Rare “Ring Galaxy” Seen in the Early Universe

One of the greatest benefits to come from space telescopes and ground-based observatories that take advantage of advanced imaging techniques is their ability to see farther into space (and hence, further back in time). In so doing, they are revealing things about the earliest galaxies, which allows astronomers to refine theories of how the cosmos formed and evolved.

For example, new research conducted by the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has found a “ring galaxy” that existed 11 billion years ago (about 3 billion years after the Big Bang). This extremely rare structure, which the team describes as a “cosmic ring of fire,” is likely to shake up cosmological theories of how the cosmos has changed over time.

Continue reading “Rare “Ring Galaxy” Seen in the Early Universe”

A Massive Rotating Disc Discovered in the Early Universe

If we want to understand how the Universe evolves, we have to understand how its large structures form and evolve. That’s why astronomers study galaxy formation. Galaxies are enormous structures of stars, planets, gas, dust, and dark matter, and understanding how they form is critical to understanding the Universe itself.

In 2017, astronomers working with ALMA (Atacama Large Millimeter/sub-millimeter Array) discovered an ancient galaxy. This massive rotating disk galaxy was born when the Universe was only about 1.5 billion years old. According to the most accepted understanding of how galaxies form and evolve, it shouldn’t exist.

But there it is.

Continue reading “A Massive Rotating Disc Discovered in the Early Universe”

You’re Looking at Spiral Galaxies, Already Forming When the Universe was Just a Baby

One of the most exciting developments in astronomy today is the way that advanced arrays and techniques are letting astronomers see farther back in time to the earliest periods of the Universe. In so doing, astronomers hope to get a closer at the earliest galaxies to learn more about how and when they first emerged – which can tell us a great deal more about their subsequent evolution.

This was the purpose of the ALMA Large Program to INvestigate C+ at Early times (ALPINE), a multiwavelength survey that examined galaxies that were around when the Universe was less than 1.5 billion years old. With funding provided by NASA and the European Southern Observatory (ESO), the ALPINE collaboration analyzed this data and learned some interesting things about the early evolution of galaxies.

Continue reading “You’re Looking at Spiral Galaxies, Already Forming When the Universe was Just a Baby”

How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech

In the past few decades, astronomers have been able to look farther into the Universe (and also back in time), almost to the very beginnings of the Universe. In so doing, they’ve learned a great deal about some of the earliest galaxies in the Universe and their subsequent evolution. However, there are still some things that are still off-limits, like when galaxies with supermassive black holes (SMBHs) and massive jets first appeared.

According to recent studies from the International School for Advanced Studies (SISSA) and a team of astronomers from Japan and Taiwan provide new insight on how supermassive black holes began forming just 800 million years after the Big Bang, and relativistic jets less than 2 billion years after. These results are part of a growing case that shows how massive objects in our Universe formed sooner than we thought.

Continue reading “How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?”

Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age

By looking deeper into space (and farther back in time), astronomers and cosmologists continue to push the boundaries of what is known about the Universe. Thanks to improvements in instrumentation and observation techniques, we are now at the point where astronomers are able to observe some of the earliest galaxies in the Universe – which in turn is providing vital clues about how our Universe evolved.

Using data obtained by the Kitt Peak National Observatory, a team of astronomers with the Cosmic Deep And Wide Narrowband (Cosmic DAWN) Survey were able to observe the farthest galaxy group to date. Known as EGS77, this galaxy existed when the Universe was just 680 million years old (less than 5% of the age of the Universe). Analysis of this galaxy is already revealing things about the period that followed shortly after the Big Bang.

Continue reading “Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age”

The First Stars Formed Very Quickly

Ever since astronomers realized that the Universe is in a constant state of expansion and that a massive explosion likely started it all 13.8 billion years ago (the Big Bang), there have been unresolved questions about when and how the first stars formed. Based on data gathered by NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and similar missions, this is believed to have happened about 100 million years after the Big Bang.

Much of the details of how this complex process worked have remained a mystery. However, new evidence gathered by a team led by researchers from the Max Planck Institute for Astronomy indicates that the first stars must have formed rather quickly. Using data from the Magellan Telescopes at Las Campanas Observatory, the team observed a cloud of gas where star formation was taking place just 850 million years after the Big Bang.

Continue reading “The First Stars Formed Very Quickly”

Astronomers Uncover Dozens of Previously Unknown Ancient and Massive Galaxies

For decades, astronomers have been trying to see as far as they can into the deep Universe. By observing the cosmos as it was shortly after the Big Bang, astrophysicists and cosmologists hope to learn all they can about the early formation of the Universe and its subsequent evolution. Thanks to instruments like the Hubble Space Telescope, astronomers have been able to see parts of the Universe that were previously inaccessible.

But even the venerable Hubble is incapable of seeing all that was taking place during the early Universe. However, using the combined power of some of the newest astronomical observatories from around the world, a team of international astronomers led by Tokyo University’s Institute of Astronomy observed 39 previously-undiscovered ancient galaxies, a find that could have major implications for astronomy and cosmology.

Continue reading “Astronomers Uncover Dozens of Previously Unknown Ancient and Massive Galaxies”

The First Molecule that was Possible in the Universe has been Seen in Space

Image of planetary nebula NGC 7027 with illustration of helium hydride molecules. In this planetary nebula, SOFIA detected helium hydride, a combination of helium (red) and hydrogen (blue), which was the first type of molecule to ever form in the early universe. This is the first time helium hydride has been found in the modern universe. Credits: NASA/ESA/Hubble Processing: Judy Schmidt

It takes a rich and diverse set of complex molecules for things like stars, galaxies, planets and lifeforms like us to exist. But before humans and all the complex molecules we’re made of could exist, there had to be that first primordial molecule that started a long chain of chemical events that led to everything you see around you today.

Though it’s been long theorized to exist, the lack of observational evidence for that molecule was problematic for scientists. Now they’ve found it and those scientists can rest easy. Their predictive theory wins!

Continue reading “The First Molecule that was Possible in the Universe has been Seen in Space”

Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed

It allowed us to spot auroras on Saturn and planets orbiting distant suns. It permitted astronomers to see galaxies in the early stages of formation, and look back to some of the earliest periods in the Universe. It also measured the distances to Cepheid variable stars more accurately than ever before, which helped astrophysicists constrain how fast the Universe is expanding (the Hubble Constant).

It did all of this and more, which is why no space telescope is as recognized and revered as the Hubble Space Telescope. And while it’s mission is currently scheduled to end in 2021, Hubble is still breaking new ground. Thanks to the efforts of a research team from the Instituto de Astrofísica de Canarias (IAC), Hubble recently obtained the deepest images of the Universe ever taken from space.

Continue reading “Astronomers Process Hubble’s Deepest Image to get Even More Data, and Show that Some Galaxies are Twice as big as Previously Believed”

Cosmic Void Contains Fewer Galaxies than Expected, which, Ironically, Makes it Harder for Light to get Through

According to the Big Bang Theory of cosmology, the Universe began roughly 13.8 billion years ago as all matter in the Universe began to expand from a single point of infinite density. Over the next few billion years, the fundamental forces of the Universe began to separate from each other and subatomic particles and atoms formed. In time, this first stars and galaxies formed, giving rise to the large-scale structure of the Universe.

However, it was only by roughly 1 billion years after the Big Bang that the Universe began to become transparent. By about 12 billion years ago, intergalactic space was filled with gas that was much less transparent than it is now, with variations from place to place. To address why this was, a team of astronomers recently used the world’s largest telescope to search for galaxies of young stars in a huge volume of space.

The study which details their findings recently appeared in The Astrophysical Journal under the title “Evidence for Large-scale Fluctuations in the Metagalactic Ionizing Background Near Redshift Six“. The study was led by George D. Becker, a professor of astrophysics at the University of California Riverside, and included members from the University of California, Los Angeles (UCLA), and the University of California, Santa Barbara (UCSB).

This illustration shows the evolution of the Universe, from the Big Bang on the left, to modern times on the right. Credit: NASA

For the sake of their study, the team used the Subaru Telescope – the world’s largest telescope, located at the Mauna Kea Observatories in Hawaii – to examine a 500 million light-year volume of space as it existed roughly 12 billion years ago. Using this data, the team considered two possible models that could account for the variations in transparency that astronomers have been seeing during this cosmic epoch.

On the one hand, if the region contained a small number of galaxies, the team would conclude that startlight could not penetrate very far through the intergalactic gas. On the other hand, if it contained an unusually large number of galaxies, this would indicate that the region had cooled significantly over the previous several hundred million years. Prior to their observations, Beck and his team were expecting to find that it was the latter.

However, what they found was that the region contained far fewer galaxies than expected – which indicated that the opaqueness of the region was due to a lack of starlight. As Steven Furlanetto, a UCLA professor of astronomy and a co-author of the research, explained in a recent UCLA press release:

“It was a rare case in astronomy where two competing models, both of which were compelling in their own way, offered precisely opposite predictions, and we were lucky that those predictions were testable… It is not that the opacity is a cause of the lack of galaxies. Instead, it’s the other way around.”

In addition to addressing an enduring mystery in astronomy, this study also has implications for our understanding of how the Universe evolved over time. According to our current cosmological models, the period that took place roughly 380,000 t0 150 million years after the Big Bang is known as the “Dark Ages”. Most of the photons in the Universe were interacting with electrons and protons at this time, which means radiation from this period is undetectable by our current instruments.

However, by about 1 billion years after the Big Bang, the first stars and galaxies had formed. It is further believed that ultraviolet light from these first galaxies filled the Universe and is what allowed for the gas in deep space to become transparent. This would have occurred earlier in regions with more galaxies, the astronomers concluded, hence why there are variations in transparency.

In short, if more ultraviolet radiation from galaxies would lead to greater transparency in the early Universe, then the existence of fewer nearby galaxies would cause certain regions to be murkier. In the future, Becker and his team hope to further study this region of space and others like it in the hope that it will reveal clues about how the first galaxies illuminated the Universe during that early period, which remains a subject of inquiry at this point.

This research is also expected to shed more light on how the early Universe evolved, gradually giving rise to the one that are familiar with today. And as next-generation instruments are able to probe deeper into space (and hence, further back in time), we just may come to understand how existence as we know it all unfolded.

Further Reading: UCLA, The Astrophysical Journal