A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal

The JWST has the power to see the most ancient galaxies in the Universe, as shown in this image of its first deep field. Now, astrophysicists have found carbon in one of these ancient galaxies. Image Credit: NASA, ESA, CSA, and STScI

Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?

Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”

Asteroids Crashing Into Dead Stars are Helping Explain Where the Universe’s Missing Lithium Went

An artist's illustration of an asteroid shower on the Earth-Moon system. Image Credit: Murayama/Osaka Univ.

What happened to all the lithium? The question has stumped astronomers for decades. While cosmologists have successfully predicted the abundance of the other light elements from the Big Bang, lithium has always come up short. Now, a team of astronomers may have found the reason: lithium-rich asteroids are smashing into white dwarves.

Continue reading “Asteroids Crashing Into Dead Stars are Helping Explain Where the Universe’s Missing Lithium Went”

Did Neutrinos Stop The Early Universe From Annihilating Itself?

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

We can create matter from energy in the lab. Particle accelerators do this all the time. When we do, half of what is created is matter and the other half antimatter. There is a symmetry in physics that requires matter and antimatter to appear in equal amounts. But when we look around the universe, what we see is matter. So how did the big bang create all the matter we see without creating an equal amount of antimatter? The answer could be neutrinos.

Continue reading “Did Neutrinos Stop The Early Universe From Annihilating Itself?”

The First Molecule that was Possible in the Universe has been Seen in Space

Image of planetary nebula NGC 7027 with illustration of helium hydride molecules. In this planetary nebula, SOFIA detected helium hydride, a combination of helium (red) and hydrogen (blue), which was the first type of molecule to ever form in the early universe. This is the first time helium hydride has been found in the modern universe. Credits: NASA/ESA/Hubble Processing: Judy Schmidt
Image of planetary nebula NGC 7027 with illustration of helium hydride molecules. In this planetary nebula, SOFIA detected helium hydride, a combination of helium (red) and hydrogen (blue), which was the first type of molecule to ever form in the early universe. This is the first time helium hydride has been found in the modern universe. Credits: NASA/ESA/Hubble Processing: Judy Schmidt

It takes a rich and diverse set of complex molecules for things like stars, galaxies, planets and lifeforms like us to exist. But before humans and all the complex molecules we’re made of could exist, there had to be that first primordial molecule that started a long chain of chemical events that led to everything you see around you today.

Though it’s been long theorized to exist, the lack of observational evidence for that molecule was problematic for scientists. Now they’ve found it and those scientists can rest easy. Their predictive theory wins!

Continue reading “The First Molecule that was Possible in the Universe has been Seen in Space”

Who Discovered Helium?

Small helium white dwarfs can be caused by a binary partner (NASA)

Scientists have understood for some time that the most abundant elements in the Universe are simple gases like hydrogen and helium. These make up the vast majority of its observable mass, dwarfing all the heavier elements combined (and by a wide margin). And between the two, helium is the second lightest and second most abundant element, being present in about 24% of observable Universe’s elemental mass.

Whereas we tend to think of Helium as the hilarious gas that does strange things to your voice and allows balloons to float, it is actually a crucial part of our existence. In addition to being a key component of stars, helium is also a major constituent in gas giants. This is due in part to its very high nuclear binding energy, plus the fact that is produced by both nuclear fusion and radioactive decay. And yet, scientists have only been aware of its existence since the late 19th century.

Continue reading “Who Discovered Helium?”