Earth’s Water is 4.5 Billion Years Old

A protosolar disk is the disk of material around a young stellar object that isn't yet a star. It's called a protoplanetary disk once the star has formed and begun fusion. Planetesimals are the building blocks of planets and are present in both stages of a disk's evolution. Image Credit: NASA/JPL

The origin of Earth’s water has been an enduring mystery. There are different hypotheses and theories explaining how the water got here, and lots of evidence supporting them.

But water is ubiquitous in protoplanetary disks, and water’s origin may not be so mysterious after all.

Continue reading “Earth’s Water is 4.5 Billion Years Old”

Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did

The largest impact basin on the Moon is the South-Pole Aitken basin. It, and other impact basins, were created by planetesimals according to a new study. Image Credit: Moriarty et al., 2021.

The Moon’s pock-marked surface tells the story of its history. It’s marked by over 9,000 impact craters, according to the International Astronomical Union (IAU.) The largest ones are called impact basins, not craters. According to a new study, asteroids didn’t create the basins; leftover planetesimals did.

Continue reading “Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did”

OK, Artemis. Now You’re Just Showing Off. A Stunning View of the Moon Eclipsing Earth From the Orion Spacecraft

Screenshot of the Moon eclipsing Earth, via NASA's livestream from Orion.

Have you ever seen a lunar eclipse of the Earth from the far side of the Moon? Now we have.

On Monday (November 28, 2022) NASA’s Orion spacecraft streamed back live video showing the Earth and Moon right next to each other, followed by a stunning view of the Moon eclipsing the Earth.

What a time to be alive! Image editor Kevin Gill might have said it best:

Continue reading “OK, Artemis. Now You’re Just Showing Off. A Stunning View of the Moon Eclipsing Earth From the Orion Spacecraft”

Mars Once had Enough Water for a Planet-Wide Ocean 300 Meters Deep

This artist’s impression shows how Mars may have looked about four billion years ago. The young planet Mars would have had enough water to cover its entire surface in a liquid layer about 140 metres deep, but it is more likely that the liquid would have pooled to form an ocean occupying almost half of Mars’s northern hemisphere, and in some regions reaching depths greater than 1.6 kilometres. Credit: ESO/M. Kornmesser

Today, Mars is colloquially known as the “Red Planet” on a count of how its dry, dusty landscape is rich in iron oxide (aka. “rust”). In addition, the atmosphere is extremely thin and cold, and no water can exist on the surface in any form other than ice. But as the Martian landscape and other lines of evidence attest, Mars was once a very different place, with a warmer, denser atmosphere and flowing water on its surface. For years, scientists have attempted to determine how long natural bodies existed on Mars and whether or not they were intermittent or persistent.

Another important question is how much water Mars once had and whether or not this was enough to support life. According to a new study by an international team of planetary scientists, Mars may have had enough water 4.5 billion years ago to cover it in a global ocean up to 300 meters (almost 1,000 feet) deep. Along with organic molecules and other elements distributed throughout the Solar System by asteroids and comets at this time, they argue, these conditions indicate that Mars may have been the first planet in the Solar System to support life.

Continue reading “Mars Once had Enough Water for a Planet-Wide Ocean 300 Meters Deep”

What’s the Best Mix of Oceans to Land for a Habitable Planet?

A new study asks what ratio of land to ocean is best for habitability? Image Credit: Reto Stöckli, Render by Robert Simmon. Based on data from the MODIS Science Team

Earth is about 29% land and 71% oceans. How significant is that mix for habitability? What does it tell us about exoplanet habitability?

Continue reading “What’s the Best Mix of Oceans to Land for a Habitable Planet?”

Volcanoes are the worst. They’ve caused extinctions on Earth, and probably killed Venus

This is a computer-generated, three-dimensional perspective of the surface of Venus showing Maat Mons. It's Venus's highest volcano and is 8 kilometres (5.0 mi) high. The viewpoint is located 634 kilometers (393 miles) north of Maat Mons at an elevation of 3 kilometers (2 miles) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The vertical scale in this perspective has been exaggerated 10 times. Credits: NASA/JPL

Is there anything good about volcanoes? They can be violent, dangerous, and unpredictable. For modern humans, volcanoes are mostly an inconvenience, sometimes an intriguing visual display, and occasionally deadly.

But when there’s enough of them, and when they’re powerful and prolonged, they can kill the planet that hosts them.

Continue reading “Volcanoes are the worst. They’ve caused extinctions on Earth, and probably killed Venus”

Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across

Sstronomers have spotted three near-Earth asteroids (NEAs) hiding in the glare of the Sun. These NEAs are part of an elusive population that lurks inside the orbits of Earth and Venus. One of the asteroids is the largest object that is potentially hazardous to Earth to be discovered in the last eight years. Image Credit: DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA/J. da Silva/Spaceengine

An asteroid 1.5 km across is no joke. Even a much smaller one, about the size of a house, can explode with more power than the first nuclear weapons. When an asteroid is greater than 1 km in diameter, astronomers call them “planet-killers.” The impact energy released from a planet-killer striking Earth would be devastating, so knowing where these asteroids are and where they’re headed is critically important.

Our defensive capability against asteroid strikes is in its infancy, so advance notice of asteroids that could cross Earth’s orbit is critical. We’ll need time to prepare.

Continue reading “Three New Potentially Hazardous Asteroids Discovered, Including a big one That Measures 1.5 km Across”

The Most Devastating Solar Storms in History are Scoured Into Tree Rings

Scientists study tree rings because they retain a record of climatic events and changes. They also record the Sun's activity. Image Credit: Rbreidbrown/Wikimedia Commons, CC BY-SA

Trees are like sentinels that preserve a record of shifting climates. Their growth rings hold that history and dendrochronology studies those rings. Scientists can determine the exact ages of trees and correlate their growth with climatic and environmental changes.

But they also record the effects of more distant changes, including the Sun’s activity.

Continue reading “The Most Devastating Solar Storms in History are Scoured Into Tree Rings”

How Dangerous are Nearby Supernovae to Life on Earth?

A composite image of SN 1987A from Hubble, Chandra, and ALMA. Image Credit: By ALMA (ESO/NAOJ/NRAO)/A. Angelich. Visible light image: the NASA/ESA Hubble Space Telescope. X-Ray image: The NASA Chandra X-Ray Observatory - http://www.eso.org/public/images/eso1401a/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30512379

Life and supernovae don’t mix.

From a distance, supernovae explosions are fascinating. A star more massive than our Sun runs out of hydrogen and becomes unstable. Eventually, it explodes and releases so much energy it can outshine its host galaxy for months.

But space is vast and largely empty, and supernovae are relatively rare. And most planets don’t support life, so most supernovae probably explode without affecting living things.

But a new study shows how one type of supernova has a more extended reach than thought. And it could have consequences for planets like ours.

Continue reading “How Dangerous are Nearby Supernovae to Life on Earth?”

Lucy Took This Picture of Earth as it was Making its Gravity Assist Maneuver

NASA’s Lucy spacecraft captured this image of the Earth on Oct 15, 2022 during the spacecraft's flyby of our planet for a gravitational assist on its way to explore the Jupiter Trojan asteroids. Credits: NASA/Goddard/SwRI

We may take it for granted, but every day we receive picture postcards from the robotic travelers we have sent out to explore our Solar System. Usually, we get to see faraway planets, moons, asteroids, or comets. But sometimes we get to see ourselves.

The Lucy spacecraft took a couple of amazing images of our home planet as the spacecraft was approaching Earth for the first of three slingshot gravity assists on its way out to explore the Trojan asteroids along Jupiter’s orbit.

Continue reading “Lucy Took This Picture of Earth as it was Making its Gravity Assist Maneuver”