Beyond WIMPs: Exploring Alternative Theories Of Dark Matter

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

The standard model of cosmology tells us that only 4.9% of the Universe is composed of ordinary matter (i.e. that which we can see), while the remainder consists of 26.8% dark matter and 68.3% dark energy. As the names would suggest, we cannot see them, so their existence has had to be inferred based on theoretical models, observations of the large-scale structure of the Universe, and its apparent gravitational effects on visible matter.

Since it was first proposed, there have been no shortages of suggestions as to what Dark Matter particles look like. Not long ago, many scientists proposed that Dark Matter consists of Weakly-Interacting Massive Particles (WIMPs), which are about 100 times the mass of a proton but interact like neutrinos. However, all attempts to find WIMPs using colliders experiments have come up empty. As such, scientists have been exploring the idea lately that dark matter may be composed of something else entirely. Continue reading “Beyond WIMPs: Exploring Alternative Theories Of Dark Matter”

The Early Universe Was All About Galactic Hook Ups

Artist's illustration of the Andromeda galaxy and the Milky Way, the two largest galaxies in the Local Group. Credit: NASA

In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.

As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.

Continue reading “The Early Universe Was All About Galactic Hook Ups”

Farthest Galaxy Ever Seen Viewed By Hubble Telescope

Galaxy GN-z11 superimposed on an image from the GOODS-North survey. Credit: NASA/ESA/P. Oesch (Yale University)/G. Brammer (STScI)/P. van Dokkum (Yale University)/G. Illingworth (University of California, Santa Cruz)

Since it was first launched in 1990, the Hubble Space Telescope has provided people all over the world with breathtaking views of the Universe. Using its high-tech suite of instruments, Hubble has helped resolve some long-standing problems in astronomy, and helped to raise new questions. And always, its operators have been pushing it to the limit, hoping to gaze farther and farther into the great beyond and see what’s lurking there.

And as NASA announced with a recent press release, using the HST, an international team of astronomers just shattered the cosmic distance record by measuring the farthest galaxy ever seen in the universe. In so doing, they have not only looked deeper into the cosmos than ever before, but deeper into it’s past. And what they have seen could tell us much about the early Universe and its formation.

Due to the effects of special relativity, astronomers know that when they are viewing objects in deep space, they are seeing them as they were millions or even billions of years ago. Ergo, an objects that is located 13.4 billions of light-years away will appear to us as it was 13.4 billion years ago, when its light first began to make the trip to our little corner of the Universe.

An international team of scientists has used the Hubble Space Telescope to spectroscopically confirm the farthest galaxy to date. Credits: NASA/ESA/B. Robertson (University of California, Santa Cruz)/A. Feild (STScI)
An international team of scientists has used the Hubble Space Telescope to spectroscopically confirm the farthest galaxy to date. Credits: NASA/ESA/B. Robertson (University of California, Santa Cruz)/A. Feild (STScI)

This is precisely what the team of astronomers witnessed when they gazed upon GN-z11, a distant galaxy located in the direction of the constellation of Ursa Major. With this one galaxy, the team of astronomers – which includes scientists from Yale University, the Space Telescope Science Institute (STScI), and the University of California – were able to see what a galaxy in our Universe looked like just 400 million years after the Big Bang.

Prior to this, the most distant galaxy ever viewed by astronomers was located 13.2 billion light years away. Using the same spectroscopic techniques, the Hubble team confirmed that GN-z11 was nearly 200 million light years more distant. This was a big surprise, as it took astronomers into a region of the Universe that was thought to be unreachable using the Hubble Space Telescope.

In fact, astronomers did not suspect that they would be able to probe this deep into space and time without using Spitzer, or until the deployment the James Webb Space Telescope – which is scheduled to launch in October 2018. As Pascal Oesch of Yale University, the principal investigator of the study, explained:

“We’ve taken a major step back in time, beyond what we’d ever expected to be able to do with Hubble. We see GN-z11 at a time when the universe was only three percent of its current age. Hubble and Spitzer are already reaching into Webb territory.”

The Hubble Space Telescope in 1997, after its first servicing mission. It's about 552 km (343m) above Earth. Image: NASA
The Hubble Space Telescope in 1997, after its first servicing mission. Credit: NASA

In addition, the findings also have some implications for previous distance estimates. In the past, astronomers had estimated the distance of GN-z11 by relying on Hubble and Spitzer’s color imaging techniques. This time, they relied on Hubble’s Wide Field Camera 3 to spectroscopically measure the galaxies redshift for the first time. In so doing, they determined that GN-z11 was farther way than they thought, which could mean that some particularly bright galaxies who’s distanced have been measured using Hubble could also be farther away.

The results also reveal surprising new clues about the nature of the very early universe. For starters, the Hubble images (combined with data from Spitzer) showed that GN-z11 is 25 times smaller than the Milky Way is today, and has just one percent of our galaxy’s mass in stars. At the same time, it is forming stars at a rate that is 20 times greater than that of our own galaxy.

As Garth Illingworth – one of the team’s investigator’s from the University of California, Santa Cruz – explained:

“It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon. This new record will likely stand until the launch of the James Webb Space Telescope.”

Last, but not least, they provide a tantalizing clue as to what future missions – like the James Webb Space Telescope – will be finding. Once deployed, astronomers will likely be looking ever farther into space, and farther into the past. With every step, we are closing in on seeing what the very first galaxies that formed in our Universe looked like.

Further Reading: NASA

Timeline of the Universe, From the Big Bang to the Death of Our Sun

A teeny, tiny, minuscule portion of Martin Vargic’s Timeline of the Universe.
A teeny, tiny, minuscule portion of Martin Vargic’s Timeline of the Universe.

Don’t know much about history? How about the future? A new infographic by graphic designer Martin Vargic portrays both past and forthcoming events in our Universe, from the Big Bang to the death of our Sun. The graphic is color-coded and shows “significant events in cosmic and natural history.” It also illustrates how briefly humanity has been part of the scene.

Fun future events are when Earth’s day will become 25 hours long (Earth’s rotation is slowing down), and the amazingly distant time when the Solar System finally completes one orbit around the galactic core.

The full infographic is below, and be prepared to give your scroll wheel a workout. This thing is huge, but very comprehensive for covering about 23.8 billion years!
Continue reading “Timeline of the Universe, From the Big Bang to the Death of Our Sun”

Cosmologist Thinks a Strange Signal May Be Evidence of a Parallel Universe

A simulation of galaxies during the era of deionization in the early Universe. Credit: M. Alvarez, R. Kaehler, and T. AbelCredit: M. Alvarez, R. Kaehler, and T. Abel

In the beginning, there was chaos.

Hot, dense, and packed with energetic particles, the early Universe was a turbulent, bustling place. It wasn’t until about 300,000 years after the Big Bang that the nascent cosmic soup had cooled enough for atoms to form and light to travel freely. This landmark event, known as recombination, gave rise to the famous cosmic microwave background (CMB), a signature glow that pervades the entire sky.

Now, a new analysis of this glow suggests the presence of a pronounced bruise in the background — evidence that, sometime around recombination, a parallel universe may have bumped into our own.

Although they are often the stuff of science fiction, parallel universes play a large part in our understanding of the cosmos. According to the theory of eternal inflation, bubble universes apart from our own are theorized to be constantly forming, driven by the energy inherent to space itself.

Like soap bubbles, bubble universes that grow too close to one another can and do stick together, if only for a moment. Such temporary mergers could make it possible for one universe to deposit some of its material into the other, leaving a kind of fingerprint at the point of collision.

Ranga-Ram Chary, a cosmologist at the California Institute of Technology, believes that the CMB is the perfect place to look for such a fingerprint.

This image, the best map ever of the Universe, shows the oldest light in the universe. This glow, left over from the beginning of the cosmos called the cosmic microwave background, shows tiny changes in temperature represented by color. Credit: ESA and the Planck Collaboration.
The cosmic microwave background (CMB), a pervasive glow made of light from the Universe’s infancy, as seen by the Planck satellite in 2013. Tiny deviations in average temperature are represented by color. Credit: ESA and the Planck Collaboration.

After careful analysis of the spectrum of the CMB, Chary found a signal that was about 4500x brighter than it should have been, based on the number of protons and electrons scientists believe existed in the very early Universe. Indeed, this particular signal — an emission line that arose from the formation of atoms during the era of recombination — is more consistent with a Universe whose ratio of matter particles to photons is about 65x greater than our own.

There is a 30% chance that this mysterious signal is just noise, and not really a signal at all; however, it is also possible that it is real, and exists because a parallel universe dumped some of its matter particles into our own Universe.

After all, if additional protons and electrons had been added to our Universe during recombination, more atoms would have formed. More photons would have been emitted during their formation. And the signature line that arose from all of these emissions would be greatly enhanced.

Chary himself is wisely skeptical.

“Unusual claims like evidence for alternate Universes require a very high burden of proof,” he writes.

Indeed, the signature that Chary has isolated may instead be a consequence of incoming light from distant galaxies, or even from clouds of dust surrounding our own galaxy.

SO is this just another case of BICEP2? Only time and further analysis will tell.

Chary has submitted his paper to the Astrophysical Journal. A preprint of the work is available here.

NASA Webb Telescope Construction Leaps Forward with Delivery of Mirror Holding Backbone Flight Structure

View showing actual flight structure of mirror backplane unit for NASA's James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

View showing actual flight structure of mirror backplane unit for NASA’s James Webb Space Telescope (JWST) that holds 18 segment primary mirror array and secondary mirror mount at front, in stowed-for-launch configuration. JWST is being assembled here by technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com
Story/imagery updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – The construction pace for NASA’s James Webb Space Telescope (JWST) took a major leap forward with delivery of the actual flight structure that serves as the observatory’s critical mirror holding backbone – to NASA’s Goddard Space Flight Center in Greenbelt, Maryland and observed by Universe Today.

“We are in good shape with the James Webb Space Telescope,” said Dr. John Mather, NASA’s Nobel Prize Winning scientist, in an exclusive interview with Universe Today at NASA Goddard during a visit to the flight structure – shown in my photos herein. Note: Read an Italian language version of this story – here at Alive Universe

And the mammoth $8.6 Billion Webb telescope has mammoth scientific objectives as the scientific successor to NASA’s Hubble Space Telescope (HST) – now celebrating its 25th anniversary in Earth orbit.

“JWST has the capability to look back towards the very first objects that formed after the Big Bang,” Mather told Universe Today.

How is that possible?

“James Webb has a much bigger mirror than Hubble. So its resolution is much better,” said astronaut and NASA science chief John Grunsfeld, during an exclusive interview at NASA Goddard. Grunsfeld flew on a trio of Hubble servicing missions aboard the Space Shuttle, including the final one during STS-125 in 2009.

“JWST can look back further in time, and a greater distance than Hubble, so we can see those first stars and galaxies formed in the Universe.”

These discoveries are only possible with Webb, which will become the most powerful telescope ever sent to space when it launches in 2018.

Up close view of actual side wing backplane of NASA's James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Up close view of actual side wing backplane of NASA’s James Webb Space Telescope (JWST) that will hold 3 of the observatory’s 18 primary mirrors, as technicians work inside cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The massive JWST flight structure unit includes the “backplane assembly” that clasps in place all of the telescopes primary and secondary mirrors, as well as its ISIM science module loaded with the observatory’s quartet of state-of-the-art research instruments.

“The backplane looks really great,” Grunsfeld told me.

Numerous NASA centers and aerospace companies are involved in building the observatory and its backplane structure holding the mirrors that will search back some 13.4 billion years.

“The backplane structure just arrived in late August from Northrop Grumman Aerospace Systems in Redondo Beach, California,” said Sandra Irish, JWST lead structural engineer during an interview with Universe Today at the NASA Goddard cleanroom facility.

“This is the actual flight hardware.”

Side view of flight unit mirror backplane assembly structure for NASA's James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration.  JWST is being assembled technicians inside the world’s largest cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md.  Credit: Ken Kremer/kenkremer.com
Side view of flight unit mirror backplane assembly structure for NASA’s James Webb Space Telescope (JWST) that holds primary mirror array and secondary mirror mount in stowed-for-launch configuration. JWST is being assembled technicians inside the cleanroom at NASA Goddard Space Flight Center, Greenbelt, Md. Credit: Ken Kremer/kenkremer.com

The purpose of JWST’s backplane assembly is to hold the telescopes 18 segment, 21-foot (6.5-meter) diameter primary mirror nearly motionless while floating in the utterly frigid space environment, thereby enabling the observatory to peer out into deep space for precise science gathering measurements never before possible.

The massive telescope structure “includes the primary mirror backplane assembly; the main backplane support fixture; and the deployable tower structure that lifts the telescope off of the spacecraft. The three arms at the top come together into a ring where the secondary mirror will reside,” say officials.

The backplane traveled a long and winding road before arriving at Goddard.

“The backplane structure was designed and built at Orbital ATK with NASA oversight,” Irish explained. The assembly work was done at the firms facilities in Magna, Utah.

“Then it was sent to Northrop Grumman in Redondo Beach, California for static testing. Then it came here to Goddard. Orbital ATK also built the composite tubes for the ISIM science module structure.”

The observatory’s complete flight structure measures about 26 feet (nearly 8 meters) from its base to the tip of the tripod arms and mirror mount holding the round secondary mirror.

Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom.  Credit: NASA/ESA
Artist’s concept of the James Webb Space Telescope (JWST) with Sunshield at bottom. Credit: NASA/ESA

The flight structure and backplane assembly arrived at Goddard in its stowed-for-launch configuration after being flown cross country from California.

“It is here for the installation of all the mirrors to build up the entire telescope assembly here at Goddard. It will be fully tested here before it is delivered to the Johnson Space Center in Houston and then back to California,” Irish elaborated.

The overall assembly is currently attached to a pair of large yellow and white fixtures that firmly secure the flight unit, to stand it upright and rotate as needed, as it undergoes acceptance testing by engineers and technicians before commencement of the next big step – the crucial mirror installation that starts soon inside the world’s largest cleanroom at NASA Goddard.

Overhead cranes are also used to maneuver the observatory structure as engineers inspect and test the unit.

But several weeks of preparatory work are in progress before the painstakingly precise mirror installation can begin under the most pristine cleanroom operating conditions.

“Right now the technicians are installing harnesses that we need to mount all over the structure,” Irish told me.

“These harnesses will go to our electronic systems and the mirrors in order to monitor their actuation on orbit. So that’s done first.”

What is the construction sequence at Goddard for the installation of the mirrors and science instruments and what comes next?

“This fall we will be installing every mirror, starting around late October/early November. Then next April 2016 we will install the ISIM science module inside the backplane structure.”

“The ISIM mounts all four of the telescope science instrument. So the mirrors go on first, then the ISIM gets installed and then it will really be the telescope structure.” ISIM carries some 7,500 pounds (2400 kg) of telescope optics and instruments.

“Then starting about next July/August 2016 we start the environmental testing.”

The actual flight mirror backplane is comprised of three segments – the main central segment and a pair of outer wing-like parts holding three mirrors each. They will be unfolded from the stowed-for-launch configuration to the “deployed” configuration to carry out the mirror installation. Then be folded back over into launch configuration for eventual placement inside the payload fairing of the Ariane V ECA booster rocket.

The telescope will launch from the Guiana Space Center in Kourou, French Guiana in 2018.

Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room.  Credit: Ken Kremer- kenkremer.com
Gold coated flight spare of a JWST primary mirror segment made of beryllium and used for test operations inside the NASA Goddard clean room. Credit: Ken Kremer- kenkremer.com

The telescopes primary and secondary flight mirrors have already arrived at Goddard.

The mirrors must remained precisely aligned and nearly motionless in order for JWST to successfully carry out science investigations. While operating at extraordinarily cold temperatures between -406 and -343 degrees Fahrenheit the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

To account for the tiniest of errors and enhance science, each of the primary mirrors is equipped with actuators for minute adjustments.

“A beautiful advantage of Webb that’s different from Hubble is the fact that we do have actuation [capability] of every single one of our mirrors. So if we are off by just a little bit on either our calculations or from misalignment from launch or the zero gravity release, we can do some fine adjustments on orbit.”

“We can adjust every mirror within 50 nanometers.”

“That’s important because we can’t send astronauts to fix our telescope. We just can’t.”

“The telescope is a million miles away.”

NASA’s team at Goddard has already practiced mirror installation because there are no second chances.

“We only have one shot to get this right!” Irish emphasized.

Watch for more on the mirror installation in my upcoming story.

JWST is the successor to the 25 year old Hubble Space Telescope and will become the most powerful telescope ever sent to space.

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

NASA has overall responsibility and Northrop Grumman is the prime contractor for JWST.

“The telescope is on schedule for its launch in 2018 in October,” Mather told me.

And the payoff from JWST will be monumental!

“On everything from nearby planets to the most distant universe, James Webb will transform our view of the Universe,” Grunsfeld beams.

Watch for more on JWST construction and mirror installation in part 2 soon.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland.  Credit: Ken Kremer/kenkremer.com
NASA Science chief and astronaut John Grunsfeld discusses James Webb Space Telescope project at NASA Goddard Space Flight Center in Maryland. Credit: Ken Kremer/kenkremer.com

Is the Universe Finite or Infinite?

Is the Universe Finite or Infinite?

Two possiblities exist: either the Universe is finite and has a size, or it’s infinite and goes on forever. Both possibilities have mind-bending implications.

In another episode of Guide to Space, we talked: “how big is our Universe”. Then I said it all depends on whether the Universe is finite or infinite. I mumbled, did some hand waving, glossed over the mind-bending implications of both possibilities and moved on to whatever snarky sci-cult reference was next because I’m a bad host. I acted like nothing happened and immediately got off the elevator.

So, in the spirit of he who smelled it, dealt it. I’m back to shed my cone of shame and talk big universe. And if the Universe is finite, well, it’s finite. You could measure its size with a really long ruler. You could also follow up statements like that with all kinds of crass shenanigans. Sure, it might wrap back on itself in a mindbending shape, like a of monster donut or nerdecahedron, but if our Universe is infinite, all bets are off. It just goes on forever and ever and ever in all directions. And my brain has already begun to melt in anticipation of discussing the implications of an infinite Universe.

Haven’t astronomers tried to figure this out? Of course they have, you fragile mortal meat man/woman! They’ve obsessed over it, and ordered up some of the most powerful sensitive space satellites ever built to answer this question.Astronomers have looked deep at the Cosmic Microwave Background Radiation, the afterglow of the Big Bang. So, how would you test this idea just by watching the sky?

Here’s how smart they are. They’ve searched for evidence that features on one side of the sky are connected to features on the other side of the sky, sort of like how the sides of a Risk map connect to each other, or there’s wraparound on the PacMan board. And so far, there’s no evidence they’re connected.

In our hu-man words, this means 13.8 billion light-years in all directions, the Universe doesn’t repeat. Light has been travelling towards us for 13.8 billion years this way, and 13.8 billion years that way, and 13.8 billion years that way; and that’s just when the light left those regions. The expansion of the Universe has carried them from 47.5 billion light years away. Based on this, our Universe is 93 billion light-years across. That’s an “at least” figure. It could be 100 billion light-years, or it could be a trillion light-years. We don’t know. Possibly, we can’t know. And it just might be infinite.

If the Universe is truly infinite, well then we get a very interesting outcome; something that I guarantee will break your brain for the entire day. After moments like this, I prefer to douse it in some XKCD, Oatmeal and maybe some candy crush.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

Consider this. In a cubic meter (or yard) of space. Alright, in a box of space about yay big (show with hands), there’s a finite number of particles that can possibly exist in that region, and those particles can have a finite number of configurations considering their spin, charge, position, velocity and so on.

Tony Padilla from Numberphile has estimated that number to be 10 to the power of 10 to the power of 70. That’s a number so big that you can’t actually write it out with all the pencils in the Universe. Assuming of course, that other lifeforms haven’t discovered infinite pencil technology, or there’s a pocket dimension containing only pencils. Actually, it’s probably still not enough pencils.

There are only 10 ^ 80 particles in the observable Universe, so that’s much less than the possible configurations of matter in a cubic meter. If the Universe is truly infinite, if you travel outwards from Earth, eventually you will reach a place where there’s a duplicate cubic meter of space. The further you go, the more duplicates you’ll find.

Ooh, big deal, you think. One hydrogen pile looks the same as the next to me. Except, you hydromattecist, you’ll pass through places where the configuration of particles will begin to appear familiar, and if you proceed long enough you’ll find larger and larger identical regions of space, and eventually you’ll find an identical you. And finding a copy of yourself is just the start of the bananas crazy things you can do in an infinite Universe.

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)
The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

In fact, hopefully you’ll absorb the powers of an immortal version of you, because if you keep going you’ll find an infinite number of yous. You’ll eventually find entire duplicate observable universes with more yous also collecting other yous. And at least one of them is going to have a beard.

So, what’s out there? Possibly an infinite number of duplicate observable universes. We don’t even need multiverses to find them. These are duplicate universes inside of our own infinite universe. That’s what you can get when you can travel in one direction and never, ever stop.

Whether the Universe is finite or infinite is an important question, and either outcome is mindblenderingly fun. So far, astronomers have no idea what the answer is, but they’re working towards it and maybe someday they’ll be able to tell us.

So what do you think? Do we live in a finite or infinite universe? Tell us in the comments below.

Where Did the Big Bang Happen?

Where Did the Big Bang Happen?

Imagine the Big Bang, and you’re imagining an explosion. There must be come place we could travel in the Universe and see the wreckage left over from the Big Bang. So, where is it?

Close your eyes and imagine the Big Bang. That first moment, where all the energy, matter and light came into existence. It’s an explosion right? Fire, debris, sinks, marmots and anvils flying past the camera in an ever expanding cloud of hot gas.

And like any explosion, there must be an aftermath, right? Some place we could travel in the Universe and see the exact spot that everything began; the exact location where the Big Bang happened and ideally a huge crater in spacetime where the Universe began.

I expect you’re imagining our little scene in your mind. Complete with space-time indentations and orbital detritus. I hope you’re also getting the unsettling feeling of dread that I’m about to smash up beloved sci-fi tropes for my own amusement. And here it is…

There’s no exact spot that the Big Bang happened. In fact, the Big Bang happened everywhere in the Universe. The problem generally comes from the term “Big Bang”. It brings to mind explosions, detonations, balloons being popped, and everything being blown out to chickenbasket hades. It’s too bad for us regular folk, this isn’t a good descriptive term for what the Big Bang was.

So I’m going to propose a new term, and just use it from here on out, and pretend like it was always this way. So, from here on out, I’m going to call it the Big Stretch, and by that I mean I’ve always called it the Big Stretch, and for those of you familiar with this type of retconning, the chocolate ration is being increased from 40 grams to 25 grams.

Imagine a balloon covered in dots, then inflate the balloon. Also, for the purposes of this illustration, you’re a 2-dimensional creature living at one of those dots and watching all the other dots. From your perspective, everything will smell like that weird damp spit and rubber balloon scent.

You’ll also see all other other dots moving away from you. You might even think you’re at the center of the expansion of the balloon. And then if you jumped to any other dot, you’d see the same thing. Just smelly dots, all racing away from you.

Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.
Expansion of the Universe. Image credit: Eugenio Bianchi, Carlo Rovelli & Rocky Kolb.

Now a lesser being would get all caught up thinking about the fact that the balloon is a three-dimensional object, and the center of the expansion is actually at the middle of the balloon. But you’re a 2D creature. You can’t comprehend anything but the surface of the balloon. That and the funky smell.

Now take that concept and scale it up one more dimension. As a three-dimensional creature trapped within a three-dimensional Universe witnessing it stretching out three dimensions. Every galaxy is moving away from you. But if you travel to any other galaxy, it looks like all the other galaxies are moving away from them.

Could a four-dimensional being find the center of the expansion, the place where the Big Bang happened? Probably. 4D beings are cool like that. But then, a 5D being would probably laugh at their simplistic 4D view of the Universe, with their quaint Klein bottles and rustic hypercubes. Suck it 4D jerks, they’d say, and then they’d trap them in their 5D lockers for the entirety of recess until the janitor heard the banging and let them out.

And don’t get me started on those 11D jerks. Those guys are awful, and they really think they’re better than everyone else. They’re like Greg Marmand from Omega House but with 8 more dimensions of nose to look down at you across.

So, where did the Big Bang happen? It happened everywhere. All places formed in the Big Bang – I mean – Big Stretch, and they’ve been moving away from each other for 13.8 billion years. There’s no one place you can point to and say: the Big Bang happened there.But you can be totally obnoxious and point to anywhere, and say the Big Bang happened there. Since the Big Bang happened everywhere, it happened in your hometown. Tell us where you’re from in the comments below.