Away From the Light Pollution of the Inner Solar System, New Horizons was Able to see how Dark the Universe Really is

Just how dark is the universe, anyway? It’s a pretty hard thing to measure when we’re sitting this close to the sun. But NASA’s New Horizons probe is so far away that the images it takes of the distant universe are able to deliver the most accurate measurement ever of the universe’s diffuse background light.

Continue reading “Away From the Light Pollution of the Inner Solar System, New Horizons was Able to see how Dark the Universe Really is”

In Theory, Supermassive Black Holes Could get Even More Supermassive

Our universe contains some enormous black holes. The supermassive black hole in the center of our galaxy has a mass of 4 million Suns, but it’s rather small as galactic black holes go. Many galactic black holes have a billion solar masses, and the most massive known black hole is estimated to have a mass of nearly 70 billion Suns. But just how big can a black hole get?

Continue reading “In Theory, Supermassive Black Holes Could get Even More Supermassive”

There's no way to Measure the Speed of Light in a Single Direction

Special relativity is one of the most strongly validated theories humanity has ever devised. It is central to everything from space travel and GPS to our electrical power grid. Central to relativity is the fact that the speed of light in a vacuum is an absolute constant. The problem is, that fact has never been proven.

Continue reading “There's no way to Measure the Speed of Light in a Single Direction”

New Data Supports the Modified Gravity Explanation for Dark Matter, Much to the Surprise of the Researchers

Dark matter is an extremely good theory. It’s supported by a wealth of observational and computational data, which is why it’s part of the standard model of cosmology. But dark matter hasn’t been directly observed, so sometimes even strong supporters of dark matter are motivated to look at the alternatives.

Continue reading “New Data Supports the Modified Gravity Explanation for Dark Matter, Much to the Surprise of the Researchers”

A new Type of Atomic Clock Uses Entangled Atoms. At Most, it Would be off by 100 Milliseconds Since the Beginning of the Universe

Measuring time is about counting steps. Whether it’s the drip-drip of a water clock, the tic-toc of a mechanical clock, or the oscillating crystal of a quartz watch. Any accurate timepiece is built around counting the steps of something regular and periodic. Nothing is perfectly regular, so no clock keeps perfect time, but our timepieces are getting very, very accurate.

Continue reading “A new Type of Atomic Clock Uses Entangled Atoms. At Most, it Would be off by 100 Milliseconds Since the Beginning of the Universe”

Neutrinos Have Played a Huge Role in the Evolution of the Universe

It’s often said that we haven’t yet detected dark matter particles. That isn’t quite true. We haven’t detected the particles that comprise cold dark matter, but we have detected neutrinos. Neutrinos have mass and don’t interact strongly with light, so they are a form of dark matter. While they don’t solve the mystery of dark matter, they do play a role in the shape and evolution of our universe.

Continue reading “Neutrinos Have Played a Huge Role in the Evolution of the Universe”

One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?

“Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual.” – Carl Sagan “The Demon-Haunted World.”

Learning about the Universe, I’ve felt spiritual moments, as Sagan describes them, as I better understand my connection to the wider everything. Like when I first learned that I was literally made of the ashes of the stars – the atoms in my body spread into the eternal ether by supernovae. Another spiritual moment was seeing this image for the first time:

Hippocampal mouse neuron studded with synaptic connections (yellow), courtesy Lisa Boulanger, from https://www.eurekalert.org/multimedia/pub/81261.php. The green central cell body is ? 10µm in diameter. B. Cosmic web (Springel et al., 2005). Scale bar = 31.25 Mpc/h, or 1.4 × 1024 m. Juxtaposition inspired by Lima (2009).
Continue reading “One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?”