What is the Aurora Australis?

Aurora Australis over the elevated station at Amundsen-Scott South Pole Station, Antarctica. Credit: Calee Allen, National Science Foundation

Aurora australis (also known as the southern lights, and southern polar lights) is the southern hemisphere counterpart to the aurora borealis. In the sky, an aurora australis takes the shape of a curtain of light, or a sheet, or a diffuse glow; it most often is green, sometimes red, and occasionally other colors too.

Like its northern sibling, the aurora australis is strongest in an oval centered on the south magnetic pole. This is because they are the result of collisions between energetic electrons (sometimes also protons) and atoms and molecules in the upper atmosphere … and the electrons get their high energies by being accelerated by solar wind magnetic fields and the Earth’s magnetic field (the motions are complicated, but essentially the electrons spiral around the Earth’s magnetic field lines and ‘touch down’ near to where those lines become vertical).

So by far the best place to see aurorae in the southern hemisphere is Antarctica! Oh, and at night too. When the solar cycle is near its maximum, aurora australis are sometimes visible in New Zealand (especially the South Island), southern Australia (especially Tasmania), and southern Chile and Argentina (sometimes in South Africa too).

About the colors: the physics is similar to what make a flame orange-yellow when salt is added to it (i.e. specific atomic transitions in sodium atoms); green and red come from atomic oxygen; nitrogen ions and molecules make some pinkish-reds and blue-violet; and so on.

How high are aurorae? Typically 100 to 300 km (this is where green is usually seen, with red at the top), but sometimes as high as 500 km, and as low as 80 km (this requires particularly energetic particles, to penetrate so deep; if you see purple, the aurora is likely to be this low).

There’s a good aurora FAQ at this University of Alaska Fairbanks’ Geophysical Institute site (though it, naturally, concentrates on the borealis!).

Aurorae on other planets? Well, as there are strong magnetic fields plus (not so strong) solar wind plus (really deep) atmosphere on Jupiter and Saturn, they have spectacular aurorae, in rings around their magnetic poles (which are closer to their rotation poles than Earth’s are). Aurorae have also been imaged on Venus, Mars, Uranus, Neptune, and even Io (atmosphere? solar wind? magnetic fields? sure, but very different than on planets).

Some Universe Today stories on aurorae: Aurora Australis at the South Pole, Aurora Reports from Around the World, Northern & Southern Aurorae Are Siblings, But Not Twins, Chandra Looks at the Earth’s Aurora, First Aurora Seen on Mars, and Saturn’s “Dualing” Aurorae.

What is the Aurora Borealis?

Aurora from 2002 in Poker Flats, Alaska. Credit: Dr. Scott Bounds

[/caption]
The aurora (plural aurorae) borealis has many other names: northern lights, northern polar lights, polar lights, and more. An aurora borealis is light seen in the sky, nearly always at night, in the northern hemisphere, commonly green but also red and (rarely) other colors; often in the shape of curtains, sheets, or a diffuse glow (when seen from the ground). Northern lights are most often seen at high latitudes – Alaska, Canada, northern Scandinavia, Greenland, Siberia, and Iceland – and during maxima in the solar cycle.

Aurora australis – southern lights – is the corresponding southern hemisphere phenomenon.

Seeing a bright auroral display may be on your list of ‘things to see before I die’! Yep, they are nature’s light show par excellence.

Aurora borealis occur in the Earth’s ionosphere, and result from collisions between energetic electrons (sometimes also protons, and even heavier charged particles) and atoms and molecules in the upper atmosphere. The ultimate origin of the energy which powers the aurora borealis is the Sun – via the solar wind – and the Earth’s magnetic field. Interactions between the solar wind (which carries its own tangled magnetic fields) and the Earth’s magnetic field may cause electrons (and other particles) to be trapped and accelerated; those particles which do not escape ‘downstream’ to the magnetic tail ‘touch down’ in the atmosphere, close to the north magnetic pole.

The different colors come from different atoms or ions; green and red from atomic oxygen, nitrogen ions and molecules make some pinkish-reds and blue-violet; purple is the appearance of combined colors from nitrogen ions and helium; neon produces the very rare orange. The ionosphere is home to most aurorae borealis, with 100-300 km being typical (this is where green is usually seen, with red at the top); however, some particularly energetic particles penetrate much deeper into the atmosphere, down to perhaps 80 km or lower (purple often comes from here).

Viewed from space, when the northern lights are intense they appear as a ring (an oval actually), the auroral zone, with the north magnetic pole near the center.

The University of Alaska Fairbanks’ Geophysical Institute has a good FAQ on the aurora borealis.

Magnetic fields plus solar wind … so you’d expect aurorae on Jupiter and Saturn, right? And auroral displays around the magnetic poles of these planets are now well documented. Aurorae have also been imaged on Venus, Mars, Uranus, Neptune, and even Io.

Some Universe Today stories on aurorae – borealis, australis, … and extra-terrestrial: What are the Northern Lights?, Aurora Reports from Around the World, Behind the Power and Beauty of the Northern Lights, Northern & Southern Aurorae Are Siblings, But Not Twins, Two Rockets Fly Through Auroral Arc, Chandra Looks at the Earth’s Aurora, First Aurora Seen on Mars, and Saturn’s “Dualing” Aurorae.

Branson Wants to Fly Space Tourists into the Northern Lights

aurora_iss.thumbnail.jpg

For his next big plan for the private space industry, Richard Branson is thinking up new ways to excite affluent space tourists: flying them into the biggest lightshow on Earth, the Aurora Borealis. Although the New Mexico Virgin Galactic Spaceport isn’t scheduled for completion until 2010, the British entrepreneur is already planning his next project intended for cruises into the spectacular space phenomenon from an Arctic launchpad.

Located in the far north of Sweden (in the Lapland province), the small town of Kiruna has a long history of space observation and rocket launches. The Arctic location provides the town with unrivalled views of the Aurora Borealis as it erupts overhead. The Auroral lightshow is generated by atmospheric reactions to impacting solar wind particles as they channel along the Earth’s magnetic field and down into the thickening atmospheric gases.

Once a view exclusive only to sounding rockets, this awe inspiring sight may in the future be seen from the inside, and above, by fee-paying space tourists as they are launched into space from a new spaceport, on the site of an existing base called Esrange. Although launching humans into an active aurora holds little scientific interest (if it did, it would have probably been done by now), it does pose some prudent health and safety questions. As Dr Olle Norberg, Esrange’s director, confidently states: “Is there a build-up of charge on the spacecraft? What is the radiation dose that you would receive? Those studies came out saying it is safe to do this.” Phew, that’s a relief.

The chance to actually be inside this magnificent display of light will be an incredible selling point for Virgin Galactic and their SpaceShipTwo flights. As if going into space were not enough, you can see and fly through the atmosphere at it’s most magnificent too.

Source: The Guardian Unlimited