Wow! Asteroid/Dwarf Planet Ceres Once had an Ocean?

In March of 2015, NASA’s Dawn mission arrived around Ceres, a protoplanet that is the largest object in the Asteroid Belt. Along with Vesta, the Dawn mission seeks to characterize the conditions and processes of the early Solar System by studying some of its oldest objects. One thing Dawn has determined since its arrival is that water-bearing minerals are widespread on Ceres, an indication that the protoplanet once had a global ocean.

Naturally, this has raised many questions, such as what happened to this ocean, and could Ceres still have water today? Towards this end, the Dawn mission team recently conducted two studies that shed some light on these questions. Whereas the former used gravity measurements to characterize the interior of the protoplanet, the latter sought to determine its interior structure by studying its topography.

The first study, titled “Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft“, was recently published in the Journal of Geophysical Research. Led by Anton Ermakov, a postdoctoral researcher at JPL, the team also consisted of researchers from the NASA’s Goddard Space Flight Center, the German Aerospace Center, Columbia University, UCLA and MIT.

Ceres. as imaged by the NASA Dawn probe. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Together, the team relied on gravity measurements of the protoplanet, which the Dawn probe has been collecting since it established orbit around Ceres. Using the Deep Space Network to track small changes in the spacecraft’s orbit, Ermakov and his colleagues were able to conduct shape and gravity data measurements of Ceres to determine the internal structure and composition.

What they found was that Ceres shows signs of being geologically active; if not today, than certainly in the recent past. This is indicated by the presence of three craters – Occator, Kerwan and Yalode – and Ceres’ single tall mountain, Ahuna Mons. All of these are associated with “gravity anomalies”, which refers to discrepancies between the way scientists have modeled Ceres’ gravity and what Dawn observed in these four locations.

The team concluded that these four features and other outstanding geological formations, are therefore indications of cryovolcanism or subsurface structures. What’s more, they determined that the crust’s density was relatively low, being closer to that of ice than solid rock.  This, however, was inconsistent with a previous study performed by Dawn guest investigator Michael Bland of the U.S. Geological Survey.

Bland’s study, which was published in Nature Geoscience back in 2016, indicated that ice is not likely to be the dominant component of Ceres strong crust, on a count of it being too soft. Naturally, this raises the question of how the crust could be light as ice in terms of density, but also much stronger. To answer this, the second team attempted to model how Ceres’ surface evolved over time.

Gravity measurements of Ceres, which provided  hints about its internal structure. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Their study, titled “The Interior Structure of Ceres as Revealed by Surface Topography and Gravity“, was published in the journal Earth and Planetary Science Letters. Led by Roger Fu, an assistant professor with the Department of Earth, Atmospheric and Planetary Sciences at MIT, this team consisted of members from Virginia Tech, Caltech, the Southwest Research Institute (SwRI), the US Geological Survey, and the INAF.

Together, they investigated the strength and composition of Ceres’ crust and deeper interior by studying the dwarf planet’s topography. By modeling how the protoplanet’s crust flows, Fu and colleagues determined that it is likely a mixture of ice, salts, rock, and likely clathrate hydrate. This type of structure, which is composed of a gas molecule surrounded by water molecules, is 100 to 1,000 times stronger than water ice.

This high-strength crust, they theorize, could rest on a softer layer that contains some liquid. This would have allowed Ceres’ topography to deform over time, smoothing down features that were once more pronounced. It would also account for its possible ancient ocean, which would have frozen and become bound up with the crust. Nevertheless, some of its water would still exist in a liquid state underneath the surface.

This theory is consistent with several thermal evolution models which were published before the Dawn mission arrived at Ceres. These models contend that Ceres’ interior contains liquid water, similar to what has been found on Jupiter’s moon Europa and Saturn’s moon Enceladus. But in Ceres’ case, this liquid could be what is left over from its ancient ocean rather than the result of present-day geological activity in the interior.

Diagram showing a possible internal structure of Ceres. Credit: NASA/ESA/STScI/A. Feild

Taken together, these studies indicate that Ceres has had a long and turbulent history. While the first study found that Ceres’ crust is a mixture of ice, salts and hydrated materials – which represents most of its ancient ocean – the second study suggests there is a softer layer beneath Ceres’ rigid surface crust, which could be the signature of residual liquid left over from the ocean.

As Julie Castillo-Rogez, the Dawn project scientist at JPL and a co-author on both studies, explained, “More and more, we are learning that Ceres is a complex, dynamic world that may have hosted a lot of liquid water in the past, and may still have some underground.”

On October 19, 2017, NASA announced that the Dawn mission would be extended until its fuel runs out, which is expected to happen in the latter half of 2018. This extension means that the Dawn probe will be in orbit around Ceres as it goes through perihelion in April 2018. At this time, surface ice will start to evaporate to form a transient atmosphere around the body.

During this period and long after, the spacecraft is likely to remain in a stable orbit around Ceres, where it will continue to send back information on this protoplanet/large asteroid. What it teaches us will also go a long way towards informing our understanding of the early Solar System and how it evolved over the past few billion years.

In the future, it is possible that a mission will be sent to Ceres that is capable of landing on its surface and exploring its topography directly. With any luck, future missions will also be able to explore the interior of Ceres, and other “ocean worlds” like Europa and Enceladus, and find out what lurks beneath their icy surfaces!

Further Reading: NASA

Debris Disks Around Stars Could Point the Way to Giant Exoplanets

According to current estimates, there could be as many as 100 billion planets in the Milky Way Galaxy alone. Unfortunately, finding evidence of these planets is tough, time-consuming work. For the most part, astronomers are forced to rely on indirect methods that measure dips in a star’s brightness (the Transit Method) of Doppler measurements of the star’s own motion (the Radial Velocity Method).

Direct imaging is very difficult because of the cancelling effect stars have, where their brightness makes it difficult to spot planets orbiting them. Luckily a new study led by the Infrared Processing and Analysis Center (IPAC) at Caltech has determined that there may be a shortcut to finding exoplanets using direct imaging. The solution, they claim, is to look for systems with a circumstellar debris disk, for they are sure to have at least one giant planet.

The study, titled “A Direct Imaging Survey of Spitzer Detected Debris Disks: Occurrence of Giant Planets in Dusty Systems“, recently appeared in The Astronomical Journal. Tiffany Meshkat, an assistant research scientist at IPAC/Caltech, was the lead author on the study, which she performed while working at NASA’s Jet Propulsion Laboratory as a postdoctoral researcher.

A circumstellar disk of debris around a mature stellar system could indicate the presence of Earth-like planets. Credit: NASA/JPL
Artist’s impression of circumstellar disk of debris around a distant star. Credit: NASA/JPL

For the sake of this study, Dr. Meshkat and her colleagues examined data on 130 different single-star systems with debris disks, which they then compared to 277 stars that do not appear to host disks. These stars were all observed by NASA’s Spitzer Space Telescope and were all relatively young in age (less than 1 billion years). Of these 130 systems, 100 had previously been studied for the sake of finding exoplanets.

Dr. Meshkat and her team then followed up on the remaining 30 systems using data from the W.M. Keck Observatory in Hawaii and the European Southern Observatory’s (ESO) Very Large Telescope (VLT) in Chile. While they did not detect any new planets in these systems, their examinations helped characterize the abundance of planets in systems that had disks.

What they found was that young stars with debris disks are more likely to also have giant exoplanets with wide orbits than those that do not. These planets were also likely to have five times the mass of Jupiter, thus making them “Super-Jupiters”. As Dr. Meshkat explained in a recent NASA press release, this study will be of assistance when it comes time for exoplanet-hunters to select their targets:

“Our research is important for how future missions will plan which stars to observe. Many planets that have been found through direct imaging have been in systems that had debris disks, and now we know the dust could be indicators of undiscovered worlds.”

This artist’s conception shows how collisions between planetesimals can create additional debris. Credit: NASA/JPL-Caltech

This study, which was the largest examination of stars with dusty debris disks, also provided the best evidence to date that giant planets are responsible for keeping debris disks in check. While the research did not directly resolve why the presence of a giant planet would cause debris disks to form, the authors indicate that their results are consistent with predictions that debris disks are the products of giant planets stirring up and causing dust collisions.

In other words, they believe that the gravity of a giant planet would cause planestimals to collide, thus preventing them from forming additional planets. As study co-author Dimitri Mawet, who is also a JPL senior research scientist, explained:

“It’s possible we don’t find small planets in these systems because, early on, these massive bodies destroyed the building blocks of rocky planets, sending them smashing into each other at high speeds instead of gently combining.”

Within the Solar System, the giant planets create debris belts of sorts. For example, between Mars and Jupiter, you have the Main Asteroid Belt, while beyond Neptune lies the Kuiper Belt. Many of the systems examined in this study also have two belts, though they are significantly younger than the Solar System’s own belts – roughly 1 billion years old compared to 4.5 billion years old.

Artist’s impression of Beta Pictoris b. Credit: ESO L. Calçada/N. Risinger (skysurvey.org)

One of the systems examined in the study was Beta Pictoris, a system that has a debris disk, comets, and one confirmed exoplanet. This planet, designated Beta Pictoris b, which has 7 Jupiter masses and orbits the star at a distance of 9 AUs – i.e. nine times the distance between the Earth and the Sun. This system has been directly imaged by astronomers in the past using ground-based telescopes.

Interestingly enough, astronomers predicted the existence of this exoplanet well before it was confirmed, based on the presence and structure of the system’s debris disk. Another system that was studied was HR8799, a system with a debris disk that has two prominent dust belts. In these sorts of systems, the presence of more giant planets is inferred based on the need for these dust belts to be maintained.

This is believed to be case for our own Solar System, where 4 billion years ago, the giant planets diverted passing comets towards the Sun. This resulted in the Late Heavy Bombardment, where the inner planets were subject to countless impacts that are still visible today. Scientists also believe that it was during this period that the migrations of Jupiter, Saturn, Uranus and Neptune deflected dust and small bodies to form the Kuiper Belt and Asteroid Belt.

Dr. Meshkat and her team also noted that the systems they examined contained much more dust than our Solar System, which could be attributable to their differences in age. In the case of systems that are around 1 billion years old, the increased presence of dust could be the result of small bodies that have not yet formed larger bodies colliding. From this, it can be inferred that our Solar System was once much dustier as well.

Artist’s concept of the multi-planet system around HR 8799, initially discovered with Gemini North adaptive optics images. Credit: Gemini Observatory/Lynette Cook”

However, the authors note is also possible that the systems they observed – which have one giant planet and a debris disk – may contain more planets that simply have not been discovered yet. In the end, they concede that more data is needed before these results can be considered conclusive. But in the meantime, this study could serve as an guide as to where exoplanets might be found.

As Karl Stapelfeldt, the chief scientist of NASA’s Exoplanet Exploration Program Office and a co-author on the study, stated:

“By showing astronomers where future missions such as NASA’s James Webb Space Telescope have their best chance to find giant exoplanets, this research paves the way to future discoveries.”

In addition, this study could help inform our own understanding of how the Solar System evolved over the course of billions of years. For some time, astronomers have been debating whether or not planets like Jupiter migrated to their current positions, and how this affected the Solar System’s evolution. And there continues to be debate about how the Main Belt formed (i.e. empty of full).

Last, but not least, it could inform future surveys, letting astronomers know which star systems are developing along the same lines as our own did, billions of years ago. Wherever star systems have debris disks, they an infer the presence of a particularly massive gas giant. And where they have a disk with two prominent dust belts, they can infer that it too will become a system containing many planets and and two belts.

Further Reading: NASA, The Astrophysical Journal

Hubble Spots Unique Object in the Main Asteroid Belt

In 1990, the NASA/ESA Hubble Space Telescope was deployed into Low Earth Orbit (LEO). As one of NASA’s Great Observatories – along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope – this instrument remains one of NASA’s larger and more versatile missions. Even after twenty-seven years of service, Hubble continues to make intriguing discoveries, both within our Solar System and beyond.

The latest discovery was made by a team of international astronomers led by the Max Planck Institute for Solar System Research. Using Hubble, they spotted a unique object in the Main Asteroid Belt – a binary asteroid known as 288P – which also behaves like a comet. According to the team’s study, this binary asteroid experiences sublimation as it nears the Sun, which causes comet-like tails to form.

The study, titled “A Binary Main-Belt Comet“, recently appeared in the scientific journal Nature. The team was led by Jessica Agarwal of the Max Planck Institute for Solar System Research, and included members from the Space Telescope Science Institute, the Lunar and Planetary Laboratory at the University of Arizona, the Johns Hopkins University Applied Physics Laboratory (JHUAPL), and the University of California at Los Angeles.

Using the Hubble telescope, the team first observed 288P in September 2016, when it was making its closest approach to Earth. The images they took revealed that this object was not a single asteroid, but two asteroids of similar size and mass that orbit each other at a distance of about 100 km. Beyond that, the team also noted some ongoing activity in the binary system that was unexpected.

As Jessica Agarwal explained in a Hubble press statement, this makes 288P the first known binary asteroid that is also classified as a main-belt comet. “We detected strong indications of the sublimation of water ice due to the increased solar heating – similar to how the tail of a comet is created,” she said. In addition to being a pleasant surprise, these findings are also highly significant when it comes to the study of the Solar System.

Since only a few objects of this type are known, 288P is an extremely important target for future asteroid studies. The various features of 288P also make it unique among the few known wide asteroid binaries in the Solar System. Basically, other binary asteroids that have been observed orbited closer together, were different in size and mass, had less eccentric orbits, and did not form comet-like tails.

The observed activity of 288P also revealed a great deal about the binary asteroids past. From their observations, the team concluded that 288P has existed as a binary system for the past 5000 years and must have accumulated ice since the earliest periods of the Solar System. As Agarwal explained:

“Surface ice cannot survive in the asteroid belt for the age of the Solar System but can be protected for billions of years by a refractory dust mantle, only a few meters thick… The most probable formation scenario of 288P is a breakup due to fast rotation. After that, the two fragments may have been moved further apart by sublimation torques.”

Image depicting the two areas where most of the asteroids in the Solar System are found: the Main Asteroid Belt and the Trojans. Credit: ESA/Hubble, M. Kornmesser

Naturally, there are many unresolved questions about 288P, most of which stem from its unique behavior. Given that it is so different from other binary asteroids, scientists are forced to wonder if it merely coincidental that it presents such unique properties. And given that it was found largely by chance, it is unlikely that any other binaries that have similar properties will be found anytime soon.

“We need more theoretical and observational work, as well as more objects similar to 288P, to find an answer to this question,” said Agarwal. In the meantime, this unique binary asteroid is sure to provide astronomers with many interesting opportunities to study the origin and evolution of asteroids orbiting between Mars and Jupiter.

In particular, the study of those asteroids that show comet-like activity (aka. main-belt comets) is crucial to our understanding of how the Solar System formed and evolved. According to contrasting theories of its formation, the Asteroid Belt is either populated by planetesimals that failed to become a planet, or began empty and gradually filled with planetesimals over time.

In either case, studying its current population can tell us much about how the planets formed billions of years ago, and how water was distributed throughout the Solar System afterwards. This, in turn, is crucial to determining how and where life began to emerge on Earth, and perhaps elsewhere!

Be sure to check out this animation of the 288P binary asteroid too, courtesy of the ESA and Hubble:

 

Further Reading: Hubble, Nature

Construction Tips from a Type 2 Engineer: Collaboration with Isaac Arthur

Type 2 Civ Tips!

By popular request, Isaac Arthur and I have teamed up again to bring you a vision of the future of human space exploration. This time, we bring you practical construction tips from a pair of Type 2 Civilization engineers.

To make this collaboration even better, we’ve teamed up with two artists, Kevin Gill and Sergio Botero. They’re going to help create some special art, just for this episode, to help show what some of these megaprojects might look like.

I’d also like to congratulate Gannon Huiting for suggesting the topic for this collaboration. We both asked our Patreon communities to brainstorm ideas, and his core idea sparked the idea for the episode. You get one of my precious metal meteorites, which I guarantee will give you a mostly worthless superpower.

We’ll tell you the story of what it took to go from our first tentative steps into space to the vast Solar System spanning civilization we have today. How did we extract energy and resources from the Moon, planets and even gas giants of the Solar System? How did we shift around and dismantle the worlds to provide the raw resources of our civilization?

Lunar Rover Concept. Credit: Sergio Botero

Humanity’s ability to colonize the Solar System was unleashed when we harvested deposits of helium 3 from the Moon. This isotope of helium is rare on Earth, but the constant solar wind from the Sun has deposited a layer across the Moon, though its regolith.

Helium 3 was the best, first energy source we got our hands on, and it changed everything. Although other kinds of fusion reactors can produce more energy with more efficiency, the advantage of helium 3 is that the fusion reaction releases no neutrons. This means you can have a fusion reactor on your starship or on your base with much less shielding.

Multi-dome base being constructed. Credit: ESA/Foster + Partners

We still use helium-3 reactors when living creatures need to be close the reactor, or the ship can’t afford to carry around heavy shielding.

The Helium 3 is found within the first 100 cm of the lunar regolith. Harvesting it started slowly, but in time, our mining machines grew larger, and we stripped this layer completely off the Moon. There are other repositories across the Solar System, in the regolith of Mercury, other moons and asteroids across the Solar System, and in the atmospheres of the giant planets. We later switched to getting our Helium 3 from Uranus and Neptune, but the Moon got everything started.

A huge lunar miner, with astronaut for scale. Credit: Sergio Botero

One of our big problems with building in space was getting raw materials. Just about every place that has the supplies we needed was at the bottom very deep gravity wells which made accessing those materials a lot harder. Asteroid and moons offered us a large supply of material that was not locked inside such deep gravity wells.

These asteroids also gave us a big initial head start on developing space-based infrastructure as they contained a great deal of precious metals that we could bring home to help fund our endeavors.

For all that, the entire Asteroid Belt contains much less material than Earth’s own Moon. The ease of mining and transport on these bodies made them a critical source of raw materials for building up the early Solar Infrastructure and many of them became homes to rotating habitats buried deep inside the asteroid, where millions of people live comfortably shielded from the hazards of space and support themselves mining the asteroid around them.

Artist’s impression of the asteroid belt. Image credit: NASA/JPL-Caltech

These asteroids and moons often contained water in the form of ice, which is vital to creating life-bearing habitats in space, as well as fuel and propellant for many early-era spaceships.

However, even if the entire Asteroid Belt was ice, instead of it being a fairly smaller percent of the mass, that would still only be the approximate mass of Earth’s Oceans. There was a plentiful supply for early efforts but not enough for major terraforming efforts on places like Mars or creating many artificial habitats.

Water is incredibly scarce in the inner Solar System, but becomes more plentiful as we make our way further out, past the Solar System’s Frost Line. Deeper out past the planets we find enough water to make whole planets out of, as hydrogen and oxygen are the first and third most abundant elements in the Universe. Also, for the most part these come in convenient iceberg-sized packages, low enough in mass to have a small gravity well and to be movable.

Mastering the Solar System required moving very large objects in space. For the less massive objects, we could put a big thruster on it, but for the largest projects, such as moving planets with atmospheres (which we’ll get to later in this article), another technique was required.

Concept for a possible gravity tractor. Credit: JPL

To move large objects around, without touching them, you need a Gravity Tractor.

Want to move an asteroid? Use the gravity of a less massive object, like a spaceship. Hold the spaceship close to the asteroid, and their gravity will put them together. Fire your rocket’s thrusters to keep the distance, and you slowly pull the asteroid in any direction you like. It takes a long time, and does require fuel, but you can use this technique to move anything anywhere in the Solar System.

Put a massive satellite into orbit around an asteroid. When the satellite is on one side of the asteroid it fires its thrusters towards the satellite. And then on the other side of its orbit, it fires its thrusters away from the satellite. The satellite will have been pushed twice in the same direction. To an outside observer that satellite has moved, though on the asteroid it will seem to have been nudged closer than put back.

Don’t forget that the satellite pulls on the asteroid with just as much force as the asteroid exerts on the satellite. Earth pulls on the Sun just as hard as it pulls on us, but it’s more massive so it doesn’t move as much. But it does move, and so by pushing on the satellite towards the primary then pushing away on the opposite side, we move the primary body.

We can also take advantage of momentum transfers from gravity to alter the course of an object by making a close flyby. You can use this gravitational slingshot to use the gravity of a planet to change the move large objects into a new trajectory.

Over time, we put gravitational tugs into orbit around every chunk of rock and ice that we wanted to move, shifting their locations to the best places in the Solar System.

Artist view of an asteroid passing Earth. Credit: ESA/P.Carril

Some places gave us raw materials. Other places would serve as our homes.

Earth is the third closest planet to the Sun and it will always be the environment we’re trying to replicate. Earth is, well, it was… home.

For all the millions of other worlds across the Solar System, we made them capable of hosting life  with a little work. Often we could make them habitable just by increasing the amount of energy they received from the Sun.

Creating artificial gravity by spinning a habitat or breathable air by doming it over did us no good if there wasn’t enough light to melt ice into water or let plants grow.

The farther you get from the Sun, the less light you get, but we bounce light that would have been lost, concentrating it to let life flourish. The Sun gives off over a billion times the light that actually reaches Earth, so there’s no shortage in quantity, just concentration.

This was the first sunset observed in color by Curiosity on Mars. Credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.

To double the light reaching a planet like Mars, you would need a mirror surface area of twice the size of Mars. But not twice the mass of Mars. For every square meter of land on Earth, there’s about 10 billion kilograms of mass under our feet. A mirror on Earth wouldn’t weigh much more than a kilogram a square meter, but in space we can go far thinner. Any one of millions of small asteroids in the solar system contains enough material to make a planetary surface’s worth of mirrors.

Lenses or parabolic reflectors let us move light in from far more densely concentrated locations closer to the Sun. Reflecting light also allows us to remove harmful or less useful invisible wavelengths like ultraviolet or x-rays.

This allowed us to make almost any place warm and bright enough. We took distant moons and asteroids far from the Sun, and gave them a collar of thin mirrors bouncing light into a parabolic dish. By bouncing this light into rotating habitats safely buried inside the asteroid, we created warm, lush garden worlds in environments so cold that air itself would condense into a liquid.

Artist’s concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center

For most of the Solar System we wanted to warm planets up. But for Venus and Mercury, we needed to cool them down. We did this by placing shades between them and the Sun to reflect away some of the light hitting them.

The easiest way to do this was to position an opaque material between the planet and the Sun, at the L1 Lagrange point. At this point the gravitational pull of the planet counteracts the pull of the Sun allowing a large thin solar shade to remain in position with minimal energy. This way the planet is cooled.

A solar shade above Venus. Credit: Kevin Gill

But we did better than merely cool, we shaped the light to our needs. With a collection of many small shades, we avoided putting a visible dark spot on the Sun. Sunlight comes in many frequencies, from radio to x-rays; some were more valuable to us than others. Plants mostly use red and blue light, while green light doesn’t help with photosynthesis. So blocked a decent amount of green light, some blue, and no red, and cooled the planet without harming plant life and without really altering how the light looked to our eyes.

We engineered the perfect material for our shades which was mostly transparent to the wavelengths of light we wanted and mostly reflective or absorptive to the ones we didn’t.

Ultraviolet is a good example. We wanted some to get to our planet, as it does help as a sterilizing agent to biological processes and it helps make ozone, but we wanted to cut most of that out. Even better, about half of the light coming from the Sun is in infrared, which we can’t see and which plants don’t use.

We blocked most of that and seriously lowered temperatures on Venus and Mercury.

We set up shades to block the light from reaching our planets. And we did the same with dangerous radiation streaming from the Sun. We set up a concentrated magnetic shield at the Mars-Sun L1 Lagrange point, which catches and redirects high energy particles. This protects a world from the Sun, but it doesn’t prevent harmful cosmic rays, which can come from any part of the sky.

Our own planet Earth has a robust magnetosphere, and it’s the main reason we have air to breath and don’t absorb dangerous radiation from the Sun and space.

Places like Mars don’t. For this purpose, we created artificial magnetospheres. We considered trying to get Mars’ core spinning fast and hot so that rapid spinning molten ferromagnetic materials would generate a protective magnetosphere.

But that was too much effort. We didn’t actually care what generated the magnetic field, we just wanted the magnetic field. In the end we deployed a constellation of electromagnetic satellites around every world exposed to space. These satellites could do double duty, harvesting solar radiation and generating an artificial magnetosphere.

Mars used to have a natural magnetic field, but restarting it wasn’t worth it. Credit: NASA/JPL/GSFC

Cosmic rays and radioactive particles from the Sun were captured and redirected safely away from the world, allowing us to roam freely on the surface.

Once we had made acquired the resources of every world in the Solar System, we began our next great engineering effort. To move and dismantle the worlds themselves. To create the optimal configuration that gave us the most living space and the most usable energy. We began the construction of our Dyson swarm.

Moving planets is almost impossible. But not completely impossible. How do you get all that energy to move a world without melting it? The orbital energy of Earth around the Sun is approximately 30 million, trillion, trillion joules. That’s equal to all the energy the Sun puts out over a few months.

Of course, the Sun is slowly warming up, and while estimates vary, it’s generally accepted that in about a billion years it will have warmed up enough that Earth would be uninhabitable. Moving the Earth was inevitable.

To move the Earth outward to counteract the increased solar luminosity, we needed to add orbital energy. A lot of energy.

Earlier, we discussed using gravity tractors and gravitational slingshots to slowly and steadily move objects around the Solar System. This technique works at the largest scales too.

A gravity tractor could slowly and steadily move an entire planet if you had enough time and fuel. Because we already had mastery of all the asteroids in the Solar System, we put them into orbits that swept past worlds.

Credit: NASA/JPL-Caltech

Each gravitational slingshot gave or stole orbital momentum from the world, pushing it closer or farther from the Sun.

We also used orbital mirrors to bounce sunlight from the Sun. With enough of them, deflecting their light in the same general directional while maintaining an orbit around the planet, we could move worlds without touching them or heating them up from the light beams.

With enough satellites to keep the net gravitational force on the planet homogenous, we didn’t have to worry about tidal heating, allowing us to move a planet far faster.

In the future, we’ll use a king-size version of this to move the entire Solar System, using the star as the power source, called a Shkadov Thruster. We will push the Sun and every star we control into a constellation that matches our needs. But that’s a problem our Type III civilization engineers will have to worry about.

Like a cosmic lava lamp, a large section of Pluto’s icy surface in Sputnik Planum is being constantly renewed by a process called convection that replaces older surface ices with fresher material. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

We always needed ice. For water, for fuel and for air. And the outer Solar System had all the ice we could ever need. We brought comets and other icy bodies in from the outer Solar System to bring water to the planets we’re terraforming – Mars, Venus, and the large moons of the Solar System.

Pushing ice is a tricky process, but the comet itself is the source of fuel, either liquid hydrogen and oxygen as the propellants or using the hydrogen for a fusion torch drive. However we have an alternative trick we can use.

We just talked about using energy beams, focused sunlight, lasers, or microwave beams to push objects outward from the sun. You can also move inward by reflecting the beam off at an angle, removing orbital momentum. This lowers their orbit into the Solar System.

Credit: NASA/Denise Watt

By setting up energy collectors on comets, we could beam power out them, and use that energy to melt atoms into gas and accelerate them away with a magnetic field, just like an ion drive. This let us take high-strength lasers and microwave beams powered from the inner Solar System and use it to tractor comets inward. The propellant melted off the comets could carry away far more momentum than the energy beam added, though at the cost of losing some of your mass in the process.

One by one we identified the icy bodies in the Kuiper Belt and Oort Cloud, installed an ice engine, and pulled them inward, to the places we needed that water the most.

The day to day energy for our civilization comes from the Sun. Solar collectors power the machines, computers and systems that make day-to-day life spanning the Solar System possible.

Just as the ancient Earth civilizations used hydrocarbons as a store of fuel, we depend on hydrogen. We use it for our rocket fuel, to manufacture drinking water, and most importantly, for our fusion reactors. We always need more hydrogen.

Illustration Credit:© David A. Hardy/www.astroart.org, Project Daedalus

Fortunately, the Solar System has provided us with vast repositories of hydrogen: the giant planets, Jupiter, Saturn, Uranus and Neptune all made up of at least 80% hydrogen. But harvesting the planets for their hydrogen isn’t without its challenges.

For starters, the gravity on the surface of Jupiter is nearly 25 m/s2, which is nearly three times the surface gravity of Earth. On top of that, Jupiter’s magnetosphere produces intense radiation fields through its entire system. You can’t spend much time near Jupiter without receiving a lethal radiation dose.

Gas Giant Harvesting Concept. Credit: Sergio Botero

We deploy huge robotic scoopers to swoop down into Jupiter’s gravity well, skim across the upper cloud tops, funneling in as much hydrogen as they can. On board compressors liquefy the hydrogen, or refine it into the more energy dense metallic hydrogen. The fuel is then distributed across the Solar System through the interplanetary transport network.

For Uranus and Neptune, where the gravity well is less extreme, we have permanent mining stations which float in the cloud tops, harvesting raw materials for return back to space. These factories are a huge improvement over the more expensive scoop ships. Smaller cargo ships ferry the deuterium, helium-3 and hydrogen up to orbit, for an energy hungry Solar System.

Gas Giant Harvesting Concept. Credit: Gas Giant Harvesting Concept. Credit: Sergio Botero

In order to construct our Dyson Swarm, we will eventually need to dismantle almost all the planets and moons in the Solar System to provide the raw materials to house countless people.

This process has begun, and we we have a number of options. For some worlds, we plan to just keep mining and refining them with robotic factories until they are gone, but this can be quite time consuming and often we would rather do our refining and manufacturing elsewhere.

Instead, we have set up very large mass drivers running around the object to launch material directly towards its desired destination. To avoid building up angular momentum inside the shrinking mass of the planetoid, we run these giant cannons in both directions. This prevents it spinning so fast that it tears itself apart. There’s very little gravity holding these objects together after all.

For the smaller objects that’s actually just fine. When we want to disassemble a smaller asteroid or moon into rock and dirt for the inside of a cylinder habitat, we construct a cylindrical shell around the asteroid, and spray material from the asteroid onto the cylinder, giving it some spin and artificial gravity to hold the material up, or rather down to its surface. We spin the asteroid faster and faster until it flies apart, transferring its material and its angular momentum to the cylinder.

Credit: NASA.

With larger asteroids we send a series of cylinders past them in a chain, painting their interiors with the material we will turn into dirt later on, until we run out of asteroid.

For full blown minor planets and moons, which are much more massive but still fairly low in gravity and lacking an atmosphere, we pump matter up tubes to high above the planetoid to fill freighters, get compacted into cannon balls to be launched elsewhere, or simply pumped into rotating habitats being built nearby.

Mercury is already half consumed. In a few more generations, it will be a distant memory.

Perhaps our greatest accomplishment is the work underway at Jupiter and Saturn. We are now in the process of dismantling these worlds to harvest their resources.

Jupiter and Io. Image Credit: NASA/JPL
Jupiter and Io. Image Credit: NASA/JPL

The largest machines humanity has ever built, fusion candles, have been deployed into the atmospheres of Jupiter and Saturn. These enormous machines scoop up raw hydrogen from Jupiter to run their fusion reactors. One side of the fusion candle fires downward, keeping the machine aloft. The other end blasts out into space, spewing material that can be harvested from orbit.

Not only that, but these candles provide thrust, pushing Jupiter and Saturn slowly but steadily into safer, more useful orbits for our civilization. As we use up the hydrogen, their mass will decrease. Uranus and Neptune will follow slowly, from farther out in the Solar System.

Eventually, eons into the future, we will have dismantled them down to their cores. There is more than a dozen times the mass of the Earth in rock and metal down at the core of Jupiter. More raw materials than any other place in the Solar System.

Credit: Kevin Gill

The long awaited construction of our fully operational Dyson swarm will finally begin. We’ll miss the presence of Jupiter and Saturn in the Solar System, and remember them fondly, but humanity needs room to stretch its legs.

Of course, as huge as the gas giants are compared to Earth, the Sun is far bigger, and contains not just hydrogen and helium but thousands of planets worth of heavier elements, which are spread around the sun, not just concentrated deep down.

Trying to scoop matter off a star is much harder than out of gas giant, though conveniently, we can take advantage of all that energy the Sun is giving off to power our extraction.

The Sun loses mass via the solar wind, mass ejections and simply by emitting energy (Credit: NASA)

The material on the Sun is also ionized, so it reacts strongly to magnetic forces, and the Sun generates a massively powerful magnetic field too. In fact, our Sun ejects about a billion kilograms of matter a second as solar wind. We have a few ways to increase this flow and harvest it.

The first is called Thermal Driven Outflow. We hover mirrors over the surface, reflecting and concentrating light down on spots on the Sun’s surface to heat it up and increase the mass being ejected. This kicks up an eruption much like a solar flare, feeding more solar wind.

Credit: NASA/SDO, AIA

We then place a large ring of satellites around the Sun’s equator, connected to each other by a stream of ionized particles generating a huge current, themselves running that stream off solar power. This ring creates a powerful magnetic field pushing outward toward the Sun’s poles, and sending the super-heated matter in that direction.

Hovering over the poles further out, we have a giant ring sucking up sunlight and generating a huge toroidal magnetic field. All the matter we stir up on the sun and off the poles is sucked through that and slowed down for collection. It’s a lot like the VASIMR Drive, using a magnetic nozzle, so that nothing has to touch the ultra hot plasma. Giant Plasma Thrusters essentially acting as the pump to gather the matter, it stays in place using the momentum it’s stealing from the particles it is slowing down, again it’s a giant plasma thruster.

We will eventually build far more of these rings around the Sun, spaced up and down from the equator, and intermittently shut off the power beam holding them aloft. As all the satellites in that ring drop, building up speed, we switch the power for the beam back on and their plummet stops and they push back up to their original position. We do this with all the rings, in sequence, pushing much larger waves of matter toward the poles than the Thermal Driven Outflow method provides, and we call this option the Huff-n-Puff Method.

A montage of planets and other objects in the solar system. Credit: NASA/JPL

And there you have it, our tips and techniques to harvest all the resources from the Solar System. To push and pull worlds, to heat them up, cool them down and use their raw materials to house humanity’s growing, ever expanding population.

As we nearly achieve our Type II civilization status, and control all the energy from our Sun and all the resources of the Solar System, we set our sights on a new goal: doing the same thing for the entire Milky Way Galaxy.

Perhaps in a few million years, we’ll create another guide for you, to help you make this transition as efficiently as possible.

Good luck!

Ice, Ice Everywhere, says New Study on Ceres

As the single-largest body in the Asteroid Belt, Ceres has long been a source of fascination to astronomers. In addition to being the only asteroid large enough to become rounded under its own gravity, it is also the only minor planet to be found within the orbit of Neptune. And with the arrival of the Dawn probe around Ceres in March of 2015, we have been treated to a steady stream of scientific finds about this protoplanet.

The latest find, which has come as something of a surprise, has to do with the composition of the planet. Contrary to what was previously suspected, new evidence shows that Ceres has large deposits of water ice near its surface. This and other evidence suggests that beneath its rocky, icy surface, Ceres has deposits of liquid water that could have played a major role in its evolution.

This evidence were presented at the 2016 American Geophysical Union meeting, which kicked off on Monday, Dec. 12th, in San Fransisco. Amid the thousands of seminars that detailed the biggest findings made during the past year in the fields of space and Earth science – which included updates from the Curiosity mission – members of the Dawn mission team shared the results of their research, which were recently published in Science.

This graphic shows a theoretical path of a water molecule on Ceres. Some water molecules fall into cold, dark craters called "cold traps," where very little of the ice turns into vapor, even over the course of a billion years. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Graphic showing a theoretical path of a water molecule on Ceres. Some water molecules fall into cold, dark craters called “cold traps,” where very little of the ice turns into vapor, even over the course of a billion years. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Titled “Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy“, the mission team’s study details how data gathered by Dawn’s Gamma Ray and Neutron Detector (GRaND) determined the concentrations of hydrogen, iron and potassium in Ceres crust. In so doing, it was able to place constraints on the planet’s ice content, and how the surface was likely altered by liquid water in Ceres’ interior.

In short, the GRaND instrument detected high levels of hydrogen in Ceres’ uppermost structure (10% by weight), which appeared most prominently around the mid-latitudes. These readings were consistent with broad expanses of water ice. The GRaND data also showed that rather than consisting of a solid ice layer, the ice was likely to take the form of a porous mixture of rocky materials (in which ice fills the pores).

Previously, ice was thought to only exist within certain cratered regions on Ceres, and was thought to be the result of impacts that deposited water ice over the course of Ceres’ long history. But as Thomas Prettyman – the principal investigator of Dawn’s GRaND instrument – said in a NASA press release, scientists are now rethinking this position:

“On Ceres, ice is not just localized to a few craters. It’s everywhere, and nearer to the surface with higher latitudes. These results confirm predictions made nearly three decades ago that ice can survive for billions of years just beneath the surface of Ceres. The evidence strengthens the case for the presence of near-surface water ice on other main belt asteroids.”

The concentrations of iron, potassium and carbon detected by the GRaND instrument also supports the theory that Ceres’ surface was altered by liquid water in the interior. Basically, scientists theorize that the decay of radioactive elements within Ceres created enough heat to cause the protoplanet’s structure to differentiate between a rocky interior and icy outer shell – which also allowed minerals like those observed to be deposited in the surface.

Similarly, a second study produced by researchers from the Max Planck Institute for Solar Research examined hundreds of permanently-shadowed craters located in Ceres’ northern hemisphere. According to this study, which appeared recently in Nature Astronomy, these craters are “cold traps”, where temperatures drop to less than 11o K (-163 °C; -260 °F), thus preventing all but the tiniest amounts of ice from turning into vapor and escaping.

Within ten of these craters, the researcher team found deposits of bright material, reminiscent to what Dawn spotted in the Occator Crater. And in one that was partially sunlit, Dawn’s infrared mapping spectrometer confirmed the presence of ice. This suggests that water ice is being stored in Ceres darker craters in a way that is similar to what has been observed around the polar regions of both Mercury and the Moon.

Where this water came from (i.e. whether or not it was deposited by meteors) remains something of a mystery. But regardless, it shows that water molecules on Ceres could be moving from warmer mid-latitudes to the colder, darker polar regions. This lends further weight to the theory that Ceres might have a tenuous water vapor atmosphere, which was suggested back in 2012-13 based on evidence obtained by the Herschel Space Observatory.

f images from NASA's Dawn spacecraft shows a crater on Ceres that is partly in shadow all the time. Such craters are called "cold traps." Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
f images from NASA’s Dawn spacecraft shows a crater on Ceres that is partly in shadow all the time. Such craters are called “cold traps.” Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

All of this adds up to Ceres being a watery and geologically active protoplanet, one which could hold clues as to how life existed billions of years ago. As Carol Raymond, deputy principal investigator of the Dawn mission, also explained in the NASA press release:

“These studies support the idea that ice separated from rock early in Ceres’ history, forming an ice-rich crustal layer, and that ice has remained near the surface over the history of the solar system. By finding bodies that were water-rich in the distant past, we can discover clues as to where life may have existed in the early solar system.”

Back in July Dawn began its extended mission phase, which consists of it conducting several more orbits of Ceres. At present, it is flying in an elliptical orbit at a distance of more than 7,200 km (4,500 mi) from the protoplanet. The spacecraft is expected to operate until 2017, remaining a perpetual satellite of Ceres until the end.

Further Reading: NASA, IfA, PSI

How Far is the Asteroid Belt from the Sun?

It's long been thought that a giant asteroid, which broke up long ago in the main asteroid belt between Mars and Jupiter, eventually made its way to Earth and led to the extinction of the dinosaurs. New studies say that the dinosaurs may have been facing extinction before the asteroid strike, and that mammals were already on the rise. Image credit: NASA/JPL-Caltech

In the 18th century, observations made of all the known planets (Mercury, Venus, Earth, Mars, Jupiter and Saturn) led astronomers to discern a pattern in their orbits. Eventually, this led to the Titius–Bode law, which predicted the amount of space between the planets. In accordance with this law, there appeared to be a discernible gap between the orbits of Mars and Jupiter, and investigation into it led to a major discovery.

Eventually, astronomers realized that this region was pervaded by countless smaller bodies which they named “asteroids”. This in turn led to the term “Asteroid Belt”, which has since entered into common usage. Like all the planets in our Solar System, it orbits our Sun, and has played an important role in the evolution and history of our Solar System.

Structure and Composition:

The Asteroid Belt consists of several large bodies, along with millions of smaller size. The larger bodies, such as Ceres, Vesta, Pallas, and Hygiea, account for half of the belt’s total mass, with almost one-third accounted for by Ceres alone. Beyond that, over 200 asteroids that are larger than 100 km in diameter, and 0.7–1.7 million asteroids with a diameter of 1 km or more.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Credit: NASA/ESA/Paul Schenck
It total, the Asteroid Belt’s mass is estimated to be 2.8×1021 to 3.2×1021 kilograms – which is equivalent to about 4% of the Moon’s mass. While most asteroids are composed of rock, a small portion of them contain metls such as iron and nickel. The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices and volatiles, which includes water ice.

Despite the impressive number of objects contained within the belt, the Main Belt’s asteroids are also spread over a very large volume of space. As a result, the average distance between objects is roughly 965,600 km (600,000 miles), meaning that the Main Belt consists largely of empty space. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.

The main (or core) population of the asteroid belt is sometimes divided into three zones, which are based on what is known as “Kirkwood gaps”. Named after Daniel Kirkwood, who announced in 1866 the discovery of gaps in the distance of asteroids, these gaps are similar to what is seen with Saturn’s and other gas giants’ systems of rings.

Origin:

Originally, the Asteroid Belt was thought to be the remnants of a much larger planet that occupied the region between the orbits of Mars and Jupiter. This theory was originally suggested by Heinrich Olbders to William Herschel as a possible explanation for the existence of Ceres and Pallas. However, this hypothesis has since been shown to have several flaws.

For one, the amount of energy required to destroy a planet would have been staggering, and no scenario has been suggested that could account for such events. Second, there is the fact that the mass of the Asteroid Belt is only 4% that of the Moon (and 22% that of Pluto). The odds of a cataclysmic collision with such a tiny body are very unlikely. Lastly, the significant chemical differences between the asteroids do no point towards a common origin.

Today, the scientific consensus is that, rather than fragmenting from an original planet, the asteroids are remnants from the early Solar System that never formed a planet at all. During the first few million years of the Solar System’s history, gravitational accretion caused clumps of matter to form out of an accretion disc. These clumps gradually came together, eventually undergoing hydrostatic equilibrium (become spherical) and forming planets.

However, within the region of the Asteroid Belt, planestesimals were too strongly perturbed by Jupiter’s gravity to form a planet. As such, these objects would continue to orbit the Sun as they had before, with only one object (Ceres) having accumulated enough mass to undergo hydrostatic equilibrium. On occasion, they would collide to produce smaller fragments and dust.

The asteroids also melted to some degree during this time, allowing elements within them to be partially or completely differentiated by mass. However, this period would have been necessarily brief due to their relatively small size. It likely ended about 4.5 billion years ago, a few tens of millions of years after the Solar System’s formation.

Though they are dated to the early history of the Solar System, the asteroids (as they are today) are not samples of its primordial self. They have undergone considerable evolution since their formation, including internal heating, surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites. Hence, the Asteroid Belt today is believed to contain only a small fraction of the mass of the primordial belt.

Computer simulations suggest that the original asteroid belt may have contained mass equivalent to the Earth. Primarily because of gravitational perturbations, most of the material was ejected from the belt a million years after its formation, leaving behind less than 0.1% of the original mass. Since then, the size distribution of the asteroid belt is believed to have remained relatively stable.

When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a “snow line” below the freezing point of water. Essentially, planetesimals formed beyond this radius were able to accumulate ice, some of which may have provided a water source of Earth’s oceans (even more so than comets).

Distance from the Sun:

Located between Mars and Jupiter, the belt ranges in distance between 2.2 and 3.2 astronomical units (AU) from the Sun – 329 million to 478.7 million km (204.43 million to 297.45 million mi). It is also an estimated to be 1 AU thick (149.6 million km, or 93 million mi), meaning that it occupies the same amount of distance as what lies between the Earth to the Sun.

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons
The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons

The distance of an asteroid from the Sun (its semi-major axis) depends upon its distribution into one of three different zones based on the Belt’s “Kirkwood Gaps”. Zone I lies between the 4:1 resonance and 3:1 resonance Kirkwood gaps, which are roughly 2.06 and 2.5 AUs (3 to 3.74 billion km; 1.86 to 2.3 billion mi) from the Sun, respectively.

Zone II continues from the end of Zone I out to the 5:2 resonance gap, which is 2.82 AU (4.22 billion km; 2.6 mi) from the Sun. Zone III, the outermost section of the Belt, extends from the outer edge of Zone II to the 2:1 resonance gap, located some 3.28 AU (4.9 billion km; 3 billion mi) from the Sun.

While many spacecraft have been to the Asteroid Belt, most were passing through on their way to the outer Solar System. Only in recent years, with the Dawn mission, that the Asteroid Belt has been a focal point of scientific research. In the coming decades, we may find ourselves sending spaceships there to mine asteroids, harvest minerals and ices for use here on Earth.

We’ve written many articles about the Asteroid Belt here at Universe Today. Here’s What is the Asteroid Belt?, How Long Does it Take to get to the Asteroid Belt?, How Far is the Asteroid Belt from Earth?, Why Isn’t the Asteroid Belt a Planet?, and Why the Asteroid Belt Doesn’t Threaten Spacecraft.

To learn more, check out NASA’s Lunar and Planetary Science Page on asteroids, and the Hubblesite’s News Releases about Asteroids.

Astronomy Cast also some interesting episodes about asteroids, like Episode 55: The Asteroid Belt and Episode 29: Asteroids Make Bad Neighbors.

Sources:

Colonizing the Outer Solar System

Colonizing The Outer Solar System


Okay, so this article is Colonizing the Outer Solar System, and is actually part 2 of our team up with Fraser Cain of Universe Today, who looked at colonizing the inner solar system. You might want jump over there now and watch that part first, if you are coming in from having seen part 1, welcome, it is great having you here.

Without further ado let us get started. There is no official demarcation between the inner and outer solar system but for today we will be beginning the outer solar system at the Asteroid Belt.

Artist concept of the asteroid belt. Credit: NASA
Artist concept of the asteroid belt. Credit: NASA

The Asteroid Belt is always of interest to us for colonization. We have talked about mining them before if you want the details on that but for today I’ll just remind everyone that there are very rich in metals, including precious metals like gold and platinum, and that provides all the motivation we need to colonize them. We have a lot of places to cover so we won’t repeat the details on that today.

You cannot terraform asteroids the way you could Venus or Mars so that you could walk around on them like Earth, but in every respect they have a lot going for them as a candidate. They’ve got plenty for rock and metal for construction, they have lots of the basic organic elements, and they even have some water. They also get a decent amount of sunlight, less than Mars let alone Earth, but still enough for use as a power source and to grow plants.

But they don’t have much gravity, which – pardon the pun – has its ups and downs. There just isn’t much mass in the Belt. The entire thing has only a small fraction of the mass of our moon, and over half of that is in the four biggest asteroids, essentially dwarf planets in their own right. The remainder is scattered over millions of asteroids. Even the biggest, Ceres, is only about 1% of 1% of Earth’s mass, has a surface gravity of 3% Earth-normal, and an escape velocity low enough most model rockets could get into orbit. And again, it is the biggest, most you could get away from by jumping hard and if you dropped an object on one it might take a few minutes to land.

Don't blink... an artist's conception of an asteroid blocking out a distant star. Image credit: NASA.
Don’t blink… an artist’s conception of an asteroid blocking out a distant star. Image credit: NASA.

You can still terraform one though, by definition too. The gentleman who coined the term, science fiction author Jack Williamson, who also coined the term genetic engineering, used it for a smaller asteroid just a few kilometers across, so any definition of terraforming has to include tiny asteroids too.

Of course in that story it’s like a small planet because they had artificial gravity, we don’t, if we want to fake gravity without having mass we need to spin stuff around. So if we want to terraform an asteroid we need to hollow it out and fill it with air and spin it around.

Of course you do not actually hollow out the asteroid and spin it, asteroids are loose balls of gravel and most would fly apart given any noticeable spin. Instead you would hollow it out and set a cylinder spinning inside it. Sort of like how a good thermos has an outside container and inside one with a layer of vacuum in between, we would spin the inner cylinder.

You wouldn’t have to work hard to hollow out an asteroid either, most aren’t big enough to have sufficient gravity and pressure to crush an empty beer can even at their center. So you can pull matter out from them very easily and shore up the sides with very thin metal walls or even ice. Or just have your cylinder set inside a second non-spinning outer skin or superstructure, like your washer or dryer.

You can then conduct your mining from the inside, shielded from space. You could ever pressurize that hollowed out area if your spinning living area was inside its own superstructure. No gravity, but warmth and air, and you could get away with just a little spin without tearing it apart, maybe enough for plants to grow to normally.

It should be noted that you can potentially colonize even the gas giants themselves, even though our focus today is mostly on their moons. That requires a lot more effort and technology then the sorts of colonies we are discussing today, Fraser and I decided to keep things near-future and fairly low tech, though he actually did an article on colonizing Jupiter itself last year that was my main source material back before got to talking and decided to do a video together.

Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach
Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach

Hydrogen is plentiful on Jupiter itself and floating refineries or ships that fly down to scoop it up might be quite useful, but again today we are more interested in its moons. The biggest problem with colonizing the moons of Jupiter is all the radiation the planet gives off.

Europa is best known as a place where the surface is covered with ice but beneath it is thought to be a vast subsurface ocean. It is the sixth largest moon coming right behind our own at number five and is one of the original four moons Galileo discovered back in 1610, almost two centuries before we even discovered Uranus, so it has always been a source of interest. However as we have discovered more planets and moons we have come to believe quite a few of them might also have subsurface oceans too.

Now what is neat about them is that water, liquid water, always leaves the door open to the possibility of life already existing there. We still know so little about how life originally evolved and what conditions permit that to occur that we cannot rule out places like Europa already having their own plants and animals swimming around under that ice.

They probably do not and obviously we wouldn’t want to colonize them, beyond research bases, if they did, but if they do not they become excellent places to colonize. You could have submarine cities in such places floating around in the sea or those buried in the surface ice layer, well shielded from radiation and debris. The water also geysers up to the surface in some places so you can start off near those, you don’t have to drill down through kilometers of ice on day one.

Water, and hydrogen, are also quite uncommon in the inner solar system so having access to a place like Europa where the escape velocity is only about a fifth of our own is quite handy for export. Now as we move on to talk about moons a lot it is important to note that when I say something has a fifth of the escape velocity of Earth that doesn’t mean it is fives time easier to get off of. Energy rises with the square of velocity so if you need to go five times faster you need to spend 5-squared or 25 times more energy, and even more if that place has tons of air creating friction and drag, atmospheres are hard to claw your way up through though they make landing easier too. But even ignoring air friction you can move 25 liters of water off of Europa for every liter you could export from Earth and even it is a very high in gravity compared to most moons and comets. Plus we probably don’t want to export lots of water, or anything else, off of Earth anyway.

Artist's concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA
Artist’s concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA

We should start by noting two things. First, the Asteroid Belt is not the only place you find asteroids, Jupiter’s Trojan Asteroids are nearly as numerous, and every planet, including Earth, has an equivalent to Jupiter’s Trojan Asteroids at its own Lagrange Points with the Sun. Though just as Jupiter dwarfs all the other planets so to does its collection of Lagrangian objects. They can quite big too, the largest 624 Hektor, is 400 km across, and has a size and shape similar to Pennsylvania.

And as these asteroids are at stable Lagrange Points, they orbit with Jupiter but always ahead and behind it, making transit to and from Jupiter much easier and making good waypoints.

Before we go out any further in the solar system we should probably address how you get the energy to stay alive. Mars is already quite cold compared to Earth, and the Asteroids and Jupiter even more so, but with thick insulation and some mirrors to bounce light in you can do fairly decently. Indeed, sunlight out by Jupiter is already down to just 4% of what Earth gets, meaning at Jovian distances it is about 50 W/m²

That might not sound like much but it is actually almost a third of what average illumination is on Earth, when you factor in atmospheric reflection, cloudy days, nighttime, and higher, colder latitudes. It is also a good deal brighter than the inside of most well-lit buildings, and is enough for decently robust photosynthesis to grow food. Especially with supplemental light from mirrors or LED growth lamps.

But once you get out to Saturn and further that becomes increasingly impractical and a serious issue, because while food growth does not show up on your electric bill it is what we use virtually all our energy for. Closer in to the sun we can use solar panels for power and we do not need any power to grow food. As we get further out we cannot use solar and we need to heat or cold habitats and supply lighting for food, so we need a lot more power even as our main source dries up.

So what are our options? Well the first is simple, build bigger mirrors. A mirror can be quite large and paper thin after all. Alternatively we can build those mirrors far away, closer to the sun, and and either focus them on the place we want illuminated or send an energy beam, microwaves perhaps or lasers, out to the destination to supply energy.

We also have the option of using fission, if we can find enough Uranium or Thorium. There is not a lot of either in the solar system, in the area of about one part per billion, but that does amount to hundreds of trillions of tons, and it should only take a few thousand tons a year to supply Earth’s entire electric grid. So we would be looking at millions of years worth of energy supply.

Of course fusion is even better, particularly since hydrogen becomes much more abundant as you get further from the Sun. We do not have fusion yet, but it is a technology we can plan around probably having inside our lifetimes, and while uranium and thorium might be counted in parts per billion, hydrogen is more plentiful than every other element combines, especially once you get far from the Sun and Inner Solar System.

So it is much better power source, an effectively unlimited one except on time scales of billions and trillion of years. Still, if we do not have it, we still have other options. Bigger mirrors, beaming energy outwards from closer to the Sun, and classic fission of Uranium and Thorium. Access to fusion is not absolutely necessary but if you have it you can unlock the outer solar system because you have your energy supply, a cheap and abundant fuel supply, and much faster and cheaper spaceships.

Of course hydrogen, plain old vanilla hydrogen with one proton, like the sun uses for fusion, is harder to fuse than deuterium and may be a lot longer developing, we also have fusion using Helium-3 which has some advantages over hydrogen, so that is worth keeping in mind as well as we proceed outward.

Since NASA's Cassini spacecraft arrived at Saturn, the planet's appearance has changed greatly. This view shows Saturn's northern hemisphere in 2016, as that part of the planet nears its northern hemisphere summer solstice in May 2017. Image credit: NASA/JPL-Caltech/Space Science Institute.
Since NASA’s Cassini spacecraft arrived at Saturn, the planet’s appearance has changed greatly. This view shows Saturn’s northern hemisphere in 2016, as that part of the planet nears its northern hemisphere summer solstice in May 2017. Image credit: NASA/JPL-Caltech/Space Science Institute.

Okay, let’s move on to Saturn, and again our focus is on its moons more than the planet itself. The biggest of those an the most interesting for colonization is Titan.

Titan is aptly named, this titanic moon contains more mass than than all of Saturn’s sixty or so other moons and by an entire order of magnitude at that. It is massive enough to hold an atmosphere, and one where the surface pressure is 45% higher than here on Earth. Even though Titan is much smaller than Earth, its atmosphere is about 20% more massive than our own. It’s almost all nitrogen too, even more than our own atmosphere, so while you would need a breather mask to supply oxygen and it is also super-cold, so you’d need a thick insulated suit, it doesn’t have to be a pressure suit like it would on Mars or almost anyplace else.

There’s no oxygen in the atmosphere, what little isn’t nitrogen is mostly methane and hydrogen, but there is plenty of oxygen in the ice on Titan which is quite abundant. So it has everything we need for life except energy and gravity. At 14% of earth normal it is probably too low for people to comfortably and safely adapt to, but we’ve already discussed ways of dealing with that. It is low enough that you could probably flap your arms and fly, if you had wing attached.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it's own propulsion, in the form of paddlewheels. Credit: bisbos.com
On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it’s own propulsion, in the form of paddlewheels. Credit: bisbos.com

It needs some source of energy though, and we discussed that. Obviously if you’ve got fusion you have all the hydrogen you need, but Titan is one of those places we would probably want to colonize early on if we could, it is something you need a lot of to terraform other places, and is also rich in a lot of the others things we want. So we often think of it as a low-tech colony since it is one we would want early on.

In an scenario like that it is very easy to imagine a lot of local transit between Titan and its smaller neighboring moons, which are more rocky and might be easier to dig fissile materials like Uranium and Thorium out of. You might have a dozen or so small outposts on neighboring moons mining fissile materials and other metals and a big central hub on Titan they delivered that too which also exported Nitrogen to other colonies in the solar system.

Moving back and forth between moons is pretty easy, especially since things landing on Titan can aerobrake quite easily, whereas Titan itself has a pretty strong gravity well and thick atmosphere to climb out of but is a good candidate for a space elevator, since it requires nothing more sophisticated than a Lunar Elevator on our own moon and has an abundant supply of the materials needed to make Zylon for instance, a material strong enough to make an elevator there and which we can mass manufacture right now.

Titan might be the largest and most useful of Saturn’s moons, but again it isn’t the only one and not all of the other are just rocks for mining. At last count it has over sixty and many of them quite large. One of those, Enceladus, Saturn’s sixth largest moon, is a lot like Jupiter’s Moon Europa, in that we believe it has a large and thick subsurface ocean. So just like Europa it is an interesting candidate for Colonization. So Titan might be the hub for Saturn but it wouldn’t be the only significant place to colonize.

Clouds tower into a twilight sky on Saturn. The planet’s glowing rings seem to bend at the horizon because of the dense air. (painting ©Michael Carroll)
Clouds tower into a twilight sky on Saturn. The planet’s glowing rings seem to bend at the horizon because of the dense air. (painting ©Michael Carroll)

While Saturn is best known for its amazing rings, they tend to be overlooked in colonization. Now those rings are almost all ice and in total mass about a quarter as much as Enceladus, which again is Saturn’s Sixth largest moon, which is itself not even a thousandth of the Mass of Titan.

In spite of that the rings are not a bad place to set up shop. Being mostly water, they are abundant in hydrogen for fusion fuel and have little mass individually makes them as easy to approach or leave as an asteroid. Just big icebergs in space really, and there are many moonlets in the rings that can be as large as half a kilometer across. So you can burrow down inside one for protection from radiation and impacts and possibly mine smaller ones for their ice to be brought to places where water is not abundant.

In total those rings, which are all frozen water, only mass about 2% of Earth’s oceans, and about as much as the entire Antarctic sheet. So it is a lot of fresh water that is very easy to access and move elsewhere, and ice mines in the rings of Saturn might be quite useful and make good homes. Living inside an iceball might not sound appealing but it is better than it sounds like and we will discuss that more when we reach the Kupier Belt.

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons
Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

But first we still have two more planets to look at, Uranus and Neptune.

Uranus, and Neptune, are sometimes known as Ice Giants instead of Gas Giants because it has a lot more water. It also has more ammonia and methane and all three get called ices in this context because they make up most of the solid matter when you get this far out in the solar system.

While Jupiter is over a thousand times the mass of Earth, Uranus weighs in at about 15 times the Earth and has only about double the escape velocity of Earth itself, the least of any of the gas giants, and it’s strange rotation, and its strange tilt contributes to it having much less wind than other giants. Additionally the gravity is just a little less than Earth’s in the atmosphere so we have the option for floating habitats again, though it would be a lot more like a submarine than a hot air balloon.

Like Venus, Uranus has very long days, at least in terms of places receiving continual sunlight, the poles get 42 years of perpetual sunlight then 42 of darkness. Sunlight being a relative term, the light is quite minimal especially inside the atmosphere. The low wind in many places makes it a good spot for gas extraction, such as Helium-3, and it’s a good planet to try to scoop gas from or even have permanent installations.

Now Uranus has a large collection of moons as well, useful and colonizable like the other moons we have looked at, but otherwise unremarkable beyond being named for characters from Shakespeare, rather than the more common mythological names. None have atmospheres though there is a possibility Oberon or Titania might have subsurface oceans.

Neptune makes for a brief entry, it is very similar to Uranus except it has the characteristically high winds of gas giants that Uranus’s skewed poles mitigate, meaning it has no advantages over Uranus and the disadvantages of high wind speeds everywhere and being even further from the Sun. It too has moons and one of them, Triton, is thought to have subsurface oceans as well. Triton also presumably has a good amount of nitrogen inside it since it often erupts geysers of nitrogen from its surface.

Neptune's largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA
Neptune’s largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA

Triton is one of the largest moons in the solar system, coming in seventh just after our Moon, number 5, and Europa at number 6. Meaning that were it not a moon it would probably qualify as a Dwarf Planet and it is often thought Pluto might be an escaped moon Neptune. So Triton might be one that didn’t escape, or didn’t avoid getting captured. In fact there are an awful lot of bodies in this general size range and composition wandering about in the outer regions of our solar system as we get out into the Kuiper Belt.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

The Kuiper Belt is one of those things that has a claim on the somewhat arbitrary and hazy boundary marking the edge of the Solar System. It extends from out past Neptune to beyond Pluto and contains a good deal more mass than the asteroid Belt. It is where a lot of our comets come from and while there is plenty of rocks out there they tend to be covered in ice. In other words it is like our asteroid belt only there’s more of it and the one thing the belt is not very abundant in, water and hydrogen in general, is quite abundant out there. So if you have a power source life fusion they can be easily terraformed and are just as attractive as a source of minerals as the various asteroids and moons closer in.

Discovered in 2005, Makemake, a Kuiper Belt Object (KBO) has . Credit: NASA
Discovered in 2005, Makemake, a Kuiper Belt Object (KBO) has . Credit: NASA

We mentioned the idea of living inside hollowed out asteroids earlier and you can use the same trick for comets. Indeed you could shape them to be much bigger if you like, since they would be hollow and ice isn’t hard to move and shape especially in zero gravity. Same trick as before, you place a spinning cylinder inside it. Not all the objects entirely ice and indeed your average comet is more a frozen ball of mud then ice with rocky cores. We think a lot of near Earth Asteroids are just leftover comets. So they are probably pretty good homes if you have fusion, lots of fuel and raw materials for both life and construction.

This is probably your cheapest interstellar spacecraft too, in terms of effort anyway. People often talk about re-directing comets to Mars to bring it air and water, but you can just as easily re-direct it out of the solar system entirely. Comets tend to have highly eccentric orbits, so if you capture one when it is near the Sun you can accelerate it then, actually benefiting from the Oberth Effect, and drive it out of the solar system into deep space. If you have a fusion power source to live inside one then you also have an interstellar spaceship drive, so you just carve yourself a small colony inside the comet and head out into deep space.

You’ve got supplies that will last you many centuries at least, even if it were home to tens of thousand of people, and while we think of smaller asteroids and comets as tiny, that’s just in comparison to planets. These things tend to be the size of mountain so there is plenty of living space and a kilometer of dirty ice between you and space makes a great shield against even the kinds of radiation and collisions you can experience at relativistic speeds.

Artists' impression of the Kuiper belt and Oort cloud, showing both the origin and path of Halley's Comet. Image credit: NASA/JPL.
Artists’ impression of the Kuiper belt and Oort cloud. Credit: NASA/JPL

Now the Oort Cloud is much like the Kupier Belt but begins even further out and extends out probably an entire light year or more. We don’t have a firm idea of its exact dimensions or mass, but the current notion is that it has at least several Earth’s worth of mass, mostly in various icy bodies. These will be quite numerous, estimates usually assumes at least trillion icy bodies a kilometer across or bigger, and even more smaller ones. However the volume of space is so large that those kilometer wide bodies might each be a around a billion kilometers distant from neighbors, or about a light hour. So it is spread out quite thinly, and even the inner edge is about 10 light days away.

That means that from a practical standpoint there is no source of power out there, the sun is simply too diffuse for even massive collections of mirrors and solar panels to be of use. It also means light-speed messages home or to neighbors are quite delayed. So in terms of communication it is a lot more like pre-modern times in sparsely settled lands where talking with your nearest neighbors might require an hour long walk over to their farm, and any news from the big cities might take months to percolate out to you.

There’s probably uranium and thorium out there to be found, maybe a decent amount of it, so fission as a power source is not ruled out. If you have fusion instead though each of these kilometer wide icy bodies is like a giant tank of gasoline, and as with the Kupier Belt, ice makes a nice shield against impacts and radiation.

And while there might be trillions of kilometer wide chunks of ice out there, and many more smaller bodies, you would have quite a few larger ones too. There are almost certainly tons of planets in the Pluto size-range out these, and maybe even larger ones. Even after the Oort cloud you would still have a lot of these deep space rogue planets which could bridge the gap to another solar system’s Oort Cloud. So if you have fusion you have no shortage of energy, and could colonize trillions of these bodies. There probably is a decent amount of rock and metal out there too, but that could be your major import/export option shipping home ice and shipping out metals.

That’s the edge of the Solar System so that’s the end of this article. If you haven’t already read the other half, colonizing the inner Solar System, head on over now.

How Long Does it Take to get to the Asteroid Belt?

It's long been thought that a giant asteroid, which broke up long ago in the main asteroid belt between Mars and Jupiter, eventually made its way to Earth and led to the extinction of the dinosaurs. New studies say that the dinosaurs may have been facing extinction before the asteroid strike, and that mammals were already on the rise. Image credit: NASA/JPL-Caltech

Between the orbits of Mars and Jupiter lies the Solar System’s Main Asteroid Belt. Consisting of millions of objects that range in size from hundreds of kilometers in diameter (like Ceres and Vesta) to one kilometer or more, the Asteroid Belt has long been a source of fascination for astronomers. Initially, they wondered why the many objects that make it up did not come together to form a planet. But more recently, human beings have been eyeing the Asteroid Belt for other purposes.

Whereas most of our efforts are focused on research – in the hopes of shedding additional light on the history of the Solar System – others are looking to tap for its considerable wealth. With enough resources to last us indefinitely, there are many who want to begin mining it as soon as possible. Because of this, knowing exactly how long it would take for spaceships to get there and back is becoming a priority.

Distance from Earth:

The distance between the Asteroid Belt and Earth varies considerably depending on where we measure to. Based on its average distance from the Sun, the distance between Earth and the edge of the Belt that is closest to it can be said to be between 1.2 to 2.2 AUs, or 179.5 and 329 million km (111.5 and 204.43 million mi).

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons
The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons

However, at any given time, part of the Asteroid Belt will be on the opposite side of the Sun, relative to Earth. From this vantage point, the distance between Earth and the Asteroid Blt ranges from 3.2 and 4.2 AU – 478.7 to 628.3 million km (297.45 to 390.4 million mi). To put that in perspective, the distance between Earth and the Asteroid Belt ranges between being slightly more than the distance between the Earth and the Sun (1 AU), to being the same as the distance between Earth and Jupiter (4.2 AU) when they are at their closest.

But of course, for reasons of fuel economy and time, asteroid miners and exploration missions are not about to take the long way! As such, we can safely assume that the distance between Earth and the Asteroid Belt when they are at their closest is the only measurement worth considering.

Past Missions:

The Asteroid Belt is so thinly populated that several unmanned spacecraft have been able to move through it on their way to the outer Solar System. In more recent years, missions to study larger Asteroid Belt objects have also used this to their advantage, navigating between the smaller objects to rendezvous with bodies like Ceres and Vesta. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.

The first spacecraft to make a journey through the asteroid belt was the Pioneer 10 spacecraft, which entered the region on July 16th, 1972 (a journey of 135 days). As part of its mission to Jupiter, the craft successfully navigated through the Belt and conducted a flyby of Jupiter (in December of 1973) before becoming the first spacecraft to achieve escape velocity from the Solar System.

An artist's illustration of NASA's Dawn spacecraft approaching Ceres. Image: NASA/JPL-Caltech.
An artist’s illustration of NASA’s Dawn spacecraft approaching Ceres. Image: NASA/JPL-Caltech.

At the time, there were concerns that the debris would pose a hazard to the Pioneer 10 space probe. But since that mission, 11 additional spacecraft have passed through the Asteroid Belt without incident. These included Pioneer 11, Voyager 1 and 2, Ulysses, Galileo, NEAR, Cassini, Stardust, New Horizons, the ESA’s Rosetta, and most recently, the Dawn spacecraft.

For the most part, these missions were part of missions to the outer Solar System, where opportunities to photograph and study asteroids were brief. Only the Dawn, NEAR and JAXA’s Hayabusa missions have studied asteroids for a protracted period in orbit and at the surface. Dawn explored Vesta from July 2011 to September 2012, and is currently orbiting Ceres (and sending back gravity data on the dwarf planet’s gravity) and is expected to remain there until 2017.

Fastest Mission to Date:

The fastest mission humanity has ever mounted was the New Horizons mission, which was launched from Earth on Jan. 19th, 2006. The mission began with a speedy launch aboard an Atlas V rocket, which accelerated it to a a speed of about 16.26 km per second (58,536 km/h; 36,373 mph). At this speed, the probe reached the Asteroid Belt by the following summer, and made a close approach to the tiny asteroid 132524 APL by June 13th, 2006 (145 days after launching).

However, even this pales in comparison to Voyager 1, which was launched on Sept. 5th, 1977 and reached the Asteroid Belt on Dec. 10th, 1977 – a total of 96 days. And then there was the Voyager 2 probe, which launched 15 days after Voyager 1 (on Sept. 20th), but still managed to arrive on the same date – which works out to a total travel time of 81 days.

For Voyager 2, out on the edge of our Solar system, conventional navigation methods don't work too well. Credit: NASA
For Voyager 2, out on the edge of our Solar system, conventional navigation methods don’t work too well. Credit: NASA

Not bad as travel times go. At these speed, a spacecraft could make the trip to the Asteroid Belt, spend several weeks conducting research (or extracting ore), and then make it home in just over six months time. However, one has to take into account that in all these cases, the mission teams did not decelerate the probes to make a rendezvous with any asteroids.

Ergo, a mission to the Asteroid Belt would take longer as the craft would have to slow down to achieve orbital velocity. And they would also need some powerful engines of their own in order to make the trip home. This would drastically alter the size and weight of the spacecraft, which would inevitably mean it would be bigger, slower and a heck of a lot more expensive than anything we’ve sent so far.

Another possibility would be to use ionic propulsion (which is much more fuel efficient) and pick up a gravity assist by conducting a flyby of Mars – which is precisely what the Dawn mission did. However, even with a boost from Mars’ gravity, the Dawn mission still took over three years to reach the asteroid Vesta – launching on Sept. 27th, 2007, and arriving on July 16th, 2011, (a total of 3 years, 9 months, and 19 days). Not exactly good turnaround!

Proposed Future Methods:

A number of possibilities exist that could drastically reduce both travel time and fuel consumption to the Asteroid Belt, many of which are currently being considered for a number of different mission proposals. One possibility is to use spacecraft equipped with nuclear engines, a concept which NASA has been exploring for decades.

The Crew Transfer Vehicle (CTV) using its nuclear-thermal rocket engines to slow down and establish orbit around Mars. Credit: NASA
The Crew Transfer Vehicle (CTV) using its nuclear-thermal rocket engines to slow down and establish orbit around Mars. Credit: NASA

In a Nuclear Thermal Propulsion (NTP) rocket, uranium or deuterium reactions are used to heat liquid hydrogen inside a reactor, turning it into ionized hydrogen gas (plasma), which is then channeled through a rocket nozzle to generate thrust. A Nuclear Electric Propulsion (NEP) rocket involves the same basic reactor converting its heat and energy into electrical energy, which would then power an electrical engine.

In both cases, the rocket would rely on nuclear fission or fusion to generates propulsion rather than chemical propellants, which has been the mainstay of NASA and all other space agencies to date. According to NASA estimates, the most sophisticated NTP concept would have a maximum specific impulse of 5000 seconds (50 kN·s/kg).

Using this engine, NASA scientists estimate that it would take a spaceship only 90 days to get to Mars when the planet was at “opposition” – i.e. as close as 55,000,000 km from Earth. Adjusted for a distance of 1.2 AUs, that means that a ship equipped with a NTP/NEC propulsion system could make the trip in about 293 days (about nine months and three weeks). A little slow, but not bad considering the technology exists.

Another proposed method of interstellar travel comes in the form of the Radio Frequency (RF) Resonant Cavity Thruster, also known as the EM Drive. Originally proposed in 2001 by Roger K. Shawyer, a UK scientist who started Satellite Propulsion Research Ltd (SPR) to bring it to fruition, this drive is built around the idea that electromagnetic microwave cavities can allow for the direct conversion of electrical energy to thrust.

Artist's concept of an interstellar craft equipped with an EM Drive. Credit:
Artist’s concept of an interstellar craft equipped with an EM Drive. Credit: NASA Spaceflight Center

According to calculations based on the NASA prototype (which yielded a power estimate of 0.4 N/kilowatt), a spacecraft equipped with the EM drive could make the trip to Mars in just ten days. Adjusted for a trip to the Asteroid Belt, so a spacecraft equipped with an EM drive would take an estimated 32.5 days to reach the Asteroid Belt.

Impressive, yes? But of course, that is based on a concept that has yet to be proven. So let’s turn to yet another radical proposal, which is to use ships equipped with an antimatter engine. Created in particle accelerators, antimatter is the most dense fuel you could possibly use. When atoms of matter meet atoms of antimatter, they annihilate each other, releasing an incredible amount of energy in the process.

According to the NASA Institute for Advanced Concepts (NIAC), which is researching the technology, it would take just 10 milligrams of antimatter to propel a human mission to Mars in 45 days. Based on this estimate, a craft equipped with an antimatter engine and roughly twice as much fuel could make the trip to the Asteroid Belt in roughly 147 days. But of course, the sheer cost of creating antimatter – combined with the fact that an engine based on these principles is still theoretical at this point – makes it a distant prospect.

Basically, getting to the Asteroid Belt takes quite a bit of time, at least when it comes to the concepts we currently have available. Using theoretical propulsion concepts, we are able to cut down on the travel time, but it will take some time (and lots of money) before those concepts are a reality. However, compared to many other proposed missions – such as to Europa and Enceladus – the travel time is shorter, and the dividends quite clear.

As already stated, there are enough resources – in the form of minerals and volatiles – in the Asteroid Belt to last us indefinitely. And, should we someday find a way to cost-effective way to send spacecraft there rapidly, we could tap that wealth and begin to usher in an age of post-scarcity! But as with so many other proposals and mission concepts, it looks like we’ll have to wait for the time being.

We have written many articles about the asteroid belt for Universe Today. Here’s Where Do Asteroids Come From?, Why the Asteroid Belt Doesn’t Threaten Spacecraft, and Why isn’t the Asteroid Belt a Planet?.

Also, be sure to learn which is the Largest Asteroid in the Solar System, and about the asteroid named after Leonard Nimoy. And here’s 10 Interesting Facts about Asteroids.

We also have many interesting articles about the Dawn spacecraft’s mission to Vesta and Ceres, and asteroid mining.

To learn more, check out NASA’s Lunar and Planetary Science Page on asteroids, and the Hubblesite’s News Releases about Asteroids.

Astronomy Cast also some interesting episodes about asteroids, like Episode 55: The Asteroid Belt and Episode 29: Asteroids Make Bad Neighbors.

Sources:

How Do We Terraform Ceres?

We continue our “Definitive Guide to Terraforming” series with a look at another body in our Solar System – the dwarf planet Ceres. Like many moons in the outer Solar System, Ceres is a world of ice and rock, and is the largest body in the Asteroid Belt. Humans beings could one day call it home, but could its surface also be made “Earth-like”?

In the Solar System’s Main Asteroid Belt, there are literally millions of celestial bodies to be found. And while the majority of these range in size from tiny rocks to planetesimals, there are also a handful of bodies that contain a significant percentage of the mass of the entire Asteroid Belt. Of these, the dwarf planet Ceres is the largest, constituting of about a third of the mass of the belt and being the sixth-largest body in the inner Solar System by mass and volume.

In addition to its size, Ceres is the only body in the Asteroid Belt that has achieved hydrostatic equilibrium – a state where an object becomes rounded by the force of its own gravity. On top of all that, it is believed that this dwarf planet has an interior ocean, one which contains about one-tenth of all the water found in the Earth’s oceans. For this reason, the idea of colonizing Ceres someday has some appeal, as well as terraforming.

Continue reading “How Do We Terraform Ceres?”

How Do We Terraform Saturn’s Moons?

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present our guide to terraforming Saturn’s Moons. Beyond the inner Solar System and the Jovian Moons, Saturn has numerous satellites that could be transformed. But should they be?

Around the distant gas giant Saturn lies a system of rings and moons that is unrivaled in terms of beauty. Within this system, there is also enough resources that if humanity were to harness them – i.e. if the issues of transport and infrastructure could be addressed – we would be living in an age a post-scarcity. But on top of that, many of these moons might even be suited to terraforming, where they would be transformed to accommodate human settlers.

As with the case for terraforming Jupiter’s moons, or the terrestrial planets of Mars and Venus, doing so presents many advantages and challenges. At the same time, it presents many moral and ethical dilemmas. And between all of that, terraforming Saturn’s moons would require a massive commitment in time, energy and resources, not to mention reliance on some advanced technologies (some of which haven’t been invented yet).

Continue reading “How Do We Terraform Saturn’s Moons?”