Early Black Holes were Grazers Rather than Glutonous Eaters

Faint quasars powered by black holes. Image credit NASA/ESA/Yale

Black holes powering distant quasars in the early Universe grazed on patches of gas or passing galaxies rather than glutting themselves in dramatic collisions according to new observations from NASA’s Spitzer and Hubble space telescopes.

A black hole doesn’t need much gas to satisfy its hunger and turn into a quasar, says study leader Kevin Schawinski of Yale “There’s more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar,” Schawinski explained. “It just doesn’t happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies.”

Quasars are distant and brilliant galactic powerhouses. These far-off objects are powered by black holes that glut themselves on captured material; this in turn heats the matter to millions of degrees making it super luminous. The brightest quasars reside in galaxies pushed and pulled by mergers and interactions with other galaxies leaving a lot of material to be gobbled up by the super-massive black holes residing in the galactic cores.

Schawinski and his team studied 30 quasars with NASA’s orbiting telescopes Hubble and Spitzer. These quasars, glowing extremely bright in the infrared images (a telltale sign that resident black holes are actively scooping up gas and dust into their gravitational whirlpool) formed during a time of peak black-hole growth between eight and twelve billion years ago. They found 26 of the host galaxies, all about the size of our own Milky Way Galaxy, showed no signs of collisions, such as smashed arms, distorted shapes or long tidal tails. Only one galaxy in the study showed evidence of an interaction. This finding supports evidence that the creation of the most massive black holes in the early Universe was fueled not by dramatic bursts of major mergers but by smaller, long-term events.

“Quasars that are products of galaxy collisions are very bright,” Schawinski said. “The objects we looked at in this study are the more typical quasars. They’re a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don’t need the drama of a collision to shine.

“I think it’s a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus,” Schawinski said.

Unfortunately, the process powering the quasars and their black holes lies below the detection of Hubble making them prime targets for the upcoming James Webb Space Telescope, a large infrared orbiting observatory scheduled for launch in 2018.

You can learn more about the images here.

Image caption: These galaxies have so much dust enshrouding them that the brilliant light from their quasars cannot be seen in these images from the NASA/ESA Hubble Space Telescope.

Hubble Captures Giant Lensed Galaxy Arc

Thanks to the presence of a natural "zoom lens" in space, this is a close-up look at the brightest distant "magnified" galaxy in the universe known to date. Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

[/caption]

Less than a year ago, the Hubble Space Telescope’s Wide Field Camera 3 captured an amazing image – a giant lensed galaxy arc. Gravitational lensing produces a natural “zoom” to observations and this is a look at one of the brightest distant galaxies so far known. Located some 10 billion light years away, the galaxy has been magnified as a nearly 90-degree arc of light against the galaxy cluster RCS2 032727-132623 – which is only half the distance. In this unusual case, the background galaxy is over three times brighter than typically lensed galaxies… and a unique look back in time as to what a powerful star-forming galaxy looked like when the Universe was only about one third its present age.

A team of astronomers led by Jane Rigby of NASA’s Goddard Space Flight Center in Greenbelt, Maryland are the parties responsible for this incredible look back into time. It is one of the most detailed looks at an incredibly distant object to date and their results have been accepted for publication in The Astrophysical Journal, in a paper led by Keren Sharon of the Kavli Institute for Cosmological Physics at the University of Chicago. Professor Michael Gladders and graduate student Eva Wuyts of the University of Chicago were also key team members.

“The presence of the lens helps show how galaxies evolved from 10 billion years ago to today. While nearby galaxies are fully mature and are at the tail end of their star-formation histories, distant galaxies tell us about the universe’s formative years. The light from those early events is just now arriving at Earth.” says the team. “Very distant galaxies are not only faint but also appear small on the sky. Astronomers would like to see how star formation progressed deep within these galaxies. Such details would be beyond the reach of Hubble’s vision were it not for the magnification made possible by gravity in the intervening lens region.”

This graphic shows a reconstruction (at lower left) of the brightest galaxy whose image has been distorted by the gravity of a distant galaxy cluster. The small rectangle in the center shows the location of the background galaxy on the sky if the intervening galaxy cluster were not there. The rounded outlines show distinct, distorted images of the background galaxy resulting from lensing by the mass in the cluster. The image at lower left is a reconstruction of what the lensed galaxy would look like in the absence of the cluster, based on a model of the cluster's mass distribution derived from studying the distorted galaxy images. Illustration Credit: NASA, ESA, and Z. Levay (STScI) Science Credit: NASA, ESA, J. Rigby (NASA Goddard Space Flight Center), K. Sharon (Kavli Institute for Cosmological Physics, University of Chicago), and M. Gladders and E. Wuyts (University of Chicago)

But the Hubble isn’t the only eye on the sky examining this phenomenon. A little over 10 years ago a team of astronomers using the Very Large Telescope in Chile also measured and examined the arc and reported the distant galaxy seems to be more than three times brighter than those previously discovered. However, there’s more to the picture than meets the eye. Original images show the magnified galaxy as hugely distorted and it shows itself more than once in the foreground lensing cluster. The challenge was to create a image that was “true to life” and thanks to Hubble’s resolution capabilities, the team was able to remove the distortions from the equation. In this image they found several incredibly bright star-forming regions and through the use of spectroscopy, they hope to better understand them.

Original Story Source: Hubble News Release.

Quadruply Lensed Dwarf Galaxy 12.8 Billion Light Years Away

Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.
Galaxy Cluster MACS J0329.6-0211 lenses several background galaxies including a distant dwarf galaxy. CREDIT: A. Zitrin, et al.

[/caption]

Gravitational lensing is a powerful tool for astronomers that allows them to explore distant galaxies in far more detail than would otherwise be allowed. Without this technique, galaxies at the edge of the visible universe are little more than tiny blobs of light, but when magnified dozens of times by foreground clusters, astronomers are able to explore the internal structural properties more directly.

Recently, astronomers at the University of Heidelberg discovered a gravitational lensed galaxy that ranked among the most distant ever seen. Although there’s a few that beat this one out in distance, this one is remarkable for being a rare quadruple lens.

The images for this remarkable discovery were taken using the Hubble Space Telescope in August and October of this year, using a total of 16 different colored filters as well as additional data from the Spitzer infrared telescope. The foreground cluster, MACS J0329.6-0211, is some 4.6 billion light years distant. In the above image, the background galaxy has been split into four images, labelled by the red ovals and marked as 1.1 – 1.4. They are enlarged in the upper right.

Assuming that the mass of the foreground cluster is concentrated around the galaxies that were visible, the team attempted to reverse the effects the cluster would have on the distant galaxy, which would reverse the distortions. The restored image, also corrected for redshift, is shown in the lower box in the upper right corner.

After correcting for these distortions, the team estimated that the total mass of the distant galaxy is only a few billion times the mass of the Sun. In comparison, the Large Magellanic Cloud, a dwarf satellite to our own galaxy, is roughly ten billion solar masses. The overall size of the galaxy was determined to be small as well. These conclusions fit well with expectations of galaxies in the early universe which predict that the large galaxies in today’s universe were built from the combination of many smaller galaxies like this one in the distant past.

The galaxy also conforms to expectations regarding the amount of heavy elements which is significantly lower than stars like the Sun. This lack of heavy elements means that there should be little in the way of dust grains. Such dust tends to be a strong block of shorter wavelengths of light such as ultraviolet and blue. Its absence helps give the galaxy its blue tint.

Star formation is also high in the galaxy. The rate at which they predict new stars are being born is somewhat higher than in other galaxies discovered around the same distance, but the presence of brighter clumps in the restored image suggest the galaxy may be undergoing some interactions, driving the formation of new stars.

The Lyman-Alpha Blob That Ate The Universe…

Observations from ESO’s Very Large Telescope have shed light on the power source of a rare vast cloud of glowing gas in the early Universe. The observations show for the first time that this giant “Lyman-alpha blob” — one of the largest single objects known — must be powered by galaxies embedded within it. The results appear in the 18 August issue of the journal Nature. Credit: ESO

[/caption]

It’s called a Lyman-alpha blob and it’s one of the largest known single objects in the Universe. It first made its presence known in the year 2000 and we know it’s located some 11.5 billion light years away. What will really get your attention is the size. LAB-1 has a diameter of about 300,000 light-years across!

Utilizing ESO’s Very Large Telescope (VLT), a team of astronomers were checking out areas of the early Universe where matter was the most dense – home to huge and very luminous rare structures called Lyman-alpha blobs. While there wasn’t anything in particular they were looking for, what they captured was something unique… evidence of polarization.

“We have shown for the first time that the glow of this enigmatic object is scattered light from brilliant galaxies hidden within, rather than the gas throughout the cloud itself shining.” explains Matthew Hayes (University of Toulouse, France), lead author of the paper.

These super-sized clouds of hydrogen gas stagger the imagination with their sheer dimensions. Some reach diameters of a few hundred thousand light-years – large enough to enfold the Milky Way three times over – and are as luminous as the most powerful galaxy we can observe. Since Lyman-alpha blobs are located so far away, we can only see them as they were when the Universe was a few billion years old, but they have a lot to teach us about their origins. Some theories suggest they shine when cool gas is pulled in by the blob’s powerful gravity and heated. Other conjectures are they are illuminated from within – lit by extreme star-forming events, supernovae or hungry black holes swallowing matter.

Thanks to these recent studies, the latest idea is the illumination comes from embedded galaxies. How do astronomers know this? By measuring whether the light from the blob was polarized. By measuring the physical processes that produced the light with sensitive equipment, researchers can gain insight from scattering or reflecting properties. However, the task hasn’t been easy considering the great distance of Lyman-alpha blobs.

“These observations couldn’t have been done without the VLT and its FORS instrument. We clearly needed two things: a telescope with at least an eight-metre mirror to collect enough light, and a camera capable of measuring the polarisation of light. Not many observatories in the world offer this combination.” adds Claudia Scarlata (University of Minnesota, USA), co-author of the paper.

According to ESO, the team observed their target for about 15 hours with the Very Large Telescope, and the light from the Lyman-alpha blob LAB-1 showed a centralized ring of polarization – but no central polarized spot. “This effect is almost impossible to produce if light simply comes from the gas falling into the blob under gravity, but it is just what is expected if the light originally comes from galaxies embedded in the central region, before being scattered by the gas. The astronomers now plan to look at more of these objects to see if the results obtained for LAB-1 are true of other blobs.”

Before they find us…

Original Story Source: ESO Science News Release.