Could our Universe be Someone’s Chemistry Project?

It is a pivotal time for astrophysicists, cosmologists, and philosophers alike. In the coming years, next-generation space and ground-based telescopes will come online that will use cutting-edge technology and machine learning to probe the deepest depths of the cosmos. What they find there, with any luck, will allow scientists to address some of the most enduring questions about the origins of life and the Universe itself.

Alas, one question that we may never be able to answer is the most pressing of all: if the Universe was conceived in a Big Bang, what was here before that? According to a new op-ed by Prof. Abraham Loeb (which recently appeared in Scientific American), the answer may be stranger than even the most “exotic” explanations. As he argued, the cosmos as we know it may be a “baby Universe” that was created by an advanced technological civilization in a lab!

Continue reading “Could our Universe be Someone’s Chemistry Project?”

Is the Universe Fine-Tuned for Life?

For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “Fine-Tuned Universe” argument, suggests that the occurrence of life in the Universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here!

But can this really be the case, or is it possible that life can emerge under different physical constants, and we just don’t know it? This question was recently tackled by Luke A. Barnes, a postdoctoral researcher at the Sidney Institute for Astronomy (SIA) in Australia. In his recent book, A Fortunate Universe: Life in a Finely Tuned Cosmos, he and Sydney astrophysics professor Geraint F. Lewis argued that a fine-tuned Universe makes sense from a physics standpoint.

Continue reading “Is the Universe Fine-Tuned for Life?”

Using Quasars as a New Standard Candle to Define Distance


A new study shows a way to use quasars to gauge distance in the early Universe.

The simple question of ‘how far?’ gets at the heart of the history of modern astronomy. Looking out across our galactic backyard into the primordial Universe, different yardsticks—often referred to as ‘standard candles’ —are used to gauge various distances, from near to far.

Continue reading “Using Quasars as a New Standard Candle to Define Distance”

Cosmic Dawn Holds the Answers to Many of Astronomy’s Greatest Questions

Thanks to the most advanced telescopes, astronomers today can see what objects looked like 13 billion years ago, roughly 800 million years after the Big Bang. Unfortunately, they are still unable to pierce the veil of the cosmic Dark Ages, a period that lasted from 370,000 to 1 billion years after the Big Bang, where the Universe was shrowded with light-obscuring neutral hydrogen. Because of this, our telescopes cannot see when the first stars and galaxies formed – ca., 100 to 500 million years after the Big Bang.

This period is known as the Cosmic Dawn and represents the “final frontier” of cosmological surveys to astronomers. This November, NASA’s next-generation James Webb Space Telescope (JWST) will finally launch to space. Thanks to its sensitivity and advanced infrared optics, Webb will be the first observatory capable of witnessing the birth of galaxies. According to a new study from the Université de Genève, Switzerland, the ability to see the Cosmic Dawn will provide answers to today’s greatest cosmological mysteries.

Continue reading “Cosmic Dawn Holds the Answers to Many of Astronomy’s Greatest Questions”

A Dark Matter map of our Local Cosmic Neighborhood

Since it was first theorized in the 1970s, astrophysicists and cosmologists have done their best to resolve the mystery that is Dark Matter. This invisible mass is believed to make up 85% of the matter in the Universe and accounts for 27% of its mass-energy density. But more than that, it also provides the large-scale skeletal structure of the Universe (the cosmic web), which dictates the motions of galaxies and material because of its gravitational influence.

Unfortunately, the mysterious nature of Dark Matter means that astronomers cannot study it directly, thus prevented them from measuring its distribution. However, it is possible to infer its distribution based on the observable influence its gravity has on local galaxies and other celestial objects. Using cutting-edge machine-learning techniques, a team of Korean-American astrophysicists was able to produce the most detailed map yet of the local Universe that shows what the “cosmic web” looks like.

Continue reading “A Dark Matter map of our Local Cosmic Neighborhood”

What Happened Moments After the Big Bang?

It’s often said that in its earliest moments the universe was in a hot, dense state. While that’s a reasonably accurate description, it’s also quite vague. What exactly was it that was hot and dense, and what state was it in? Answering that question takes both complex theoretical modeling and high-energy experiments in particle physics. But as a recent study shows, we are learning quite a bit.

Continue reading “What Happened Moments After the Big Bang?”

Simulating the Universe a Trillionth of a Second After the Big Bang

The Big Bang remains the best way to explain what happened at the beginning of the Universe.   However, the incredible energies flowing during the early part of the bang are almost incomprehensive to our everyday experience.  Luckily, computers aren’t so attached to normal human ways of thinking and have long been used to model the early universe right after the Bang.  Now, a team from the University of Göttingen have created the most comprehensive model of what exactly happened in that very early stage of the universe – one trillionth of a second after the Big Bang.

Continue reading “Simulating the Universe a Trillionth of a Second After the Big Bang”

Astronomers set a new Record and Find the Farthest Galaxy. Its Light Took 13.4 Billion Years to Reach us

Since time immemorial, philosophers and scholars have contemplated the beginning of time and even tried to determine when all things began. It’s only been in the age of modern astronomy that we’ve come close to answering that question with a fair degree of certainty. According to the most widely-accepted cosmological models, the Universe began with the Bang Bang roughly 13.8 billion years ago.

Even so, astronomers are still uncertain about what the early Universe looked like since this period coincided with the cosmic “Dark Ages.” Therefore, astronomers keep pushing the limits of their instruments to see when the earliest galaxies formed. Thanks to new research by an international team of astronomers, the oldest and most distant galaxy observed in our Universe to date (GN-z11) has been identified!

Continue reading “Astronomers set a new Record and Find the Farthest Galaxy. Its Light Took 13.4 Billion Years to Reach us”

Next Generation Gravitational Wave Detectors Should be Able to see the Primordial Waves From the Big Bang

Gravitational-wave astronomy is still in its youth. Because of this, the gravitational waves we can observe come from powerful cataclysmic events. Black holes consuming each other in a violent chirp of spacetime, or neutron stars colliding in a tremendous explosion. Soon we might be able to observe the gravitational waves of supernovae, or supermassive black holes merging billions of light-years away. But underneath the cacophony is a very different gravitational wave. But if we can detect them, they will help us solve one of the deepest cosmological mysteries.

Continue reading “Next Generation Gravitational Wave Detectors Should be Able to see the Primordial Waves From the Big Bang”

How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech

In the past few decades, astronomers have been able to look farther into the Universe (and also back in time), almost to the very beginnings of the Universe. In so doing, they’ve learned a great deal about some of the earliest galaxies in the Universe and their subsequent evolution. However, there are still some things that are still off-limits, like when galaxies with supermassive black holes (SMBHs) and massive jets first appeared.

According to recent studies from the International School for Advanced Studies (SISSA) and a team of astronomers from Japan and Taiwan provide new insight on how supermassive black holes began forming just 800 million years after the Big Bang, and relativistic jets less than 2 billion years after. These results are part of a growing case that shows how massive objects in our Universe formed sooner than we thought.

Continue reading “How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?”