asteroid Redirect Mission, many of the central technologies in development for that mission will continue, as they constitute vital capabilities needed for future human deep space missions.”

Key among those vital capabilities to be retained and funded going forward is Solar Electric Propulsion (SEP).

“Solar electric propulsion (SEP) for our deep space missions is moving ahead as a key lynchpin.”

The Trump Administration’s well known dislike for Earth science and disdain of climate change has manifested itself in the form of the termination of 5 current and upcoming science missions.

NASA’s FY 2018 Earth Science budget suffers a $171 million cut to $1.8 Billion.

“While we are not proposing to move forward with Orbiting Carbon Observatory-3 (OCO-3), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), Climate Absolute Radiance and Refractivity Observatory Pathfinder (CLARREO PF), and the Radiation Budget Instrument (RBI), this budget still includes significant Earth Science efforts, including 18 Earth observing missions in space as well as airborne missions.”

The DSCOVR Earth-viewing instruments will also be shut down.

NASA’s Office of Education will also be terminated completely under the proposed FY 2018 budget and the $115 million of funding excised.

“While this budget no longer supports the formal Office of Education, NASA will continue to inspire the next generation through its missions and the many ways that our work excites and encourages discovery by learners and educators. Let me tell you, we are as committed to inspiring the next generation as ever.”

Congress will now have its say and a number of Senators, including Republicans says Trumps budget is DOA.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer