Ions Surf Through Jupiter’s Magnetic Field, Triggering its Auroras

Auroras come in many shapes and sizes.  Jupiter is well known for its spectacular complement of bright polar lights, which also have the distinction of appearing in the X-ray band.  These auroras are also extreme power sources, emitting almost a gigawatt of energy in a few minutes. But what exactly causes them has been a mystery for the last 40 years.  Now, a team used data from a combination of satellites to identify what is causing these powerful emissions.  The answer appears to be charged ions surfing on a kind of wave.

Continue reading “Ions Surf Through Jupiter’s Magnetic Field, Triggering its Auroras”

Uranus X-Rays are Probably Reflected Sunlight, but There Could be Another Source as Well

X-rays offer a unique insight into the astronomical world.  Invisible to the naked eye, most commonly they are thought of as the semi-dangerous source of medical scans.  However, X-ray observatories, like the Chandra X-ray Observatory are capable of seeing astronomical features that no other telescope can.  Recently scientists found some of those X-rays coming from a relatively unexpected source – Uranus.

Continue reading “Uranus X-Rays are Probably Reflected Sunlight, but There Could be Another Source as Well”

Even Comets Can Have Auroras. Comet 67P/Churyumov-Gerasimenko Does

The ESA’s Rosetta mission to Comet 67P/Churyumov-Gerasimenko ended four years ago. On September 30th 2016 the spacecraft was directed into a controlled impact with the comet, putting an end to its 12.5 year mission. Scientists are still working with all its data and making new discoveries.

A new study based on Rosetta data shows that Comet 67P has its own aurora.

Continue reading “Even Comets Can Have Auroras. Comet 67P/Churyumov-Gerasimenko Does”

Time-Lapse Video Reveals 10 Years of the Sun’s Life Crushed into One Stellar Hour

I forget the Sun is a star.

I think we all do sometimes. It’s easy to take for granted. The Sun is that glowing thing that rises in the morning and sets in the evening that we don’t generally pay attention to as we go about our day. However, there are these rare moments when we’re reminded that the Sun is truly a STAR – a titanic living sphere of hydrogen smashing plasma a million times the volume of Earth. One of those rare moments for me was standing in the shadow of the 2017 solar eclipse. We had driven down from Vancouver to Madras, Oregon to watch this astronomical freak of nature. A moon hundreds of times smaller than the Sun, but hundreds of times closer, covers the face of the Sun for the majesty of a STAR to be revealed; the fiery maelstrom of the Sun’s atmosphere visible to the naked eye.

Matt Eclipse 2.jpg
Sun’s corona visible to the naked eye in the shadow of the Moon during the 2017 Solar Eclipse as seen from Madras, Oregon c. Paul Muzzin / Matthew Cimone
Continue reading “Time-Lapse Video Reveals 10 Years of the Sun’s Life Crushed into One Stellar Hour”

Meet Steve, A Most Peculiar Aurora

Nicknamed Steve, this unusual aurora feature is a 15.5-mile-wide (25 km) ribbon of hot gas flowing westward at about 13,300 mph, more than 600 times faster than the surrounding air. The photo was taken last fall. Copyright: Instagram.com/davemarkelphoto

This remarkable image was captured last fall by Dave Markel, a photographer based in Kamloops, British Columbia. Later, aurora researcher Eric Donovan of the University of Calgary, discovered Markel’s strange ribbon of light while looking through photos of the northern lights on social media. Knowing he’d found something unusual, Donovan worked sifted through data from the European Space Agency’s Swarm magnetic field mission to try and understand the nature of the phenomenon.

Swarm is ESA’s first constellation of Earth observation satellites designed to measure the magnetic signals from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere, providing data that will allow scientists to study the complexities of our protective magnetic field. Credit: ESA/AOES Medialab

Launched on 22 November 2013, three identical Swarm satellites orbit the Earth measuring the magnetic fields that stem from Earth’s core, mantle, crust and oceans, as well as from the ionosphere and magnetosphere. Speaking at the recent Swarm science meeting in Canada, Donovan explained how this new finding couldn’t have happened 20 years ago when he started to study the aurora.

A beautiful aurora featuring green arcs near the horizon and many parallel rays lights up the northern sky last October. A small meteor appears to the right of center. Credit: Bob King

While the shimmering, eerie, light display of auroras might be beautiful and captivating, they’re also a visual reminder that Earth is connected electrically and magnetically to the Sun. The more we know about the aurora, the greater our understanding of that connection and how it affects everything from satellites to power grids to electrically-induced corrosion of oil pipelines.

“In 1997 we had just one all-sky imager in North America to observe the aurora borealis from the ground,” said Prof. Donovan.  “Back then we would be lucky if we got one photograph a night of the aurora taken from the ground that coincides with an observation from a satellite. Now we have many more all-sky imagers and satellite missions like Swarm so we get more than 100 a night.”

The Suomi NPP satellite photographed this view of the aurora on December 22, 2016, when the northern lights stretched across northern Canada. Credit: NASA Earth Observatory image by Jesse Allen / Suomi National Polar-orbiting Partnership. Colorized and labeled by the author

And that’s where sharing photos and observations on social media can play an important role. Sites like the Great Lakes Aurora Hunters and Aurorasaurus serve as clearinghouses for observers to report auroral displays.  Aurorasaurus connects citizen scientists to scientists and searches Twitter feeds for instances of the word ‘aurora,’ so skywatchers and scientists alike know the real-time extent of the auroral oval.

At a recent talk, Prof. Donovan met members the popular Facebook group Alberta Aurora Chasers. Looking at their photos, he came across the purple streak Markel and others had photographed which they’d been referring to as a “proton arc.” But such a feature, caused by hydrogen emission in the upper atmosphere, is too faint to be seen with the naked eye. Donovan knew it was something else, but what?Someone suggested “Steve.” Hey, why not?

Aurora researchers now us a network of all-sky cameras and multiple satellites to keep track of the ever-shifting aurora. Click to see the video. Credit: University of Calgary

While the group kept watch for the Steve’s return,  Donovan and colleagues looked through data from the Swarm mission and his network of all-sky cameras. Before long he was able to match a ground sighting of streak to an overpass of one of the three Swarm satellites.

“As the satellite flew straight though Steve, data from the electric field instrument showed very clear changes,” said Donovan.

“The temperature 186 miles (300 km) above Earth’s surface jumped by 3000°C and the data revealed a 15.5-mile-wide (25 km) ribbon of gas flowing westwards at about 6 km/second compared to a speed of about 10 meters/second either side of the ribbon. A friend of mine compared it to a fluorescent light without the glass.

Little did I know I’d met Steve back on May 18, 1990 in this remarkable, narrow arc that stretched from the northwestern horizon to the southeastern. To the eye, a “wind” of vague forms pulsed through the arc. The Big Dipper stands vertically at right. Credit: Bob King

It turns out that these high-speed “rivers” of glowing auroral gas are much more common than we’d thought, and that in no small measure because of the efforts of an army of skywatchers and aurora photographers who keep watch for that telltale green glow in the northern sky.

I spoke to Steve’s keeper, Dave Markel, via e-mail yesterday and he described what the arc looked like to his eyes:

“It’s similar to the image just not as intense. It looks like a massive contrail moving rapidly across the sky. This one lasted almost an hour and ran in an arc almost perfectly east to west. I was directly below it but often there are green pickets (parallel streaks of aurora) rising above the streak.”

This is the same May 18, 1990 streak as above but the eastern half. The bright star Arcturus is visible at upper right. Wish I’d had a fisheye! Credit: Bob King

I know whereof Dave speaks because thanks to his photo and Prof. Donovan’s research, I realize I’ve seen and photographed Steve, too! In decades of aurora watching I’ve only seen this rare streak a handful of times. On most of those occasions, there was either no other aurora visible or minor activity in the northern sky. The narrow arc, which lasted for an hour or so, pulsed and flowed with light and occasionally, Markel’s “pickets” were visible. Back in May 1990 I had a camera on hand to get a picture.

Goes to show, you never know what you might see when you poke your head out for a look. Keep a lookout when aurora’s expected and maybe you’ll get to meet Steve, too.

Hubble Sees Intense Auroras on Uranus

This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble — one for the ring and one for the auroras. These auroras occurred in the planet’s southern latitudes near the planet’s south magnetic pole. Like Jupiter and Saturn, hydrogen atoms excited by blasts of the solar wind are the cause for the glowing white patches seen in both photos. Credit: NASA/ESA

Earth doesn’t have a corner on auroras. Venus, Mars, Jupiter, Saturn, Uranus and Neptune have their own distinctive versions. Jupiter’s are massive and powerful; Martian auroras patchy and weak.

Auroras are caused by streams of charged particles like electrons that originate with solar winds and in the case of Jupiter, volcanic gases spewed by the moon Io. Whether solar particles or volcanic sulfur, the material gets caught in powerful magnetic fields surrounding a planet and channeled into the upper atmosphere. There, the particles interact with atmospheric gases such as oxygen or nitrogen and spectacular bursts of light result. With Jupiter, Saturn and Uranus excited hydrogen is responsible for the show.

These composite images show Uranian auroras, which scientists caught glimpses of through the Hubble in 2011. In the left image, you can clearly see how the aurora stands high above the planet’s denser atmosphere. These photos combine Hubble pictures made in UV and visible light by Hubble with photos of Uranus’ disk from the Voyager 2 and a third image of the rings from the Gemini Observatory in Hawaii and Chile. The auroras are located close to the planet’s north magnetic pole, making these northern lights.
Credit: NASA, ESA, and L. Lamy (Observatory of Paris, CNRS, CNES)

Auroras on Earth, Jupiter and Saturn have been well-studied but not so on the ice-giant planet Uranus. In 2011, the Hubble Space Telescope took the first-ever image of the auroras on Uranus. Then in 2012 and 2014 a team from the Paris Observatory took a second look at the auroras in ultraviolet light using the Space Telescope Imaging Spectrograph (STIS) installed on Hubble.

From left: Auroras on Earth (southern auroral oval is seen over Antarctica), Jupiter and Saturn. In each case, the rings of permanent aurora are centered on their planets’ magnetic poles which aren’t too far from the geographic poles, unlike topsy-turvy Uranus. Credit: NASA

Two powerful bursts of solar wind traveling from the sun to Uranus stoked the most intense auroras ever observed on the planet in those years. By watching the auroras over time, the team discovered that these powerful shimmering regions rotate with the planet. They also re-discovered Uranus’ long-lost magnetic poles, which were lost shortly after their discovery by Voyager 2 in 1986 due to uncertainties in measurements and the fact that the planet’s surface is practically featureless. Imagine trying to find the north and south poles of a cue ball. Yeah, something like that.

In both photos, the auroras look like glowing dots or patchy spots. Because Uranus’ magnetic field is inclined 59° to its spin axis (remember, this is the planet that rotates on its side!) , the auroral spots appear far from the planet’s north and south geographic poles. They almost look random but of course they’re not. In 2011, the spots lie close to the planet’s north magnetic pole, and in 2012 and 2014, near the south magnetic pole — just like auroras on Earth.

An auroral display can last for hours here on the home planet, but in the case of the 2011 Uranian lights, they pulsed for just minutes before fading away.

Want to know more? Read the team’s findings in detail here.

NASA Fires a Rocket into the Northern Lights, for Science!

Not only is it aurora season in Alaska, its sounding rocket season! NASA started launching a series of five sounding rockets from the Poker Flat Research Range in Alaska to study the aurora. The first of these rockets for this year, a Black Brant IX, was launched in the early morning hours of February 22, 2017.

The instrument on board was an Ionospheric Structuring: In Situ and Groundbased Low Altitude StudieS (ISINGLASS) instrumented payload, which studies the structure of an aurora.

The Black Brant IX sounding rocket carried instruments to an altitude of 225 miles as part of the Ionospheric Structuring: In Situ and Groundbased Low Altitude StudieS or ISINGLASS mission. Credit: NASA/Terry Zaperach.

This is not the first sounding rocket flight from Poker Flats to launch into an aurora. Starting in 2009, this research has been taking place to help refine current models of aurora structure, and provide insight on the high-frequency waves and turbulence generated by aurorae. This helps us to better understand the space weather caused by the charged particles that come from the Sun and how it impacts Earth’s lower atmosphere and ionosphere.

“The visible light produced in the atmosphere as aurora is the last step of a chain of processes connecting the solar wind to the atmosphere,” said Kristina Lynch, ISINGLASS principal investigator from Dartmouth College. “We are seeking to understand what structure in these visible signatures can tell us about the electrodynamics of processes higher up.”

While humans don’t feel any of these effects directly, the electronic systems in our satellites do, and as our reliance on satellite technologies grow, researchers want to have all the data they can to help avert problems than can be caused by space weather.

The rocket sent a stream of real-time data back before landing about 200 miles downrange shortly after the launch.

The launch window for the remaining rockets runs through March 3. ISINGLASS will fly into what is known as a dynamic Alfenic curtain, which is a form of electromagnetic energy thought to be a key driver of “discrete” aurora – the typical, well-defined band of shimmering lights about six miles thick and stretching east to west from horizon to horizon.

NASA says that the five launches in the 2017 sounding rocket campaign will add to our body of information about this space through which our spacecraft and astronauts travel near Earth. By studying the interaction of the sun and its solar wind with Earth’s upper atmosphere, scientists are also able to apply the knowledge to other planetary bodies — helping us understand these interactions throughout the universe as well.

Here’s an infographic from NASA about the 2017 sounding rocket launches from Poker Flats:

Read more: NASA

What Was the Carrington Event?

What Was The Carrington Event?

Isn’t modern society great? With all this technology surrounding us in all directions. It’s like a cocoon of sweet, fluffy silicon. There are chips in my fitness tracker, my bluetooth headset, mobile phone, car keys and that’s just on my body.

At all times in the Cain household, there dozens of internet devices connected to my wifi router. I’m not sure how we got to the point, but there’s one thing I know for sure, more is better. If I could use two smartphones at the same time, I totally would.

And I’m sure you agree, that without all this technology, life would be a pale shadow of its current glory. Without these devices, we’d have to actually interact with each other. Maybe enjoy the beauty of nature, or something boring like that.

It turns out, that terrible burning orb in the sky, the Sun, is fully willing and capable of bricking our precious technology. It’s done so in the past, and it’s likely to take a swipe at us in the future.

I’m talking about solar storms, of course, tremendous blasts of particles and radiation from the Sun which can interact with the Earth’s magnetosphere and overwhelm anything with a wire.

Credit: NASA

In fact, we got a sneak preview of this back in 1859, when a massive solar storm engulfed the Earth and ruined our old timey technology. It was known as the Carrington Event.

Follow your imagination back to Thursday, September 1st, 1859. This was squarely in the middle of the Victorian age.

And not the awesome, fictional Steampunk Victorian age where spectacled gentleman and ladies of adventure plied the skies in their steam-powered brass dirigibles.

No, it was the regular crappy Victorian age of cholera and child labor. Technology was making huge leaps and bounds, however, and the first telegraph lines and electrical grids were getting laid down.

Imagine a really primitive version of today’s electrical grid and internet.

On that fateful morning, the British astronomer Richard Carrington turned his solar telescope to the Sun, and was amazed at the huge sunspot complex staring back at him. So impressed that he drew this picture of it.

Richard Carrington’s sketch of the sunspots seen just before the 1859 Carrington event.

While he was observing the sunspot, Carrington noticed it flash brightly, right in his telescope, becoming a large kidney-shaped bright white flare.

Carrington realized he was seeing unprecedented activity on the surface of the Sun. Within a minute, the activity died down and faded away.

And then about 5 minutes later. Aurora activity erupted across the entire planet. We’re not talking about those rare Northern Lights enjoyed by the Alaskans, Canadians and Northern Europeans in the audience. We’re talking about everyone, everywhere on Earth. Even in the tropics.

In fact, the brilliant auroras were so bright you could read a book to them.

The beautiful night time auroras was just one effect from the monster solar flare. The other impact was that telegraph lines and electrical grids were overwhelmed by the electricity pushed through their wires. Operators got electrical shocks from their telegraph machines, and the telegraph paper lit on fire.

What happened? The most powerful solar flare ever observed is what happened.

In this image, the Solar Dynamics Observatory (SDO) captured an X1.2 class solar flare, peaking on May 15, 2013. Credit: NASA/SDO

A solar flare occurs because the Sun’s magnetic field lines can get tangled up in the solar atmosphere. In a moment, the magnetic fields reorganize themselves, and a huge wave of particles and radiation is released.

Flares happen in three stages. First, you get the precursor stage, with a blast of soft X-ray radiation. This is followed by the impulsive stage, where protons and electrons are accelerated off the surface of the Sun. And finally, the decay stage, with another burp of X-rays as the flare dies down.

These stages can happen in just a few seconds or drag out over an hour.

Remember those particles hurled off into space? They take several hours or a few days to reach Earth and interact with our planet’s protective magnetosphere, and then we get to see beautiful auroras in the sky.

This geomagnetic storm causes the Earth’s magnetosphere to jiggle around, which drives charges through wires back and forth, burning out circuits, killing satellites, overloading electrical grids.

Back in 1859, this wasn’t a huge deal, when our quaint technology hadn’t progressed beyond the occasional telegraph tower.

Today, our entire civilization depends on wires. There are wires in the hundreds of satellites flying overhead that we depend on for communications and navigation. Our homes and businesses are connected by an enormous electrical grid. Airplanes, cars, smartphones, this camera I’m using.

Credit: Wikimedia Commons.

Everything is electronic, or controlled by electronics.

Think it can’t happen? We got a sneak preview back in March, 1989 when a much smaller geomagnetic storm crashed into the Earth. People as far south as Florida and Cuba could see auroras in the sky, while North America’s entire interconnected electrical grid groaned under the strain.

The Canadian province of Quebec’s electrical grid wasn’t able to handle the load and went entirely offline. For 12 hours, in the freezing Quebec winter, almost the entire province was without power. I’m telling you, that place gets cold, so this was really bad timing.

Satellites went offline, including NASA’s TDRS-1 communication satellite, which suffered 250 separate glitches during the storm.

And on July 23, 2012, a Carrington-class solar superstorm blasted off the Sun, and off into space. Fortunately, it missed the Earth, and we were spared the mayhem.

If a solar storm of that magnitude did strike the Earth, the cleanup might cost $2 trillion, according to a study by the National Academy of Sciences.

The July 23, 2012 CME would have caused a Carrington-like event had it hit Earth. Thankfully for us and our technology, it missed. Credit: NASA’s Goddard Space Flight Center

It’s been 160 years since the Carrington Event, and according to ice core samples, this was the most powerful solar flare over the last 500 years or so. Solar astronomers estimate solar storms like this happen twice a millennium, which means we’re not likely to experience another one in our lifetimes.

But if we do, it’ll cause worldwide destruction of technology and anyone reliant on it. You might want to have a contingency plan with some topic starters when you can’t access the internet for a few days. Locate nearby interesting nature spots to explore and enjoy while you wait for our technological civilization to be rebuilt.

Have you ever seen an aurora in your lifetime? Give me the details of your experience in the comments.