Swift Satellite Takes a Look at Comet ISON

The Ultraviolet/Optical Telescope aboard NASA's Swift imaged comet ISON (center) on Jan. 30, when it was located about 3.3 degrees from the bright star Castor in the constellation Gemini. At the time of this 5.5-minute optical exposure, ISON was about 5,000 times fainter than the limit of human vision. Credit: NASA/Swift/D. Bodewits, UMCP

Will the comet that’s been billed as the “the comet of the century” live up to expectations? Astronomers are getting a better idea of the makeup of Comet C/2012 S1 (ISON), and have now taken a look at it with the Swift satellite. They’ve been able to make initial estimates of the size of the comet’s nucleus.

“Comet ISON has the potential to be among the brightest comets of the last 50 years, which gives us a rare opportunity to observe its changes in great detail and over an extended period,” said Lead Investigator Dennis Bodewits, an astronomer at the University of Maryland College Park (UMCP.)

Bodewits and his team used Swift’s Ultraviolet/Optical Telescope (UVOT) to make initial estimates of the comet’s water and dust production, and then infer the size of its icy nucleus. They observed the comet on January 30 and then again late in February.

The January observations revealed that ISON was shedding about 112,000 pounds (51,000 kg) of dust, or about two-thirds the mass of an unfueled space shuttle, every minute. By contrast, the comet was producing only about 130 pounds (60 kg) of water every minute, or about four times the amount flowing out of a residential sprinkler system.

Similar levels of activity were observed in February, and the team plans additional UVOT observations.

Using the water and dust production, the astronomers estimated the size of ISON’s icy nucleus as roughly 3 miles (5 km) across, a typical size for a comet. This assumes that only the fraction of the surface most directly exposed to the Sun, about 10 percent of the total, is actively producing jets. The astronomers noted that these rates of water and dust production are relatively uncertain because of the comet’s faintness.

“The mismatch we detect between the amount of dust and water produced tells us that ISON’s water sublimation is not yet powering its jets because the comet is still too far from the Sun,” Bodewits said. “Other more volatile materials, such as carbon dioxide or carbon monoxide ice, evaporate at greater distances and are now fueling ISON’s activity.”

At the time, the comet was 375 million miles (604 million km) from Earth and 460 million miles (740 million km) from the Sun. ISON was at magnitude 15.7 on the astronomical brightness scale, or about 5,000 times fainter than the threshold of human vision.

Like all comets, ISON is a clump of frozen gases mixed with dust. Often described as “dirty snowballs,” comets emit gas and dust whenever they venture near enough to the Sun that the icy material transforms from a solid to gas, a process called sublimation. Jets powered by sublimating ice also release dust, which reflects sunlight and brightens the comet.

Typically, a comet’s water content remains frozen until it comes within about three times Earth’s distance to the Sun. While Swift’s UVOT cannot detect water directly, the molecule quickly breaks into hydrogen atoms and hydroxyl (OH) molecules when exposed to ultraviolet sunlight. The UVOT detects light emitted by hydroxyl and other important molecular fragments as well as sunlight reflected from dust.

The Deep Impact spacecraft also imaged Comet ISON in mid-January, and NASA and ESA are planning an observing campaign with the rovers and orbiters at Mars around October 1 when the inbound comet passes about 6.7 million miles (10.8 million km) from Mars.

“During this close encounter, comet ISON may be observable to NASA and ESA spacecraft now working at Mars,” said Michael Kelley, an astronomer at UMCP and also a Swift and CIOC team member. “Personally, I’m hoping we’ll see a dramatic postcard image taken by NASA’s latest Mars explorer, the Curiosity rover.”

Fifty-eight days later, on Nov. 28, ISON will make a sweltering passage around the Sun. The comet will approach within about 730,000 miles (1.2 million km) of its visible surface, which classifies ISON as a sungrazing comet. In late November, its icy material will furiously sublimate and release torrents of dust as the surface erodes under the sun’s fierce heat, all as sun-monitoring satellites look on. Around this time, the comet may become bright enough to glimpse just by holding up a hand to block the sun’s glare.

An important question is whether ISON will continue to brighten at the same pace once water evaporation becomes the dominant source for its jets. Will the comet sizzle or fizzle?

“It looks promising, but that’s all we can say for sure now,” said Matthew Knight, an astronomer at Lowell Observatory in Flagstaff, Arizona, and a member of the Swift and CIOC teams. “Past comets have failed to live up to expectations once they reached the inner solar system, and only observations over the next few months will improve our knowledge of how ISON will perform.”

Based on ISON’s orbit, astronomers think the comet is making its first-ever trip through the inner solar system. Before beginning its long fall toward the Sun, the comet resided in the Oort comet cloud, a vast shell of perhaps a trillion icy bodies that extends from the outer reaches of the planetary system to about a third of the distance to the star nearest the Sun.

Formally designated C/2012 S1 (ISON), the comet was discovered on Sept. 21, 2012, by Russian astronomers Vitali Nevski and Artyom Novichonok using a telescope of the International Scientific Optical Network located near Kislovodsk.

From now through October, Comet ISON tracks through the constellations Gemini, Cancer and Leo as it falls toward the sun. Credit: NASA's Goddard Space Flight Center/Axel Mellinger, Central Michigan Univ.
From now through October, Comet ISON tracks through the constellations Gemini, Cancer and Leo as it falls toward the sun. Credit: NASA’s Goddard Space Flight Center/Axel Mellinger, Central Michigan Univ.

Sungrazing comets often shed large fragments or even completely disrupt following close encounters with the Sun, but for ISON neither fate is a forgone conclusion.

“We estimate that as much as 10 percent of the comet’s diameter may erode away, but this probably won’t devastate it,” explained Knight. Nearly all of the energy reaching the comet acts to sublimate its ice, an evaporative process that cools the comet’s surface and keeps it from reaching extreme temperatures despite its proximity to the sun.

Following ISON’s solar encounter, the comet will depart the sun and move toward Earth, appearing in evening twilight through December. It will swing past Earth on Dec. 26, approaching within 39.9 million miles (64.2 million km) or about 167 times farther than the Moon.

Source: NASA

Comet Pan-STARRS Wows Over Holland

Comet Pan-STARRS thrills Dutch observers of the Night Sky on March 15, 2013 shortly after sunset. Shot with a Canon 60D camera and Canon 100/400 mm lens, exposure time 15 seconds, ISO 300 Credit: Rob van Mackelenbergh

Comet Pan-STARRS thrills Dutch observers of the Night Sky on March 14, 2013 shortly after sunset- note the rich hues. Shot with a Canon 60D camera and Canon 100/400 mm lens, exposure time 2 seconds, ISO 800. Credit: Rob van Mackelenbergh
See viewing guide and sky maps below
Update – see readers photo below[/caption]

Comet Pan-STARRS (C/2011 L4) is exciting amateur astronomers observing the night sky worldwide as it becomes visible in the northern latitudes after sunset. And now it’s wowing crowds in Europe and all over Holland – north to south.

Check out the beautiful, richly hued new photos of Comet Pan-STARRS captured on March 14, 2013 by Dutch astrophotographer Rob van Mackelenbergh.

“I took these photos in the southern part of the Netherlands on Thursday evening, March 14, at around 7:45 pm Dutch time with my Canon 60 D camera.”

“I was observing from the grounds of our astronomy club – “Sterrenwacht Halley” – named in honor of Halley’s Comet.”

Comet Pan-STARRS is a non-periodic comet from the Oort Cloud that was discovered in June 2011 by the Pan-STARRS telescope located near the summit of the Hawaiian Island of Maui.

The comet just reached perihelion – closest approach to the Sun – on March 10, 2013. It passed closest to Earth on March 5 and has an orbital period of 106,000 years.

Comet Pan-STARRS from Holland on March 15, 2013 at about 7:45 PM, shortly after sunset - Canon 60D camera, Canon 100/400 mm lens, exposure time 15 seconds, ISO 300.   Credit: Rob van Mackelenbergh
Comet Pan-STARRS from Holland on March 14, 2013 at about 7:45 PM, shortly after sunset – Canon 60D camera, Canon 100/400 mm lens, exposure time 2 seconds, ISO 800. Credit: Rob van Mackelenbergh

“Over 30 people were watching with me and they were all very excited, looking with binoculars and cameras. People were cheering. They were so excited to see the comet. But it was very cold, about minus 2 C,” said Mackelenbergh.

The “Sterrenwacht Halley” Observatory was built in 1987 and houses a Planetarium and a Celestron C14 Schmidt-Cassegrain telescope. It’s located about 50 km from the border with Belgium, near Den Bosch – the capitol city of southern Holland.

Comet Pan-STARRS was photographed from Sterrenwacht Halley - or 'Halley Observatory' in Holland.  Credit: Rob van Mackelenbergh
Comet Pan-STARRS was photographed from Sterrenwacht Halley – or ‘Halley Observatory” in Holland. Credit: Rob van Mackelenbergh

“It was hard to see the comet with the naked eye. But we were able to watch it for about 45 minutes altogether in the west, after the sun set.”

“The sky was completely clear except for a few scattered clouds near the horizon. After the comet set, we went inside the observatory for a general lecture about Comets and especially Comets Pan-STARRS and ISON because most of the people were not aware about this year’s pair of bright comets.”

“So everyone was lucky to see Comet Pan-STARRS because suddenly the sky cleared of thick clouds!”

Comet Pan-STARRS from Holland on March 15, 2013 at about 7:45 PM, shortly after sunset - Canon 60D camera, Canon 100/400 mm lens, exposure time 15 seconds, ISO 300.   Credit: Rob van Mackelenbergh
Comet Pan-STARRS from Holland on March 14, 2013 at about 7:45 PM, shortly after sunset – Canon 60D camera, Canon 100/400 mm lens, exposure time 2 seconds, ISO 800. Credit: Rob van Mackelenbergh

“In the past I also saw Comet Halley and Comet Hale-Bopp, but these are my first ever comet photos and I’m really excited !”

“I hope to see Comet Pan-STARRS again in the coming days when the sky is clear,” Mackelenbergh told me.

Over the next 2 weeks or so the sunset comet may grow in brightness even as it recedes from Earth into darker skies. Right now it’s about magnitude 0.2.

So keep looking with your binoculars; look west for up to 1 to 2 hours after sunset – and keep your eyes peeled.

And report back here !

Ken Kremer

See a readers photo of sunset Comet Pan-STARRS below

Comet Pan-STARRS viewing graphic from NASA
Comet Pan-STARRS viewing graphic from NASA
Comet Pan-Starrs Sky Map. Viewing guide to find the comet low in the horizon after sunset.Credit: Space Weather.com
Comet Pan-Starrs Sky Map. Viewing guide to find the comet low in the horizon after sunset.Credit: Spaceweather.com

3 Comets That Fizzled

An artist's conception of a comet. Credit: NASA/JPL-Caltech

Take a dirty snowball in space and hurl it towards the Sun. I dare you… and then make a prediction as to how that will look.

This is the problem comet scientists face when talking about how bright a comet will appear from Earth. They’re imaging a conglomerate of dust, ice and other materials millions of miles away. After figuring out where the comet will go, then they have to predict how it will behave.

It’s a science, to be sure, but an unpredictable one. That’s why it’s so hard to figure out how Comet ISON will fare when it gets closer to the Sun in November 2013. It could blow into pieces before arriving. It could break up when it gets close to the Sun. Or, it could live up to wildest expectations and shine so brightly you’ll be able to see it in daylight.

Veteran comet-gazers can name a few visitors that didn’t perform as well as predicted. Michael Mumma, who is with the NASA Goddard Space Flight Center’s solar system exploration division, was the lead for the agency’s scientific campaign on many comets of the past few decades. In an e-mail to Universe Today, he shared what made three comets less spectacular than predictions.

Comet Kohoutek (1973)

Comet Kohoutek in 1973. Credit: NASA/University of Arizona
Comet Kohoutek in 1973. Credit: NASA/University of Arizona

Billed by some as the comet of the century, Comet Kohoutek was predicted to pass close to the Sun after it was discovered in March 1973. NASA initiated “Operation Kohoutek” to keep an eye on the comet from a network of observatories in the sky, on the ground and even telescopes in mid-air.

Mumma joked that Kohoutek was a great career launcher for him, as a spectrometer that searched for ammonia ended up getting sustained funding for further development. But the comet was a visual disappointment, he acknowledged.

“The hype surrounding Comet Kohoutek was inspired by two predictions of its possible brightness, made by a recognized senior comet scientist. The NASA spokesman chose to promote the brighter of the two, that predicted the comet would become as ‘bright as the full Moon’. He usually mentioned (softly) that we couldn’t be certain it would actually brighten that much – but the press usually ignored that disclaimer,” Mumma wrote.

“Actually, the comet really did fizzle, failing to reach even the fainter estimate – probably because at discovery it was far from the Sun and activated by something other than water ice. Under those circumstances, any prediction was bound to be highly uncertain.”

Halley’s Comet (1986)

Halley's Comet in 1986. Credit: NASA
Halley’s Comet in 1986. Credit: NASA

Halley’s is the most famous periodic comet, meaning that it returns to the inner solar system over and over again. Its bright appearance made it show up repeatedly in the historical record, most famously in the Bayeux Tapestry after it arrived in 1066 shortly before William the Conquerer successfully led the Norman Conquest of England. However, astronomers in each era saw the comet’s appearance as separate, unpredictable events.

English astronomer Edmond Halley, in examining the astronomical record in 1705, supposed that a comet with similar properties that appeared every 75 years or so was probably the same comet. Ever since then, astronomers and the public alike eagerly await each appearance. The 1910 visit was particularly spectacular, making the press set high expectations for 1986. However, the comet was much further away from the Sun in the 1980s and was fainter.

According to Mumma, the comet did not actually fizzle. Many press reports just got the brightness of the comet wrong, leading the public to believe the comet was less spectacular than predicted.

“It was a bright comet, just as scientists predicted. However, it was much brighter in the southern hemisphere  than in the northern, as predicted. From Christchurch (New Zealand), and again from Cairns (Australia), it was large and the brightest object in the sky – easily seen with the unaided eye.”

As a scientific sidenote, Mumma’s team probed the comet with NASA’s Kuiper Airborne Observatory and, using infrared fluorescence spectroscopy that Mumma developed, found water for the first time in a comet.

Comet Austin (1990)

A negative image of Comet Austin. Credit: European Southern Observatory
A negative image of Comet Austin. Credit: European Southern Observatory

In 1989, Sky & Telescope published a cover article on Comet Austin with the eye-catching headline: “Monster Comet is Coming!” As with Halley, many people anticipated this would be a bright comet, easily visible with the naked eye. In the book Hunting and Imaging Comets, United Kingdom amateur astronomer Martin Mobberley pointed out it was a great object in telescopes or binoculars, but not so much with the eye alone.

“Austin was less bright than some had predicted, but it was bright enough to permit major scientific successes,” Mumma added in his e-mail to Universe Today. “My team detected CO (carbon monoxide) and methanol in that comet, among the first detections of these molecules in comets at infrared wavelengths.”

All in all, these comets show that it’s really hard to figure out what they look like when they get by Earth. This means that nobody knows exactly how ISON will behave until it’s almost upon us.

Deep Impact Images Spectacular incoming Comet ISON – Curiosity & NASA Armada Will Try

Image Caption: This image of comet ISON (C/2012 S1) ) from NASA’s Deep Impact spacecraft clearly shows the coma and nucleus on Jan. 17/18, 2013 beyond the orbit of Jupiter. See the dramatic new movie sequence below. It combines all 146 80-second clear filter exposures for a total integration time of 11680 seconds (about 3.25 hours). Individual frames were shifted to align the comet at the center before coadding. By keeping the comet centered and adding all of the images together, the stars effectively get smeared so the long streaks are the trails of background stars. Some have called it the “Comet of the Century.” Credit: NASA

NASA’s legendary Deep Impact comet smashing spacecraft has just scored another major coup – Imaging the newly discovered Comet ISON. The comet could possibly become one of the brightest comets ever late this year as it passes through the inner Solar System and swings around the Sun for the very first time in history – loaded with pristine, volatile material just raring to burst violently forth from the eerie surface, and is therefore extremely interesting to scientists. See the Movie below

“Comet ISON was just imaged by Deep Impact out by Jupiter on Jan. 17 and 18,” said Dr. Jim Green, Director of NASA Planetary Sciences at NASA HQ, in an exclusive interview with Universe Today on the campus of Princeton University. “We will try to look at ISON with the Curiosity rover as it flies past Mars, and with other NASA assets in space [along the way]. It should be spectacular!”

“We are all, ops team and science team, thrilled that we were able to make these observations when the comet was still more than 5 AU from the sun,” said Deep Impact Principal Investigator Prof. Michael A’Hearn of the University of Maryland, in an exclusive interview with Universe Today.

ISON could potentially become the next “Great Comet”, according to NASA. Deep Impact is the first spacecraft to observe ISON.

“We are continuing to observe ISON – it is observable from Deep Impact into mid-March 2013,” A’Hearn told me.

ISON will be the 4th comet observed by Deep Impact. On July 4, 2005 the spacecraft conducted a close flyby of Comet Tempel 1 and delivered a comet smashing impactor that made headlines worldwide. Next, it flew near Hartley 2 in Nov. 2010. In January 2012, the spacecraft performed a long distance imaging campaign on comet C/2009 P1 (Garradd). And it has enough fuel remaining for an Asteroid encounter slated for 2020 !

NASA’s assets at Mars should be able to observe ISON because it will fly really, really close to Mars!” Green said with a big smile – and me too, as he showed me a sneak preview of the brand new Deep Impact movie.

“ISON observations are in the cue for Curiosity from Mars surface and from orbit with NASA’s Mars Reconnaissance Orbiter (MRO) – and we’ll see how it works out. It should be pretty spectacular. We will absolutely try with Curiosity’s high resolution Mastcam 100 camera.”

“LRO (NASA’s Lunar Reconnaissance Orbiter) also has a good shot at ISON.”

“Because of the possibility of observations of for example ISON, with probes like Deep Impact is why we want to keep NASA’s [older] assets viable.”

146 visible light images snapped by Deep Impact just days ago on Jan. 17 and 18, have been compiled into a dramatic video showing ISON speeding through interplanetary space back dropped by distant star fields – see above and below. The new images were taken by the probes Medium-Resolution Imager (MRI) over a 36-hour period from a distance of 493 million miles (793 million kilometers).

“A composite image, combining all of the Jan 17/18 data – after cleaning up the cosmic rays and improving the S/N (signal to noise ratio) clearly shows the comet has a coma and tail,” said Tony Farnham, a Deep Impact research scientist at the University of Maryland, to Universe Today.

Video Caption: This series of images of comet C/2012 S1 (ISON) was taken by the Medium-Resolution Imager (MRI) of NASA’s Deep Impact spacecraft over a 36-hour period on Jan. 17 and 18, 2013. At the time, the spacecraft was 493 million miles (793 million kilometers) from the comet. Credit: NASA/JPL-Caltech/UMD

ISON is a conglomeration of ice and dust and a long period, sun-grazing comet.

“It is coming in from the Solar System’s Oort cloud at the edge of the Solar System”, said Green, and was likely disturbed out of its established orbit by a passing star or other gravitational effects stemming from the Milky Way galaxy. “It will pass within 2.2 solar radii during perihelion and the Sun will either blast it apart or it will survive.”

Despite still being in the outer Solar System and a long distance from the Sun, ISON is already quite “variable” said A’Hearn, and it’s actively spewing material and ‘outgassing”.

The tail extending from the nucleus was already more than 40,000 miles (64,400 kilometers) long on Jan. 18. It’s a science mystery as to why and the Deep Impact team aims to try and determine why.

In addition to imaging, Deep Impact will also begin collecting long range spectral observations in the next week or so to help answer key questions.

“In mid-February, the solar elongation will allow IR (infrared) spectra for a few weeks,” A’Hearn elaborated.

“The 6-7% variability that we observed in the first day of observing shows that there is variable ‘outgassing’, presumably modulated by rotation of the nucleus. We hope to pin down the rotational period with the continuing images.”

“The interesting question is what drives the outgassing!”

Since ISON is still a very great distance away at more than 5 AU, data collection will not be an easy task. The comet is 5.1 AU from the Sun and 5.3 AU from Deep Impact. And the mission could also be imperiled by looming slashes to NASA’s budget if the Federal sequester actually happens in March.

“Getting spectra will be a real challenge because, at these large heliocentric and geocentric distances, the comet is really faint. However, maybe we can test whether CO2 is driving the outgassing,” Ahearn explained.

“Since we have the only facility capable of measuring CO2, it will be important to observe again in our second window in July-August, but that depends on NASA finding a little more money for us.”

“We, both the ops team and the science team, are funded only for the observations through March,” A’Hearn stated.

Although observing predictions for the brightness of comets are sometimes notoriously wrong and they can fade away precipitously, there is some well founded hope that ISON could put on a spectacular sky show for observers in both the northern and southern hemispheres.

The comet will continue to expand in size and grow in brightness as it journeys inward.

“ISON might be pretty spectacular,” said Green. “If things work out it might become bright enough to see during the day and be brighter than the Moon. The tail might be 90 degrees.”


Image caption: This is the orbital trajectory of comet C/2012 S1 (ISON). The comet is currently located just inside the orbit of Jupiter. In November 2013, ISON will pass less than 1.1 million miles (1.8 million kilometers) from the sun’s surface. The fierce heating it experiences during this close approach to the sun could turn the comet into a bright naked-eye object. Credit: NASA/JPL-Caltech

The best times to observe the comets head and growing tail will be from Nov. 2013 to Jan. 2014, if it survives its closest approach to the Sun, known as perihelion, on Nov. 28, 2013 and doesn’t break apart.

There’s no need to worry about doomsday predictions from conspiracy theorists. At its closest approach next Christmas season on Dec. 26, 2013, ISON will pass by Earth at a safe distance of some 40 million miles.

A pair of Russian astronomers only recently discovered the comet on Sept. 21, 2012, using the International Scientific Optical Network’s 16-inch (40-centimeter) telescope near Kislovodsk.

The study of comets has very important implications for understanding the evolution of not just the Solar System but also the origin of life on Earth. Comets delivered a significant portion of the early Earth’s water as well as a range of both simple and complex organic molecules – the building blocks of life.

Ken Kremer


Image caption. Deep Impact images Comet Tempel 1 alive with light after colliding with the impactor spacecraft on July 4, 2005. CREDIT: NASA/JPL-Caltech/UMD

Weekly Space Hangout – Sept. 27, 2012

This was an action-packed episode of the Weekly Space Hangout. Lots of stories, very little time.

Participants: Mike Wall, Alan Boyle, Ian O’Neill, Nancy Atkinson, Jason Major

Host: Fraser Cain

Want to watch us record the show live? Point your browser at next week’s event page to put the recording right into your calendar.

Guest Post: Comet Kerfuffle

An image generated from Starry Night software of how Comet ISON may look on November 22, 2013 from the UK.

Editor’s note: This guest post was written by Stuart Atkinson, a space and astronomy enthusiast who blogs at Cumbrian Sky, Road to Endeavour, which follows the Opportunity rover, and The Gale Gazette which discusses imagery from the Curiosity rover.

Unless you’ve been cut off from the internet today you’ll have heard about The Comet. No, not Comet PANSTARRS, which is due to shine in the sky next March, perhaps rivalling the fondly-remembered Comet Hale Bopp from 1996, but another comet. Comet 2012/S1, or “Comet ISON” to give it its full name. It’s everywhere you look on Twitter, Facebook, Google Plus. Why? Because initial calculations of its orbit show it will pass ridiculously close to the Sun next November, skimming the solar surface at a height of just under two million kilometres. And that means it might shine jaw-droppingly bright in the sky at that time, before it heads back off into deep space again.

So, of course, adding two and two to get fifty, there are lots of people getting more excited about this comet than a dog in a lamp post factory. If you were to believe some of the comments being written about it, it is absolutely nailed-on guaranteed to shine like a welding torch in the sky next November, blazing at magnitude -16, with a tail stretching across the sky like a WW2 searchbeam.

Can we all just calm down, please?

Although Comet ISON looks promising, very promising in fact, it’s very early days. It needs to be observed a lot more before we know exactly what’s in store for us, and even then what it will actually look like in the sky is impossible to predict this far ahead. You see, comets are notoriously unreliable, and love nothing better than getting astronomers on Earth all fired up with the promise of a dazzling nocturnal display before fizzling out and being so faint they need binoculars to see them. Hardly surprising, seeing as comets are essentially great big chunks of dirty ice, and we only see them because they’re melting and falling to pieces as they race around the Sun. You can’t predict how that will work out now, can you?

There’s a whole spectrum of possibilities here. At one end of that spectrum, ISON will live up to the most breathless predictions and blaze in the sky like a science fiction movie special effect. Its tail will span half the sky, becoming visible as soon as the Sun has set, and we will stand on our hillsides and in our gardens looking at it and slowly shaking our heads in wonder before we remember we’ve actually got a camera set up, and start taking pictures of it.

At the other end of the spectrum, ISON will play us all for fools, and even before its close solar flyby it will break up without developing a searchbeam tail, and we’ll all stand on our hillsides and in our gardens looking at it through binoculars and shaking our fists at it angrily, cursing its icy crust.

I think we should cross our fingers for something between the two. We should hope that ISON stays in one piece, survives its close encounter with the Sun, and shines in the twilight sky next November like another Lovejoy or McNaught. I’ll be happy with that, to be honest. Because I’m a citizen of the northern hemisphere my only views of Lovejoy were on my computer monitor, as I drooled over the images of it taken by astronomers and skywatchers in Australia and New Zealand and across the southern hemisphere. I caught a fleeting glimpse of McNaught from here in Kendal – standing in the ruins of the castle that stands above my town, I saw the comet through binoculars through a brief gap in the clouds, as I stood in the rain – but again I ‘saw’ it online rather than with my own eyes, cursing (good naturedly) all those people south of the equator who were seeing the real thing shining in their sky…

An image generated from Starry Night software of how Comet ISON may look on November 29, 2013 from the UK.

(I have to be honest here: having missed the last two Great Comets because of my latitude, when I fired up STARRY NIGHT earlier today, and stepped forward in time to next November, I experienced a rather ungentlemanly “Ha! Our turn!” moment of pure smugness as I saw that ISON’s path will carry it through my sky..!)

The best thing we can do, seriously, is just cross our fingers. Hope for the best, but prepare for…something less than that.

And yet…

Comets are magical, aren’t they? They bring out the dreamer, the optimist and the romantic in all of us. And although I’m fighting it, my head is full of images as I write this, memories of the comets I have seen before, and wondering what ISON will bring. I remember my first sighting of Halley’s Comet, on Guy Fawkes Night 1985. It was just a smudge of a blur in my binoculars, as I stood on the sports playing field near my home, breathing in the smell of bonfires and fireworks in the darkness; I remember standing in the deep, dark Cumbrian countryside, in the gravelled gateway of a farm field, and tracing out the ridiculous extent of Comet Hyakyutake’s pale green tail across the star-spattered sky; and I remember standing in the centre of the ancient Castlerigg stone circle outside Kewsick and, in perfect silence, and feeling a real connection to the watching Comet Hale-Bopp shining above the fells, its twin tails looking like they had been sprayed across the heavens by some cosmic grafitti artist…

What memories will I have after Comet ISON has flown past the Sun, I wonder…

It’s tempting to look at the elements of this comet, and to simulate its apparition using planetarium software, and to get excited. But really, let’s take it easy. I mean, we’ve been here before. Some comets in the past have promised the Earth (mentioning no names… *cough* Kohoutek *cough* ) only to pass by without any real fanfare or fuss, leaving astronomers with a lot of egg on their faces.

So, everyone, take a deep breath, and look at the calendar. ISON is going to be in the sky next November. NEXT November. That’s over a year away. Anything could happen before then.

And yet…

By Stuart Atkinson

New ‘Sun-Skirting’ Comet Could Provide Dazzling Display in 2013

2013 is looking to be a promising year for potential naked-eye comets, as a new comet has been discovered that will likely skirt close to the Sun, and could provide a stunning display late next year. The comet, named Comet C/2012 S1 (ISON), as it was discovered by a Russian team at the International Scientific Optical Network (ISON), is currently about the distance of Jupiter’s orbit. But it is projected to come within less than 2 million km from the Sun at perihelion by November 28, 2013. Ernesto Guido and Giovanni Sostero from the Remanzacco Observatory in Italy, along with their colleague Nick Howes from the UK have imaged the comet with the RAS telescope in New Mexico, and say, “According to its orbit, this comet might become a naked-eye object in the period November 2013 – January 2014. And it might reach a negative magnitude at the end of November 2013.”

This new comet joins Comet C/2011 L4 PanSTARRS, which is projected to come within 45 million kilometers (28 million miles) of the Sun on March 9, 2013, which is close enough for quite a bit of cometary ice to vaporize and form a bright coma and tail. Comet PanSTARRS will be visible at perihelion to southern hemisphere, while Comet ISON should be visible to mid-latitude northern hemisphere skywatchers, according to the Remanzacco team.

Orbit diagram from JPL’s Small Body Database of Comet ISON, as of Sept. 25, 2012. Credit: JPL

Right now, Comet ISON is at magnitude +18, and only larger telescopes can see it. How bright will the comet get, and could it even be visible during daytime? That’s the big question which only time will answer. Just 2 million km distant from the Sun is incredibly close, and if the comet stays intact, some estimates say it could reach a brilliant negative magnitude of between -11 and -16. Comparatively, the full Moon is about magnitude -12.7.

But this will happen only if the comet will stay together. Comets can be fairly unpredictable, and other comets that have come that close to the Sun — such as Comet Elenin in 2011, Comet LINEAR in 1999 and Comet Kohoutek in 1973 — failed to live up to expectations of brightness and visibility.

But other comets have survived, like Comet Lovejoy earlier this year, which came two times closer, and Comet McNaught in 2007 which became visible even in daylight when it reached magnitude -5.5. It was not as close to the Sun as Comet ISON will be, however, as McNaught was about 24 million km away.

The discovery of C/2012 S1 (ISON) was made by Vitali Nevski, of Vitebsk, Belarus, and Artyom Novichonok, of Kondopoga, Russia with a 0.4-meter reflecting telescope near Kislovodsk, Russia.

You can see the ephermides of the Comet ISON here, from the Minor Planet Center.

The a Remanzacco Observatory team has more images, including an animation of Comet ISON on their website.

You can see the full visibility calculations of Comet ISON done by Daniel Fischer here.