Astronomers Discover a Totally New Kind of Nebula

Most Universe Today readers are familiar with nebulae. They’re gaseous structures lit up with radiation from nearby stars, and they’re some of nature’s most beautiful forms.

With the help of amateur astronomers who laid the groundwork, an international team of astronomers have discovered a new type of nebulae around binary stars that they’re calling galactic emission nebulae.

Continue reading “Astronomers Discover a Totally New Kind of Nebula”

Astronomers See a Star Crash Through the Planetary Disk of Another Star

What causes an otherwise unremarkable star to become over 100 times brighter? That’s a question astronomers have been pondering since 1936, when a star in Orion brightened from 16th magnitude to 8th magnitude in a single year.

The star, named FU Ori, is still bright to this day. Astronomers have come up with different explanations for the star’s brightening, but none of them provides a complete explanation.

Now we might have one.

Continue reading “Astronomers See a Star Crash Through the Planetary Disk of Another Star”

Many Sunlike Stars Gobbled up Some of Their Planets

New research shows that other sunlike stars in our galaxy aren’t so kind to their planets. Up to a quarter of them may consume planets before they even establish a solar system. That consumption leaves behind a distinct chemical fingerprint in the stars, which can help researchers understand how common planetary systems are…and how often they get destroyed.

Continue reading “Many Sunlike Stars Gobbled up Some of Their Planets”

A Nearby White Dwarf Might be About to Collapse Into a Neutron Star

About 97% of all stars in our Universe are destined to end their lives as white dwarf stars, which represents the final stage in their evolution. Like neutron stars, white dwarfs form after stars have exhausted their nuclear fuel and undergo gravitational collapse, shedding their outer layers to become super-compact stellar remnants. This will be the fate of our Sun billions of years from now, which will swell up to become a red giant before losing its outer layers.

Unlike neutron stars, which result from more massive stars, white dwarfs were once about eight times the mass of our Sun or lighter. For scientists, the density and gravitational force of these objects is an opportunity to study the laws of physics under some of the most extreme conditions imaginable. According to new research led by researchers from Caltech, one such object has been found that is both the smallest and most massive white dwarf ever seen.

Continue reading “A Nearby White Dwarf Might be About to Collapse Into a Neutron Star”

There are Probably Many More Earth-Sized Worlds Than Previously Believed

In the past decade, the discovery of extrasolar planets has accelerated immensely. To date, 4,424 exoplanets have been confirmed in 3,280 star systems, with another 7,453 awaiting confirmation. So far, most of these planets have been gas giants, with about 66% being similar to Jupiter or Neptune, while another 30% have been giant rocky planets (aka. “Super-Earths). Only a small fraction of confirmed exoplanets (less than 4%) have been similar in size to Earth.

However, according to new research by astronomers working at NASA Ames Research Center, it is possible that Earth-sized exoplanets are more common than previously thought. As they indicated in a recent study, there could be twice as many rocky exoplanets in binary systems that are obscured by the glare of their parent stars. These findings could have drastic implications in the search for potentially habitable worlds since roughly half of all stars are binary systems.

Continue reading “There are Probably Many More Earth-Sized Worlds Than Previously Believed”

Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away

In theory, a black hole is easy to make. Simply take a lump of matter, squeeze it into a sphere with a radius smaller than the Schwarzschild radius, and poof! You have a black hole. In practice, things aren’t so easy. When you squeeze matter, it pushes back, so it takes a star’s worth of weight to squeeze hard enough. Because of this, it’s generally thought that even the smallest black holes must be at least 5 solar masses in size. But a recent study shows the lower bound might be even smaller.

Continue reading “Smallest, Closest Black Hole Ever Discovered is Only 1,500 Light-Years Away”

Our Part of the Galaxy is Packed with Binary Stars

Binary star systems are everywhere. They make up a huge percentage of all known solar systems: from what we can tell, about half of all Sun-like stars have a binary partner. But we haven’t really had a chance to study them in detail yet. That’s about to change. Using data from the European Space Agency’s Gaia spacecraft, a research team has just compiled a gigantic new catalog of nearby binary star systems, and it shows that at least 1.3 million of them exist within 3000 light-years of Earth.

Continue reading “Our Part of the Galaxy is Packed with Binary Stars”

Massive Binary Stars Huddle Up Surprisingly Quickly

Dancing is a favorite pastime of many couples.  Swinging around a dance floor, using the laws of physics to twirl at just the right moment, and hopefully not step on any toes, is an art unto itself.  The same laws of physics that govern couples on a dance floor also govern (to some extent) the much larger dance of stellar objects.  And recently astronomers have started to understand the intricacies of how binary stars dance with each other – turns out it’s not quite as simple as doing the tango.

Continue reading “Massive Binary Stars Huddle Up Surprisingly Quickly”

Strange Green Star is the Result of a Merger Between two White Dwarfs

A white dwarf isn’t your typical kind of star. While main sequence stars such as our Sun fuse nuclear material in their cores to keep themselves from collapsing under their own weight, white dwarfs use an effect known as quantum degeneracy. The quantum nature of electrons means that no two electrons can have the same quantum state. When you try to squeeze electrons into the same state, they exert a degeneracy pressure that keeps the white dwarf from collapsing.

Continue reading “Strange Green Star is the Result of a Merger Between two White Dwarfs”