Gravitational waves were only recently observed, and now astronomers are already thinking of ways to use them: like accurately measuring the expansion rate of the Universe

Collisions of neutron stars produce powerful gamma-ray bursts – and heavy elements like gold (Credit: Dana Berry, SkyWorks Digital, Inc.)

Neutron stars scream in waves of spacetime when they die, and astronomers have outlined a plan to use their gravitational  agony to trace the history of the universe. Join us as we explore how to turn their pain into our cosmological profit.

Continue reading “Gravitational waves were only recently observed, and now astronomers are already thinking of ways to use them: like accurately measuring the expansion rate of the Universe”

Gravitational Waves Might be the Key to Finding Dark Matter

The OzGrav supercomputer, which was recently installed at the Swinburne University of Technology, will assist in the hunt for gravitational waves. Credit: OzGrav

Exotic dark matter theories. Gravitational waves. Observatories in space. Giant black holes. Colliding galaxies. Lasers. If you’re a fan of all the awesomest stuff in the universe, then this article is for you.

Continue reading “Gravitational Waves Might be the Key to Finding Dark Matter”

Hubble Finds a Galaxy with Almost no Dark Matter

The galaxy known as NGC 1052-DF2, am ultra diffuse galaxy that appears to have little or no dark matter. Credit: NASA, ESA, and P. van Dokkum (Yale University)

Since the 1960s, astrophysicists have postulated that in addition to all the matter that we can see, the Universe is also filled with a mysterious, invisible mass. Known as “Dark Matter”, it’s existence was proposed to explain the “missing mass” of the Universe, and is now considered a fundamental part of it. Not only is it theorized to make up about 80% of the Universe’s mass, it is also believed to have played a vital role in the formation and evolution of galaxies.

However, a recent finding may throw this entire cosmological perspective sideways. Based on observations made using the NASA/ESA Hubble Space Telescope and other observatories around the world, astronomers have found a nearby galaxy (NGC 1052-DF2) that does not appear to have any dark matter. This object is unique among galaxies studied so far, and could force a reevaluation of our predominant cosmological models.

The study which details their findings, titled “A galaxy lacking dark matter“, recently appeared in the journal Nature. Led by Pieter van Dokkum of Yale University, the study also included members from the Max Planck Institute for Astronomy, San Jose State University, the University of California Observatories, the University of Toronto, and the Harvard-Smithsonian Center for Astrophysics

Image of the ultra diffuse galaxy NGC 1052-DF2, created from images forming part of the Digitized Sky Survey 2. Credit:ESA/Hubble, NASA, Digitized Sky Survey 2. Acknowledgement: Davide de Martin

For the sake of their study, the team consulted data from the Dragonfly Telephoto Array (DFA), which was used to identify NGC 1052-DF2. Based on data from Hubble, the team was able to determined its distance – 65 million light-years from the Solar System – as well as its size and brightness. In addition, the team discovered that NGC 1052-DF52 is larger than the Milky Way but contains about 250 times fewer stars, which makes it an ultra diffuse galaxy.

As van Dokkum explained, NGC 1052-DF2 is so diffuse that it’s essentially transparent. “I spent an hour just staring at this image,” he said. “This thing is astonishing: a gigantic blob so sparse that you see the galaxies behind it. It is literally a see-through galaxy.”

Using data from the Sloan Digital Sky Survey (SDSS), the Gemini Observatory, and the Keck Observatory, the team studied the galaxy in more detail. By measuring the dynamical properties of ten globular clusters orbiting the galaxy, the team was able to infer an independent value of the galaxy’s mass – which is comparable to the mass of the stars in the galaxy.

This led the team to conclude that either NGC 1052-DF2 contains at least 400 times less dark matter than is predicted for a galaxy of its mass, or none at all. Such a finding is unprecedented in the history of modern astronomy and defied all predictions. As Allison Merritt – an astronomer from Yale University, the Max Planck Institute for Astronomy and a co-author on the paper – explained:

“Dark matter is conventionally believed to be an integral part of all galaxies — the glue that holds them together and the underlying scaffolding upon which they are built… There is no theory that predicts these types of galaxies — how you actually go about forming one of these things is completely unknown.”

“This invisible, mysterious substance is by far the most dominant aspect of any galaxy. Finding a galaxy without any is completely unexpected; it challenges standard ideas of how galaxies work,” added van Dokkum.

However, it is important to note that the discovery of a galaxy without dark matter does not disprove the theory that dark matter exists. In truth, it merely demonstrates that dark matter and galaxies are capable of being separate, which could mean that dark matter is bound to ordinary matter through no force other than gravity. As such, it could actually help scientists refine their theories of dark matter and its role in galaxy formation and evolution.

In the meantime, the researchers already have some ideas as to why dark matter is missing from NGC 1052-DF2. On the one hand, it could have been the result of a cataclysmic event, where the birth of a multitude of massive stars swept out all the gas and dark matter. On the other hand, the growth of the nearby massive elliptical galaxy (NGC 1052) billions of years ago could have played a role in this deficiency.

However, these theories do not explain how the galaxy formed. To address this, the team is analyzing images that Hubble took of 23 other ultra-diffuse galaxies for more dark-matter deficient galaxies. Already, they have found three that appear to be similar to NGC 1052-DF2, which could indicate that dark-matter deficient galaxies could be a relatively common occurrence.

If these latest findings demonstrate anything, it is that the Universe is like an onion. Just when you think you have it figured out, you peal back an additional layer and find a whole new set of mysteries. They also demonstrate that after 28 years of faithful service, the Hubble Space Telescope is still capable of teaching us new things. Good thing too, seeing as the launch of its successor has been delayed until 2020!

Further Reading: Hubble Space Telescope

The First Results From The IllustrisTNG Simulation Of The Universe Has Been Completed, Showing How Our Cosmos Evolved From The Big Bang

IllustrisTNG is a new simulation model for the Universe. It used over 24,000 processors over the course of more than two months to produce the largest hydrodynamic simulation project to date for the emergence of cosmic structures. Image: IllustrisTNG

The first results of the IllustrisTNG Project have been published in three separate studies, and they’re shedding new light on how black holes shape the cosmos, and how galaxies form and grow. The IllustrisTNG Project bills itself as “The next generation of cosmological hydrodynamical simulations.” The Project is an ongoing series of massive hydrodynamic simulations of our Universe. Its goal is to understand the physical processes that drive the formation of galaxies.

At the heart of IllustriousTNG is a state of the art numerical model of the Universe, running on one of the most powerful supercomputers in the world: the Hazel Hen machine at the High-Performance Computing Center in Stuttgart, Germany. Hazel Hen is Germany’s fastest computer, and the 19th fastest in the world.

The Hazel Hen Supercomputer is based on Intel processors and Cray network technologies. Image: IllustrisTNG

Our current cosmological model suggests that the mass-energy density of the Universe is dominated by dark matter and dark energy. Since we can’t observe either of those things, the only way to test this model is to be able to make precise predictions about the structure of the things we can see, such as stars, diffuse gas, and accreting black holes. These visible things are organized into a cosmic web of sheets, filaments, and voids. Inside these are galaxies, which are the basic units of cosmic structure. To test our ideas about galactic structure, we have to make detailed and realistic simulated galaxies, then compare them to what’s real.

Astrophysicists in the USA and Germany used IllustrisTNG to create their own universe, which could then be studied in detail. IllustrisTNG correlates very strongly with observations of the real Universe, but allows scientists to look at things that are obscured in our own Universe. This has led to some very interesting results so far, and is helping to answer some big questions in cosmology and astrophysics.

How Do Black Holes Affect Galaxies?

Ever since we’ve learned that galaxies host supermassive black holes (SMBHs) at their centers, it’s been widely believed that they have a profound influence on the evolution of galaxies, and possibly on their formation. That’s led to the obvious question: How do these SMBHs influence the galaxies that host them? Illustrious TNG set out to answer this, and the paper by Dr. Dylan Nelson at the Max Planck Institute for Astrophysics shows that “the primary driver of galaxy color transition is supermassive blackhole feedback in its low-accretion state.”

“The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” – Dr. Dylan Nelson, Max Planck Institute for Astrophysics,

Galaxies that are still in their star-forming phase shine brightly in the blue light of their young stars. Then something changes and the star formation ends. After that, the galaxy is dominated by older, red stars, and the galaxy joins a graveyard full of “red and dead” galaxies. As Nelson explains, “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” But how do they do that?

Nelson and his colleagues attribute it to supermassive black hole feedback in its low-accretion state. What that means is that as a black hole feeds, it creates a wind, or shock wave, that blows star-forming gas and dust out of the galaxy. This limits the future formation of stars. The existing stars age and turn red, and few new blue stars form.

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

How Do Galaxies Form and How Does Their Structure Develop?

It’s long been thought that large galaxies form when smaller galaxies join up. As the galaxy grows larger, its gravity draws more smaller galaxies into it. During these collisions, galaxies are torn apart. Some stars will be scattered, and will take up residence in a halo around the new, larger galaxy. This should give the newly-created galaxy a faint background glow of stellar light. But this is a prediction, and these pale glows are very hard to observe.

“Our predictions can now be systematically checked by observers.” – Dr. Annalisa Pillepich (Max Planck Institute for Astrophysics)

IllustrisTNG was able to predict more accurately what this glow should look like. This gives astronomers a better idea of what to look for when they try to observe this pale stellar glow in the real Universe. “Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

A composite image from IllustrisTNG. Panels on the left show galaxy-galaxy interactions and the fine-grained structure of extended stellar halos. Panels on the right show stellar light projections from two massive central galaxies at the present day. It’s easy to see how the light from massive central galaxies overwhelms the light from stellar halos. Image: IllustrisTNG

IllustrisTNG is an on-going series of simulations. So far, there have been three IllustrisTNG runs, each one creating a larger simulation than the previous one. They are TNG 50, TNG 100, and TNG 300. TNG300 is much larger than TNG50 and allows a larger area to be studied which reveals clues about large-scale structure. Though TNG50 is much smaller, it has much more precise detail. It gives us a more detailed look at the structural properties of galaxies and the detailed structure of gas around galaxies. TNG100 is somewhere in the middle.

TNG 50, TNG 100, and TNG 300. Image: IllustrisTNG

IllustrisTNG is not the first cosmological hydrodynamical simulation. Others include Eagle, Horizon-AGN, and IllustrisTNG’s predecessor, Illustris. They have shown how powerful these predictive theoretical models can be. As our computers grow more powerful and our understanding of physics and cosmology grow along with them, these types of simulations will yield greater and more detailed results.

Book Review: Cosmology for the Curious

Ancient woodcarving of where heaven and earth meet. Credit: Heikenwaelder Hugo at Wikimedia Commons.

What will Curious George grow up to be? Being curious, then George will ask a lot of questions. And if lucky then physics will be George’s destiny, for physics seems to have so many answers. From the biggest to the smallest, that’s its purview. And for Delia Perlov and Alex Vilenkin in their book “Cosmology for the Curious” aim to answer a great many of those questions. Or at least those questions pertaining to mankind’s place in space.

Cosmology is all about space and time. Which means that this book begins by traveling back in time. Traveling to the time of the Greeks. Hundreds of years b.c.e.  Apparently the Greek philosophers did a lot of pondering about the smallest of things they called atoms. And the largest, they called planetary epicycles. From this baseline the book very quickly progresses through the traditional growth of knowledge with some choice descriptions.

As an example it proposes energy as nature’s ultimate currency. And it allows the reader to wonder. Wonder why the sky is black at night. And ask questions. As in “why is the speed of light the same as the Earth travels about the Sun?”

Most of the descriptions rely on Newtonian mechanics for explanation but it is only a slight passing for the book quickly raises Einstein’s field equations, particularly emphasizing inertial frames of reference. With this, the reader is accorded a pleasant view of Lorentz transforms, a somewhat abstract view of the Sun being flung out of the solar system by a very large golf club and a realization of how the GPS navigation system incorporates gravitational time dilation. Still all this is simply the cosmological baseline for the reader.

Now the neat thing about cosmology is that there is simply no first hand observation. Most everything of interest happened a long time ago and in a somewhat different relative location. And this is the book’s next and most rewarding destination. Through many arguments or thought experiments, it associates the cosmic microwave background with redshifts and the changing spatial dimensions.

Later, postulated dark matter and dark energy refocus the reader’s attention on the very beginning of the universe in a big bang. Or perhaps a multiverse of many shapes and various physical laws. Which of course leads to considerations about what’s next. How will our universe continue? Will it go to a quiet heat death or will we be gobbled up by another bubble universe? We can’t determine from our vantage point on Earth. But this book does provide its own vantage point.

Helping this book along are a number of pleasant additions. For one, often when an accomplished researcher is mentioned, there’s an accompanying, quite complementary photograph. And equations are liberally spread throughout as if teasing the reader to explore more. But the book has very little math. And best of all are the questions at the end of each chapter. Now these questions aren’t your typical textbook questions. For example, consider “Inflation is almost certainly eternal to the future. Is it eternal to the past too? Why/why not?” Isn’t this a great question? And one that you really can’t get wrong.

Which of course begs the question “Why aren’t you as curious as George?” There’s a whole universe out there waiting for us to explore and understand. Let’s not take it for granted. Let’s satisfy our curiosity perhaps with reading the marvellous book “Cosmology for the Curious” by Delia Perlov and Alex Vilenkin. After all you don’t want to be upstaged by George, do you?

At the Largest Scales, Our Milky Way Galaxy is in the Middle of Nowhere

The Millenium Simulation created this image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. According to a new study from the University of Wisconsin, our Milky Way is situated in a huge void in the cosmic structure. The Millennium Simulation is a project of the Max Planck Supercomputing Center in Germany. Image: Millennium Simulation Project
Image of the large-scale structure of the Universe, showing filaments and voids within the cosmic structure. Credit: Millennium Simulation Project

Ever since Galileo pointed his telescope at Jupiter and saw moons in orbit around that planet, we began to realize we don’t occupy a central, important place in the Universe. In 2013, a study showed that we may be further out in the boondocks than we imagined. Now, a new study confirms it: we live in a void in the filamental structure of the Universe, a void that is bigger than we thought.

In 2013, a study by University of Wisconsin–Madison astronomer Amy Barger and her student Ryan Keenan showed that our Milky Way galaxy is situated in a large void in the cosmic structure. The void contains far fewer galaxies, stars, and planets than we thought. Now, a new study from University of Wisconsin student Ben Hoscheit confirms it, and at the same time eases some of the tension between different measurements of the Hubble Constant.

The void has a name; it’s called the KBC void for Keenan, Barger and the University of Hawaii’s Lennox Cowie. With a radius of about 1 billion light years, the KBC void is seven times larger than the average void, and it is the largest void we know of.

The large-scale structure of the Universe consists of filaments and clusters of normal matter separated by voids, where there is very little matter. It’s been described as “Swiss cheese-like.” The filaments themselves are made up of galaxy clusters and super-clusters, which are themselves made up of stars, gas, dust and planets. Finding out that we live in a void is interesting on its own, but its the implications it has for Hubble’s Constant that are even more interesting.

Hubble’s Constant is the rate at which objects move away from each other due to the expansion of the Universe. Dr. Brian Cox explains it in this short video.

The problem with Hubble’s Constant, is that you get a different result depending on how you measure it. Obviously, this is a problem. “No matter what technique you use, you should get the same value for the expansion rate of the universe today,” explains Ben Hoscheit, the Wisconsin student who presented his analysis of the KBC void on June 6th at a meeting of the American Astronomical Society. “Fortunately, living in a void helps resolve this tension.”

There are a couple ways of measuring the expansion rate of the Universe, known as Hubble’s Constant. One way is to use what are known as “standard candles.” Supernovae are used as standard candles because their luminosity is so well-understood. By measuring their luminosity, we can determine how far away the galaxy they reside in is.

Another way is by measuring the CMB, the Cosmic Microwave Background. The CMB is the left over energy imprint from the Big Bang, and studying it tells us the state of expansion in the Universe.

This is a map of the observable Universe from the Sloan Digital Sky Survey. Orange areas show higher density of galaxy clusters and filaments. Image: Sloan Digital Sky Survey.
This is a map of the observable Universe from the Sloan Digital Sky Survey. Orange areas show higher density of galaxy clusters and filaments. Image: Sloan Digital Sky Survey.

The two methods can be compared. The standard candle approach measures more local distances, while the CMB approach measures large-scale distances. So how does living in a void help resolve the two?

Measurements from inside a void will be affected by the much larger amount of matter outside the void. The gravitational pull of all that matter will affect the measurements taken with the standard candle method. But that same matter, and its gravitational pull, will have no effect on the CMB method of measurement.

“One always wants to find consistency, or else there is a problem somewhere that needs to be resolved.” – Amy Barger, University of Hawaii, Dept. of Physics and Astronomy

Hoscheit’s new analysis, according to Barger, the author of the 2013 study, shows that Keenan’s first estimations of the KBC void, which is shaped like a sphere with a shell of increasing thickness made up of galaxies, stars and other matter, are not ruled out by other observational constraints.

“It is often really hard to find consistent solutions between many different observations,” says Barger, an observational cosmologist who also holds an affiliate graduate appointment at the University of Hawaii’s Department of Physics and Astronomy. “What Ben has shown is that the density profile that Keenan measured is consistent with cosmological observables. One always wants to find consistency, or else there is a problem somewhere that needs to be resolved.”

How Do We Know the Universe is Flat? Discovering the Topology of the Universe

Does This Look Flat?
Does This Look Flat?


Whenever we talk about the expanding Universe, everyone wants to know how this is going to end. Sure, they say, the fact that most of the galaxies we can see are speeding away from us in all directions is really interesting. Sure, they say, the Big Bang makes sense, in that everything was closer together billions of years ago.

But how does it end? Does this go on forever? Do galaxies eventually slow down, come to a stop, and then hurtle back together in a Big Crunch? Will we get a non-stop cycle of Big Bangs, forever and ever?

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

We’ve done a bunch of articles on many different aspects of this question, and the current conclusion astronomers have reached is that because the Universe is flat, it’s never going to collapse in on itself and start another Big Bang.

But wait, what does it mean to say that the Universe is “flat”? Why is that important, and how do we even know?

Before we can get started talking about the flatness of the Universe, we need to talk about flatness in general. What does it mean to say that something is flat?

If you’re in a square room and walk around the corners, you’ll return to your starting point having made 4 90-degree turns. You can say that your room is flat. This is Euclidian geometry.

Earth, seen from space, above the Pacific Ocean. Credit: NASA

But if you make the same journey on the surface of the Earth. Start at the equator, make a 90-degree turn, walk up to the North Pole, make another 90-degree turn, return to the equator, another 90-degree turn and return to your starting point.

In one situation, you made 4 turns to return to your starting point, in another situation it only took 3. That’s because the topology of the surface you were walking on decided what happens when you take a 90-degree turn.

You can imagine an even more extreme example, where you’re walking around inside a crater, and it takes more than 4 turns to return to your starting point.

Another analogy, of course, is the idea of parallel lines. If you fire off two parallel lines at the North pole, they move away from each other, following the topology of the Earth and then come back together.

Got that? Great.

Omega Centauri. Credits: NASA, ESA and the Hubble SM4 ERO Team

Now, what about the Universe itself? You can imagine that same analogy. Imaging flying out into space on a rocket for billions of light-years, performing 90-degree maneuvers and returning to your starting point.

You can’t do it in 3, or 5, you need 4, which means that the topology of the Universe is flat. Which is totally intuitive, right? I mean, that would be your assumption.

But astronomers were skeptical and needed to know for certain, and so, they set out to test this assumption.

In order to prove the flatness of the Universe, you would need to travel a long way. And astronomers use the largest possible observation they can make. The Cosmic Microwave Background Radiation, the afterglow of the Big Bang, visible in all directions as a red-shifted, fading moment when the Universe became transparent about 380,000 years after the Big Bang.

Cosmic Microwave Background Radiation. Image credit: NASA
Cosmic Microwave Background Radiation. Image credit: NASA

When this radiation was released, the entire Universe was approximately 2,700 C. This was the moment when it was cool enough for photons were finally free to roam across the Universe. The expansion of the Universe stretched these photons out over their 13.8 billion year journey, shifting them down into the microwave spectrum, just 2.7 degrees above absolute zero.

With the most sensitive space-based telescopes they have available, astronomers are able to detect tiny variations in the temperature of this background radiation.

And here’s the part that blows my mind every time I think about it. These tiny temperature variations correspond to the largest scale structures of the observable Universe. A region that was a fraction of a degree warmer become a vast galaxy cluster, hundreds of millions of light-years across.

Having a non-flat universe would cause distortions between what we saw in the CMBR compared to the current universe. Credit: NASA / WMAP Science Team

The Cosmic Microwave Background Radiation just gives and gives, and when it comes to figuring out the topology of the Universe, it has the answer we need. If the Universe was curved in any way, these temperature variations would appear distorted compared to the actual size that we see these structures today.

But they’re not. To best of its ability, ESA’s Planck space telescope, can’t detect any distortion at all. The Universe is flat.

Illustration of the ESA Planck Telescope in Earth orbit (Credit: ESA)

Well, that’s not exactly true. According to the best measurements astronomers have ever been able to make, the curvature of the Universe falls within a range of error bars that indicates it’s flat. Future observations by some super Planck telescope could show a slight curvature, but for now, the best measurements out there say… flat.

We say that the Universe is flat, and this means that parallel lines will always remain parallel. 90-degree turns behave as true 90-degree turns, and everything makes sense.

But what are the implications for the entire Universe? What does this tell us?

Unfortunately, the biggest thing is what it doesn’t tell us. We still don’t know if the Universe is finite or infinite. If we could measure its curvature, we could know that we’re in a finite Universe, and get a sense of what its actual true size is, out beyond the observable Universe we can measure.

The observable – or inferrable universe. This may just be a small component of the whole ball game.

We know that the volume of the Universe is at least 100 times more than we can observe. At least. If the flatness error bars get brought down, the minimum size of the Universe goes up.

And remember, an infinite Universe is still on the table.

Another thing this does, is that it actually causes a problem for the original Big Bang theory, requiring the development of a theory like inflation.

Since the Universe is flat now, it must have been flat in the past, when the Universe was an incredibly dense singularity. And for it to maintain this level of flatness over 13.8 billion years of expansion, in kind of amazing.

In fact, astronomers estimate that the Universe must have been flat to 1 part within 1×10^57 parts.

Which seems like an insane coincidence. The development of inflation, however, solves this, by expanding the Universe an incomprehensible amount moments after the Big Bang. Pre and post inflation Universes can have vastly different levels of curvature.

In the olden days, cosmologists used to say that the flatness of the Universe had implications for its future. If the Universe was curved where you could complete a full journey with less than 4 turns, that meant it was closed and destined to collapse in on itself.

And it was more than 4 turns, it was open and destined to expand forever.

New results from NASA’s Galaxy Evolution Explorer and the Anglo-Australian Telescope atop Siding Spring Mountain in Australia confirm that dark energy (represented by purple grid) is a smooth, uniform force that now dominates over the effects of gravity (green grid). Image credit: NASA/JPL-Caltech

Well, that doesn’t really matter any more. In 1998, the astronomers discovered dark energy, which is this mysterious force accelerating the expansion of the Universe. Whether the Universe is open, closed or flat, it’s going to keep on expanding. In fact, that expansion is going to accelerate, forever.

I hope this gives you a little more understanding of what cosmologists mean when they say that the Universe is flat. And how do we know it’s flat? Very precise measurements in the Cosmic Microwave Background Radiation.

Is there anything that all pervasive relic of the early Universe can’t do?

Rise Of The Super Telescopes: The Wide Field Infrared Survey Telescope

NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does, enabling cosmic evolution studies. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab
NASA's Wide Field Infrared Survey Telescope (WFIRST) will capture Hubble-quality images covering swaths of sky 100 times larger than Hubble does. These enormous images will allow astronomers to study the evolution of the cosmos. Its Coronagraph Instrument will directly image exoplanets and study their atmospheres. Credits: NASA/GSFC/Conceptual Image Lab

We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.

In this series we’ll look at the world’s upcoming Super Telescopes:

The Wide Field Infrared Survey Telescope (WFIRST)

It’s easy to forget the impact that the Hubble Space Telescope has had on our state of knowledge about the Universe. In fact, that might be the best measurement of its success: We take the Hubble, and all we’ve learned from it, for granted now. But other space telescopes are being developed, including the WFIRST, which will be much more powerful than the Hubble. How far will these telescopes extend our understanding of the Universe?

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has.” – John Grunsfeld, NASA Science Mission Directorate

The WFIRST might be the true successor to the Hubble, even though the James Webb Space Telescope (JWST) is often touted as such. But it may be incorrect to even call WFIRST a telescope; it’s more accurate to call it an astrophysics observatory. That’s because one of its primary science objectives is to study Dark Energy, that rather mysterious force that drives the expansion of the Universe, and Dark Matter, the difficult-to-detect matter that slows that expansion.

WFIRST will have a 2.4 meter mirror, the same size as the Hubble. But, it will have a camera that will expand the power of that mirror. The Wide Field Instrument is a 288-megapixel multi-band near-infrared camera. Once it’s in operation, it will capture images that are every bit as sharp as those from Hubble. But there is one huge difference: The Wide Field Instrument will capture images that cover over 100 times the sky that Hubble does.

Alongside the Wide Field Instrument, WFIRST will have the Coronagraphic Instrument. The Coronagraphic Instrument will advance the study of exoplanets. It’ll use a system of filters and masks to block out the light from other stars, and hone in on planets orbiting those stars. This will allow very detailed study of the atmospheres of exoplanets, one of the main ways of determining habitability.

WFIRST is slated to be launched in 2025, although it’s too soon to have an exact date. But when it launches, the plan is for WFIRST to travel to the Sun-Earth LaGrange Point 2 (L2.) L2 is a gravitationally balanced point in space where WFIRST can do its work without interruption. The mission is set to last about 6 years.

Probing Dark Energy

“WFIRST has the potential to open our eyes to the wonders of the universe, much the same way Hubble has,” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate at Headquarters in Washington. “This mission uniquely combines the ability to discover and characterize planets beyond our own solar system with the sensitivity and optics to look wide and deep into the universe in a quest to unravel the mysteries of dark energy and dark matter.”

In a nutshell, there are two proposals for what Dark Energy can be. The first is the cosmological constant, where Dark Energy is uniform throughout the cosmos. The second is what’s known as scalar fields, where the density of Dark Energy can vary in time and space.

We used to think that the Universe expanded at a steady rate. Then in the 1990s we discovered that the expansion had started accelerating about 5 billion years ago. Dark Energy is the name given to the force driving that expansion. Image: NASA/STSci/Ann Feild
We used to think that the Universe expanded at a steady rate. Then in the 1990s we discovered that the expansion had accelerated. Dark Energy is the name given to the force driving that expansion. Image: NASA/STSci/Ann Feild

Since the 1990s, observations have shown us that the expansion of the Universe is accelerating. That acceleration started about 5 billion years ago. We think that Dark Energy is responsible for that accelerated expansion. By providing such large, detailed images of the cosmos, WFIRST will let astronomers map expansion over time and over large areas. WFIRST will also precisely measure the shapes, positions and distances of millions of galaxies to track the distribution and growth of cosmic structures, including galaxy clusters and the Dark Matter accompanying them. The hope is that this will give us a next level of understanding when it comes to Dark Energy.

If that all sounds too complicated, look at it this way: We know the Universe is expanding, and we know that the expansion is accelerating. We want to know why it’s expanding, and how. We’ve given the name ‘Dark Energy’ to the force that’s driving that expansion, and now we want to know more about it.

Probing Exoplanets

Dark Energy and the expansion of the Universe is a huge mystery, and a question that drives cosmologists. (They really want to know how the Universe will end!) But for many of the rest of us, another question is even more compelling: Are we alone in the Universe?

There’ll be no quick answer to that one, but any answer we find begins with studying exoplanets, and that’s something that WFIRST will also excel at.

Artist's concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We're going to keep finding more and more solar systemsl like this, but we need observatories like WFIRST, with starshades, to understand the planets better. Credits: NASA/JPL-Caltech
Artist’s concept of the TRAPPIST-1 star system, an ultra-cool dwarf that has seven Earth-size planets orbiting it. We’re going to keep finding more and more solar systems like this, but we need observatories like WFIRST to understand the planets better. Credits: NASA/JPL-Caltech

“WFIRST is designed to address science areas identified as top priorities by the astronomical community,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington. “The Wide-Field Instrument will give the telescope the ability to capture a single image with the depth and quality of Hubble, but covering 100 times the area. The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.”

“The coronagraph will provide revolutionary science, capturing the faint, but direct images of distant gaseous worlds and super-Earths.” – Paul Hertz, NASA Astrophysics Division

The difficulty in studying exoplanets is that they are all orbiting stars. Stars are so bright they make it impossible to see their planets in any detail. It’s like staring into a lighthouse miles away and trying to study an insect near the lighthouse.

The Coronagraphic Instrument on board WFIRST will excel at blocking out the light of distant stars. It does that with a system of mirrors and masks. This is what makes studying exoplanets possible. Only when the light from the star is dealt with, can the properties of exoplanets be examined.

This will allow detailed measurements of the chemical composition of an exoplanet’s atmosphere. By doing this over thousands of planets, we can begin to understand the formation of planets around different types of stars. There are some limitations to the Coronagraphic Instrument, though.

The Coronagraphic Instrument was kind of a late addition to WFIRST. Some of the other instrumentation on WFIRST isn’t optimized to work with it, so there are some restrictions to its operation. It will only be able to study gas giants, and so-called Super-Earths. These larger planets don’t require as much finesse to study, simply because of their size. Earth-like worlds will likely be beyond the power of the Coronagraphic Instrument.

These limitations are no big deal in the long run. The Coronagraph is actually more of a technology demonstration, and it doesn’t represent the end-game for exoplanet study. Whatever is learned from this instrument will help us in the future. There will be an eventual successor to WFIRST some day, perhaps decades from now, and by that time Coronagraph technology will have advanced a great deal. At that future time, direct snapshots of Earth-like exoplanets may well be possible.

But maybe we won’t have to wait that long.

Starshade To The Rescue?

There is a plan to boost the effectiveness of the Coronagraph on WFIRST that would allow it to image Earth-like planets. It’s called the EXO-S Starshade.

The EXO-S Starshade is a 34m diameter deployable shading system that will block starlight from impairing the function of WFIRST. It would actually be a separate craft, launched separately and sent on its way to rendezvous with WFIRST at L2. It would not be tethered, but would orient itself with WFIRST through a system of cameras and guide lights. In fact, part of the power of the Starshade is that it would be about 40,000 to 50,000 km away from WFIRST.

Dark Energy and Exoplanets are priorities for WFIRST, but there are always other discoveries awaiting better telescopes. It’s not possible to predict everything that we’ll learn from WFIRST. With images as detailed as Hubble’s, but 100 times larger, we’re in for some surprises.

“This mission will survey the universe to find the most interesting objects out there.” – Neil Gehrels, WFIRST Project Scientist

“In addition to its exciting capabilities for dark energy and exoplanets, WFIRST will provide a treasure trove of exquisite data for all astronomers,” said Neil Gehrels, WFIRST project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This mission will survey the universe to find the most interesting objects out there.”

With all of the Super Telescopes coming on line in the next few years, we can expect some amazing discoveries. In 10 to 20 years time, our knowledge will have advanced considerably. What will we learn about Dark Matter and Dark Energy? What will we know about exoplanet populations?

Right now it seems like we’re just groping towards a better understanding of these things, but with WFIRST and the other Super Telescopes, we’re poised for more purposeful study.

The Universe Has A Lithium Problem

This illustration shows the evolution of the Universe, from the Big Bang on the left, to modern times on the right. Image: NASA

Over the past decades, scientists have wrestled with a problem involving the Big Bang Theory. The Big Bang Theory suggests that there should be three times as much lithium as we can observe. Why is there such a discrepancy between prediction and observation?

To get into that problem, let’s back up a bit.

The Big Bang Theory (BBT) is well-supported by multiple lines of evidence and theory. It’s widely accepted as the explanation for how the Universe started. Three key pieces of evidence support the BBT:

But the BBT still has some niggling questions.

The missing lithium problem is centred around the earliest stages of the Universe: from about 10 seconds to 20 minutes after the Big Bang. The Universe was super hot and it was expanding rapidly. This was the beginning of what’s called the Photon Epoch.

At that time, atomic nuclei formed through nucleosynthesis. But the extreme heat that dominated the Universe prevented the nuclei from combining with electrons to form atoms. The Universe was a plasma of nuclei, electrons, and photons.

Only the lightest nuclei were formed during this time, including most of the helium in the Universe, and small amounts of other light nuclides, like deuterium and our friend lithium. For the most part, heavier elements weren’t formed until stars appeared, and took on the role of nucleosynthesis.

The problem is that our understanding of the Big Bang tells us that there should be three times as much lithium as there is. The BBT gets it right when it comes to other primordial nuclei. Our observations of primordial helium and deuterium match the BBT’s predictions. So far, scientists haven’t been able to resolve this inconsistency.

But a new paper from researchers in China may have solved the puzzle.

One assumption in Big Bang nucleosynthesis is that all of the nuclei are in thermodynamic equilibrium, and that their velocities conform to what’s called the classical Maxwell-Boltzmann distribution. But the Maxwell-Boltzmann describes what happens in what is called an ideal gas. Real gases can behave differently, and this is what the researchers propose: that nuclei in the plasma of the early photon period of the Universe behaved slightly differently than thought.

This graphics shows the distribution of early primordial light elements in the Universe by time and temperature. Temperature along the top, time along the bottom, and abundance on the side. Image: Hou et al. 2017

The authors applied what is known as non-extensive statistics to solve the problem. In the graph above, the dotted lines of the author’s model predict a lower abundance of the beryllium isotope. This is key, since beryllium decays into lithium. Also key is that the resulting amount of lithium, and of the other lighter nuclei, now all conform to the amounts predicted by the Maxwell-Boltzmann distribution. It’s a eureka moment for cosmology aficionados.

The decay chains of primordial light nuclei in the early days of the Universe. Notice the thin red arrows between Beryllium and Lithium at 10-13, the earliest time shown on this chart. Image: Chou et. al.

What this all means is scientists can now accurately predict the abundance in the primordial universe of the three primordial nuclei: helium, deuterium, and lithium. Without any discrepancy, and without any missing lithium.

This is how science grinds away at problems, and if the authors of the paper are correct, then it further validates the Big Bang Theory, and brings us one step closer to understanding how our Universe was formed.

Eureka!

What is the Speed of Light?

Artist's impression of a spaceship making the jump to "light speed". Credit: NASA/Glenn Research Center

Since ancient times, philosophers and scholars have sought to understand light. In addition to trying to discern its basic properties (i.e. what is it made of – particle or wave, etc.) they have also sought to make finite measurements of how fast it travels. Since the late-17th century, scientists have been doing just that, and with increasing accuracy.

In so doing, they have gained a better understanding of light’s mechanics and the important role it plays in physics, astronomy and cosmology. Put simply, light moves at incredible speeds and is the fastest moving thing in the Universe. Its speed is considered a constant and an unbreakable barrier, and is used as a means of measuring distance. But just how fast does it travel?

Speed of Light (c):

Light travels at a constant speed of 1,079,252,848.8 (1.07 billion) km per hour. That works out to 299,792,458 m/s, or about 670,616,629 mph (miles per hour). To put that in perspective, if you could travel at the speed of light, you would be able to circumnavigate the globe approximately seven and a half times in one second. Meanwhile, a person flying at an average speed of about 800 km/h (500 mph), would take over 50 hours to circle the planet just once.

Illustration showing the distance between Earth and the Sun. Credit: LucasVB/Public Domain
Illustration showing the distance light travels between the Earth and the Sun. Credit: LucasVB/Public Domain

To put that into an astronomical perspective, the average distance from the Earth to the Moon is 384,398.25 km (238,854 miles ). So light crosses that distance in about a second. Meanwhile, the average distance from the Sun to the Earth is ~149,597,886 km (92,955,817 miles), which means that light only takes about 8 minutes to make that journey.

Little wonder then why the speed of light is the metric used to determine astronomical distances. When we say a star like Proxima Centauri is 4.25 light years away, we are saying that it would take – traveling at a constant speed of 1.07 billion km per hour (670,616,629 mph) – about 4 years and 3 months to get there. But just how did we arrive at this highly specific measurement for “light-speed”?

History of Study:

Until the 17th century, scholars were unsure whether light traveled at a finite speed or instantaneously. From the days of the ancient Greeks to medieval Islamic scholars and scientists of the early modern period, the debate went back and forth. It was not until the work of Danish astronomer Øle Rømer (1644-1710) that the first quantitative measurement was made.

In 1676, Rømer observed that the periods of Jupiter’s innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when it was receding from it. From this, he concluded that light travels at a finite speed, and estimated that it takes about 22 minutes to cross the diameter of Earth’s orbit.

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)
Prof. Albert Einstein delivering the 11th Josiah Willard Gibbs lecture at the Carnegie Institute of Technology on Dec. 28th, 1934, where he expounded on his theory of how matter and energy are the same thing in different forms. Credit: AP Photo

Christiaan Huygens used this estimate and combined it with an estimate of the diameter of the Earth’s orbit to obtain an estimate of 220,000 km/s. Isaac Newton also spoke about Rømer’s calculations in his seminal work Opticks (1706). Adjusting for the distance between the Earth and the Sun, he calculated that it would take light seven or eight minutes to travel from one to the other. In both cases, they were off by a relatively small margin.

Later measurements made by French physicists Hippolyte Fizeau (1819 – 1896) and Léon Foucault (1819 – 1868) refined these measurements further – resulting in a value of 315,000 km/s (192,625 mi/s). And by the latter half of the 19th century, scientists became aware of the connection between light and electromagnetism.

This was accomplished by physicists measuring electromagnetic and electrostatic charges, who then found that the numerical value was very close to the speed of light (as measured by Fizeau). Based on his own work, which showed that electromagnetic waves propagate in empty space, German physicist Wilhelm Eduard Weber proposed that light was an electromagnetic wave.

The next great breakthrough came during the early 20th century/ In his 1905 paper, titled “On the Electrodynamics of Moving Bodies”, Albert Einstein asserted that the speed of light in a vacuum, measured by a non-accelerating observer, is the same in all inertial reference frames and independent of the motion of the source or observer.

A laser shining through a glass of water demonstrates how many changes in speed it undergoes - from 186,222 mph in air to 124,275 mph through the glass. It speeds up again to 140,430 mph in water, slows again through glass and then speeds up again when leaving the glass and continuing through the air. Credit: Bob King
A laser shining through a glass of water demonstrates how many changes in speed (in mph) it undergoes as it passes from air, to glass, to water, and back again. Credit: Bob King

Using this and Galileo’s principle of relativity as a basis, Einstein derived the Theory of Special Relativity, in which the speed of light in vacuum (c) was a fundamental constant. Prior to this, the working consensus among scientists held that space was filled with a “luminiferous aether” that was responsible for its propagation – i.e. that light traveling through a moving medium would be dragged along by the medium.

This in turn meant that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of that medium. However, Einstein’s theory effectively  made the concept of the stationary aether useless and revolutionized the concepts of space and time.

Not only did it advance the idea that the speed of light is the same in all inertial reference frames, it also introduced the idea that major changes occur when things move close the speed of light. These include the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer (i.e. time dilation, where time slows as the speed of light approaches).

His observations also reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations by doing away with extraneous explanations used by other scientists, and accorded with the directly observed speed of light.

During the second half of the 20th century, increasingly accurate measurements using laser inferometers and cavity resonance techniques would further refine estimates of the speed of light. By 1972, a group at the US National Bureau of Standards in Boulder, Colorado, used the laser inferometer technique to get the currently-recognized value of 299,792,458 m/s.

Role in Modern Astrophysics:

Einstein’s theory that the speed of light in vacuum is independent of the motion of the source and the inertial reference frame of the observer has since been consistently confirmed by many experiments. It also sets an upper limit on the speeds at which all massless particles and waves (which includes light) can travel in a vacuum.

One of the outgrowths of this is that cosmologists now treat space and time as a single, unified structure known as spacetime – in which the speed of light can be used to define values for both (i.e. “lightyears”, “light minutes”, and “light seconds”). The measurement of the speed of light has also become a major factor when determining the rate of cosmic expansion.

Beginning in the 1920’s with observations of Lemaitre and Hubble, scientists and astronomers became aware that the Universe is expanding from a point of origin. Hubble also observed that the farther away a galaxy is, the faster it appears to be moving. In what is now referred to as the Hubble Parameter, the speed at which the Universe is expanding is calculated to 68 km/s per megaparsec.

This phenomena, which has been theorized to mean that some galaxies could actually be moving faster than the speed of light, may place a limit on what is observable in our Universe. Essentially, galaxies traveling faster than the speed of light would cross a “cosmological event horizon”, where they are no longer visible to us.

Also, by the 1990’s, redshift measurements of distant galaxies showed that the expansion of the Universe has been accelerating for the past few billion years. This has led to theories like “Dark Energy“, where an unseen force is driving the expansion of space itself instead of objects moving through it (thus not placing constraints on the speed of light or violating relativity).

Along with special and general relativity, the modern value of the speed of light in a vacuum has gone on to inform cosmology, quantum physics, and the Standard Model of particle physics. It remains a constant when talking about the upper limit at which massless particles can travel, and remains an unachievable barrier for particles that have mass.

Perhaps, someday, we will find a way to exceed the speed of light. While we have no practical ideas for how this might happen, the smart money seems to be on technologies that will allow us to circumvent the laws of spacetime, either by creating warp bubbles (aka. the Alcubierre Warp Drive), or tunneling through it (aka. wormholes).

Until that time, we will just have to be satisfied with the Universe we can see, and to stick to exploring the part of it that is reachable using conventional methods.

We have written many articles about the speed of light for Universe Today. Here’s How Fast is the Speed of Light?, How are Galaxies Moving Away Faster than Light?, How Can Space Travel Faster than the Speed of Light?, and Breaking the Speed of Light.

Here’s a cool calculator that lets you convert many different units for the speed of light, and here’s a relativity calculator, in case you wanted to travel nearly the speed of light.

Astronomy Cast also has an episode that addresses questions about the speed of light – Questions Show: Relativity, Relativity, and more Relativity.

Sources: