How Do We Settle on the Moon?

An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018
An illustration of a Moon base that could be built using 3D printing and ISRU, In-Situ Resource Utilization. Credit: RegoLight, visualisation: Liquifer Systems Group, 2018

Welcome back to our series on Settling the Solar System! Today, we take a look at the closest celestial neighbor to Earth. That’s right, we’re taking a look at the Moon!

Chances are, we’ve all heard about it more than once in our lifetimes and even have some thoughts of our own on the subject. But for space agencies around the world, futurists, and private aerospace companies, the idea of colonizing the Moon is not a question of “if”, but “when” and “how”. For some, establishing a permanent human presence on the Moon is a matter of destiny while for others, it’s a matter of survival.

Not surprisingly, plans for establishing a human settlement predate both the Moon Landing and the Space Race. In the past few decades, many of these plansa have been dusted off and updated thanks to plans for a renewed era of lunar exploration. So what would it take to establish a permanent human presence on the Moon, when could it happen, and are we up to that challenge?

Continue reading “How Do We Settle on the Moon?”

Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?

Artist's impression of the Lunar Orbital Platform-Gateway. Credit: NASA

On December 11th, 2017, President Trump issued Space Policy Directive-1, a change in national space policy which tasked NASA with the creation of an innovative and sustainable program of exploration that would send astronauts back to the Moon. This was followed on March 26th, 2019, with President Trump directing NASA to land the first astronauts since the Apollo era on the lunar South Pole by 2024.

Named Project Artemis, after twin sister of Apollo and goddess of the Moon in Greek mythology, this project has expedited efforts to get NASA back to the Moon. However, with so much focus dedicated to getting back to the Moon, there are concerns that other projects being neglected – like the development of the Lunar Orbital Platform-Gateway, a central part of creating a sustained human presence on the Moon and going on to Mars.

Continue reading “Is NASA Sacrificing Sending Astronauts to Mars in Order to Get to the Moon Sooner?”

The Mars Project! Von Braun’s Ideas for a Mars Mission. Collaboration with Vintage Space

Humans to Mars!
Humans to Mars!

Did you know that it’s been almost 45 years since humans walked on the surface of the Moon? Of course you do. Anyone who loves space exploration obsesses about the last Apollo landings, and counts the passing years of sadness.

Sure, SpaceX, Blue Origins and the new NASA Space Launch Systems rocket offer a tantalizing future in space. But 45 years. Ouch, so much lost time.

What would happen if we could go back in time? What amazing and insane plans did NASA have to continue exploring the Solar System? What alternative future could we have now, 45 years later?

In order to answer this question, I’ve teamed up with my space historian friend, Amy Shira Teitel, who runs the Vintage Space blog and YouTube Channel. We’ve decided to look at two groups of missions that never happened.

In her part, Amy talks about the Apollo Applications Program; NASA’s original plans before the human exploration of the Moon was shut down. More Apollo missions, the beginnings of a lunar base, and even a human flyby of Venus.

In my half of the series, I look at Werner Von Braun’s insanely ambitious plans to send a human mission to Mars. Put it together with Amy’s episode and you can imagine a space exploration future with all the ambition of the Kerbal Space Program.

Keep mind here that we’re not going to constrain ourselves with the pesky laws of physics, and the reality of finances. These ideas were cool, and considered by NASA engineers, but they weren’t necessarily the best ideas, or even feasible.

So, 2 parts, tackle them in any order you like. My part begins right now.

Werner Von Braun, of course, was the architect for NASA’s human spaceflight efforts during the space race. It was under Von Braun’s guidance that NASA developed the various flight hardware for the Mercury, Gemini and Apollo missions including the massive Saturn V rocket, which eventually put a human crew of astronauts on the Moon and safely returned them back to Earth.

Wernher von Braun. Credit: NASA/Marshall Space Flight Center

Von Braun was originally a German rocket scientist, pivotal to the Nazi “rocket team”, which developed the ballistic V-2 rockets. These unmanned rockets could carry a 1-tonne payload 800 kilometers away. They were developed in 1942, and by 1944 they were being used in war against Allied targets.

By the end of the war, Von Braun coordinated his surrender to the Allies as well as 500 of his engineers, including their equipment and plans for future rockets. In “Operation Paperclip”, the German scientists were captured and transferred to the White Sands Proving Ground in New Mexico, where they would begin working on the US rocket efforts.

Von Braun and others standing in front a V-2 rocket engine at White Sands. Credit: U.S. Army/ Ordway Collection/Space Rocket Center

Before the work really took off, though, Von Braun had a couple of years of relative downtime, and in 1947 and 1948, he wrote a science fiction novel about the human exploration of Mars.

The novel itself was never published, because it was terrible, but it also contained a detailed appendix containing all the calculations, mission parameters, hardware designs to carry out this mission to Mars.

The Mars Project

In 1952, this appendix was published in Germany as “Das Marsproject”, or “The Mars Project”. And an English version was published a few years later. Collier’s Weekly Magazine did an 8-part special on the Mars Project in 1952, captivating the world’s imagination.

Here’s the plan: In the Mars Project, Von Braun envisioned a vast armada of spaceships that would make the journey from Earth to Mars. They would send a total of 10 giant spaceships, each of which would weigh about 4,000 tonnes.

Just for comparison, a fully loaded Saturn V rocket could carry about 140 tonnes of payload into Low Earth Orbit. In other words, they’d need a LOT of rockets. Von Braun estimated that 950 three-stage rockets should be enough to get everything into orbit.

Ships being assembled in orbit. Credit: Collier’s

All the ships would be assembled in orbit, and 70 crewmembers would take to their stations for an epic journey. They’d blast their rockets and carry out a Mars Hohmann transfer, which would take them 8 months to make the journey from Earth to Mars.

The flotilla consisted of 7 orbiters, huge spheres that would travel to Mars, go into orbit and then return back to Earth. It also consisted of 3 glider landers, which would enter the Martian atmosphere and stay on Mars.

Once they reached the Red Planet, they would use powerful telescopes to scan the Martian landscape and search for safe and scientifically interesting landing spots. The first landing would happen at one of the planet’s polar caps, which Von Braun figured was the only guaranteed flat surface for a landing.

A rocket-powered glider descending towards Mars. Credit: Collier’s

At this point, it’s important to note that Von Braun assumed that the Martian atmosphere was about as thick as Earth’s. He figured you could use huge winged gliders to aerobrake into the atmosphere and land safely on the surface.

He was wrong. The atmosphere on Mars is actually only 1% as thick as Earth’s, and these gliders would never work. Newer missions, like SpaceX’s Red Dragon and Interplanetary Transport Ship will use rockets to make a powered landing.

I think if Von Braun knew this, he could have modified his plans to still make the whole thing work.

Landed at the polar cap. Credit: Collier’s

Once the first expedition landed at one of the polar caps, they’d make a 6,400 kilometer journey across the harsh Martian landscape to the first base camp location, and build a landing strip. Then two more gliders would detach from the flotilla and bring the majority of the explorers to the base camp. A skeleton crew would remain in orbit.

Once again, I think it’s important to note that Von Braun didn’t truly understand how awful the surface of Mars really is. The almost non-existent atmosphere and extreme cold would require much more sophisticated gear than he had planned for. But still, you’ve got to admire his ambition.

Preparing the gliders for rocket-powered ascent. Credit: Collier’s

With the Mars explorer team on the ground, their first task was to turn their glider-landers into rockets again. They would stand them up and get them prepped to blast off from the surface of Mars when their mission was over.

The Martian explorers would set up an inflatable habitat, and then spend the next 400 days surveying the area. Geologists would investigate the landscape, studying the composition of the rocks. Botanists would study the hardy Martian plant life, and seeing what kinds of Earth plants would grow.

Zoologists would study the local animals, and help figure out what was dangerous and what was safe to eat. Archeologists would search the region for evidence of ancient Martian civilizations, and study the vast canal network seen from Earth by astronomers. Perhaps they’d even meet the hardy Martians that built those canals, struggling to survive to this day.

Once again, in the 1940s, we thought Mars would be like the Earth, just more of a desert. There’d be plants and animals, and maybe even people adapted to the hardy environment. With our modern knowledge, this sounds quaint today. The most brutal desert on Earth is a paradise compared to the nicest place on Mars. Von Braun did the best he could with the best science of the time.

Finally, at the end of their 400 days on Mars, the astronauts would blast off from the surface of Mars, meet up with the orbiting crew, and the entire flotilla would make the return journey to Earth using the minimum-fuel Mars-Earth transfer trajectory.

The planned trajectories to and from Mars. Credit: Collier’s

Although Von Braun got a lot of things wrong about his Martian mission plan, such as the thickness of the atmosphere and habitability of Mars, he got a lot of things right.

He anticipated a mission plan that required the least amount of fuel, by assembling pieces in orbit, using the Hohmann transfer trajectory, exploring Mars for 400 days to match up Earth and Mars orbits. He developed the concept of using orbiters, detachable landing craft and ascent vehicles, used by the Apollo Moon missions.

The missions never happened, obviously, but Von Braun’s ideas served as the backbone for all future human Mars mission plans.

I’d like to give a massive thanks to the space historian David S.F. Portree. He wrote an amazing book called Humans to Mars, which details 50 years of NASA plans to send humans to the Red Planet, including a fantastic synopsis of the Mars Project.

I asked David about how Von Braun’s ideas influenced human spaceflight, he said it was his…

“… reliance on a conjunction-class long-stay mission lasting 400 days. That was gutsy – in the 1960s, NASA and contractor planners generally stuck with opposition-class short-stay missions. In recent years we’ve seen more emphasis on the conjunction-class mission mode, sometimes with a relatively short period on Mars but lots of time in orbit, other times with almost the whole mission spent on the surface.”

Can you buy Land on the Moon?

Astronauts need spacesuits to survive the temperature of the Moon. Image credit: NASA

Have you ever heard that it’s possible to buy property on the Moon? Perhaps someone has told you that, thanks to certain loopholes in the legal code, it is possible to purchase your very own parcel of lunar land. And in truth, many celebrities have reportedly bought into this scheme, hoping to snatch up their share of land before private companies or nations do.

Despite the fact that there may be several companies willing to oblige you, the reality is that international treaties say that no nation owns the Moon. These treaties also establish that the Moon is there for the good of all humans, and so it’s impossible for any state to own any lunar land. But does that mean private ownership is impossible too? The short answer is yes.

The long answer is, it’s complicated. At present, there are multiple nations hoping to build outposts and settlements on the Moon in the coming decades. The ESA hopes to build a “international village” between 2020 and 2030 and NASA has plans for its own for a Moon base.

The ESA recently elaborated its plan to create a Moon base by the 2030s. Credit: Foster + Partners is part of a consortium set up by the European Space Agency to explore the possibilities of 3D printing to construct lunar habitations. Credit: ESA/Foster + Partners
The ESA recently elaborated its plan to create a Moon base by the 2030s. Credit: ESA/Foster + Partners

The Russian space agency (Roscosmos) is planning to build a lunar base by the 2020s, and the China National Space Agency (CNSA) is planning to build such a base in a similar timeframe, thanks to the success of its Chang’e program.

Because of this, a lot of attention has been focused lately on the existing legal framework for the Moon and other celestial bodies. Let’s take a look at the history of “space law”, shall we?

Outer Space Treaty:

On Jan. 27th, 1967, the United States, United Kingdom, and the Soviet Union sat down together to work out a treaty on the exploration and use of outer space. With the Soviets and Americans locked in the Space Race, there was fear on all sides that any power that managed to put resources into orbit, or get to the Moon first, might have an edge on the others – and use these resources for evil!

As such, all sides signed “The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies” – aka. “The Outer Space Treaty”. This treaty went into effect on Oct. 10th, 1967, and became the basis of international space law. As of September 2015, it has been signed by 104 countries (while another 24 have signed the treaty but have not competed the ratification process).

Sample collection on the surface of the Moon. Apollo 16 astronaut Charles M. Duke Jr. is shown collecting samples with the Lunar Roving Vehicle in the left background. Image: NASA
Astronaut Charles M. Duke Jr. shown collecting samples on the lunar surface with the Lunar Roving Vehicle during the Apollo 16 mission. Credit: NASA

The treaty is overseen the United Nations Office for Outer Space Affairs (UNOOSA). It’s a big document, with lots of articles, subsections, and legalese. But the most relevant clause is Article II of the treaty, where it states:

“Outer space, including the moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means.”

“Loophole” in the Treaty:

Despite clearly saying that Outer Space is the property of all humanity, and can only be used for the good of all, the language is specific to national ownership. As a result, there is no legal consensus on whether or not the treaty’s prohibition are also valid as far as private appropriation is concerned.

However, Article II addresses only the issue of national ownership, and contains no specific language about the rights of private individuals or bodies in owning anything in outer space. Because of this, there are some who have argued that property rights should be recognized on the basis of jurisdiction rather than territorial sovereignty.

About 20 minutes after the first step, Aldrin joined Armstrong on the surface and became the second human to set foot on the Moon. Credit: NASA
About 20 minutes after the first step, Aldrin joined Armstrong on the surface and became the second human to set foot on the Moon. Credit: NASA

Looking to Article VI though, it states that governments are responsible for the actions of any party therein. So it is clear that the spirit of the treaty is meant to apply to all entities, be they public or private. As it states:

“States Parties to the Treaty shall bear international responsibility for national activities in outer space, including the moon and other celestial bodies, whether such activities are carried on by governmental agencies or by non-governmental entities, and for assuring that national activities are carried out in conformity with the provisions set forth in the present Treaty. The activities of non-governmental entities in outer space, including the moon and other celestial bodies, shall require authorization and continuing supervision by the appropriate State Party to the Treaty.”

In other words, any person, organization or company operating in space is answerable to their respective government. But since no specific mention is made of private ownership, there are those who claim that this represents a “loophole” in the treaty which allows them to claim and sell land on the Moon at this time. Because of this ambiguity, there have been attempts to augment the Outer Space Treaty.

The Moon Treaty:

On Dec. 18th, 1979, members of the United Nations presented an agreement which was meant to be a follow-up to the Outer Space Treaty and close its supposed loopholes. Known as the “Agreement Governing the Activities of States on the Moon and Other Celestial Bodies” – aka. “The Moon Treaty” or “Moon Agreement” – this treaty intended to establish a legal framework for the use of the Moon and other celestial bodies.

On the Lunar Surface – Apollo 11 astronauts trained on Earth to take individual photographs in succession in order to create a series of frames that could be assembled into panoramic images. This frame from fellow astronaut Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA
Buzz Aldrin’s panorama of the Apollo 11 landing site is the only good picture of mission commander Neil Armstrong on the lunar surface. Credit: NASA

Much like the Outer Space Treaty, the agreement established that the Moon should be used for the benefit of all humanity and not for the sake of any individual state. The treaty banned weapons testing, declared that any scientific research must be open and shared with the international community, and that nations and individuals and organizations could not claim anything.

In practice, the treaty failed because it has not been ratified by any state that engages in crewed space exploration or has domestic launch capability. This includes the United States, the larger members of the ESA, Russia, China, Japan and India. Though it expressly forbids both national and private ownership of land on the Moon, or the use thereof for non-scientific, non-universal purposes, the treaty effectively has no teeth.

Bottom line, there is nothing that expressly forbids companies from owning land on the Moon. However, with no way to claim that land, anyone attempting to sell land to prospective buyers is basically selling snake oil. Any documentation that claims you own land on the Moon is unenforceable, and no nation on the planet that has signed either the Outer Space Treaty or the Moon Treaty will recognize it.

Moon Map
The annotated features on the lunar nearside. You’ll notice, not one of them says “Land for Sale!” Credit: Wikimedia Commons/ Peter Freiman(Cmglee). Background photograph by Gregory H. Revera.

Then again, if you were able to fly up to the Moon and build a settlement there, it would be pretty difficult for anyone to stop you. But don’t expect that to the be the last word on the issue. With multiple space agencies looking to create “international villages” and companies hoping to create a tourist industry, you could expect some serious legal battles down the road!

But of course, this is all academic. With no atmosphere to speak of, temperatures reaching incredible highs and lows – ranging from 100 °C (212 °F) to -173 °C (-279.4 °F) – its low gravity (16.5 % that of Earth), and all that harsh Moon dust, nobody outside of trained astronauts (or the clinically insane) should want to spend a significant amount of time there!

We have written many interesting articles about the Moon here at Universe Today. Here’s Can you Really Name a Star?, Make a Deal for Land on the Moon, and our series on Building a Moon Base.

Want more information about the Moon? Here’s NASA’s Lunar and Planetary Science page. And here’s NASA’s Solar System Exploration Guide.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Sources:

What Were the First Lunar Landings?

A picture of Earth taken by Apollo 11 astronauts. Credit: NASA

The moment that the Apollo-11 mission touched down on the Moon, followed by Neil Armstrong‘s famous words – “That’s one small step for [a] man, one giant leap for mankind” – is one of the most iconic moments in history. The culmination of years of hard work and sacrifice, it was an achievement that forever established humanity as a space-faring species.

And in the year’s that followed, several more spacecraft and astronauts landed on the Moon. But before, during and after these missions, a number of other “lunar landings” were accomplished as well. Aside from astronauts, a number of robotic missions were mounted which were milestones in themselves. So exactly what were the earliest lunar landings?

Robotic Missions:

The first missions to the Moon consisted of probes and landers, the purpose of which was to study the lunar surface and determine where crewed missions might land. This took place during the 1950s where both the Soviet Space program and NASA sent landers to the Moon as part of their Luna and Pioneer programs.

The Soviet Luna 2 probe, the first man-made object to land on the Moon. Credit: NASA
The Soviet Luna 2 probe, the first man-made object to land on the Moon. Credit: NASA

After several attempts on both sides, the Soviets managed to achieve a successful lunar landing on Sept. 14th, 1959 with their Luna-2 spacecraft. After flying directly to the Moon for 36 hours, the spacecraft achieved a hard landing (i.e. crashed) on the surface west of the Mare Serenitatis – near the craters Aristides, Archimedes, and Autolycus.

The primary objective of the probe was to help confirm the discovery of the solar wind, turned up by the Luna-1 mission. However, with this crash landing, it became the first man-made object to touch down on the Moon. Upon impact, it scattered a series of Soviet emblems and ribbons that had been assembled into spheres, and which broke apart upon hitting the surface.

The next craft to make a lunar landing was the Soviet Luna-3 probe, almost a month after Luna-2 did. However, unlike its predecessor, the Luna-3 probe was equipped with a camera and managed to send back the first images of the far side of the Moon.

The first US spacecraft to impact the Moon was the Ranger-7 probe, which crashed into the Moon on July 31st, 1964. This came after a string of failures with previous spacecraft in the Pioneer and Ranger line of robotic spacecraft. Prior to impact, it too transmitted back photographs of the Lunar surface.

The Ranger 7 lander, which became the first US spacecraft to land on the Moon. Credit: NASA
The Ranger 7 lander, which became the first US spacecraft to land on the Moon. Credit: NASA

This was followed by the Ranger-8 lander, which impacted the surface of the Moon on Feb. 20th, 1965. The spacecraft took 7,000 high-resolution images of the Moon before crashing onto the surface, just 24 km from the Sea of Tranquility, which NASA had been surveying for the sake of their future Apollo missions. These images, which yielded details about the local terrain, helped to pave the way for crewed missions.

The first spacecraft to make a soft landing on the Moon was the Soviet Luna-9 mission, on February 3rd, 1966. This was accomplished through the use of an airbag system that allowed the probe to survive hitting the surface at a speed of 50 km/hour. It also became the first spacecraft to transmit photographic data back to Earth from the surface of another celestial body.

The first truly soft landing was made by the US with the Surveyor-1 spacecraft, which touched down on the surface of the Moon on June 2nd, 1966. After landing in the Ocean of Storms, the probe transmitted data back to Earth that would also prove useful for the eventual Apollo missions.

Several more Surveyor missions and one more Luna mission landed on the Moon before crewed mission began, as part of NASA’s Apollo program.

Launch of Apollo 11. On July 16, 1969, the huge, 363-feet tall Saturn V rocket launches on the Apollo 11 mission from Pad A, Launch Complex 39, Kennedy Space Center, at 9:32 a.m. EDT. Onboard the Apollo 11 spacecraft are astronauts Neil A. Armstrong, commander; Michael Collins, command module pilot; and Edwin E. Aldrin Jr., lunar module pilot. Apollo 11 was the United States' first lunar landing mission. While astronauts Armstrong and Aldrin descended in the Lunar Module "Eagle" to explore the Sea of Tranquility region of the moon, astronaut Collins remained with the Command and Service Modules "Columbia" in lunar orbit. Image credit: NASA
Launch of Apollo 11 mission aboard a Saturn V rocket on July 16th, 1969. Credit: NASA

Crewed Missions:

The first crewed landing on the Moon was none other than the historic Apollo-11 mission, which touched down on the lunar surface on July 20th, 1969. After achieving orbit around the Moon in their Command Module (aka. the Columbia module), Neil Armstrong and Buzz Aldrin rode the Lunar Excursion (Eagle) Module down to the surface of the Moon.

Once they had landed, Armstrong radioed to Mission Control and announced their arrival by saying: “Houston, Tranquility Base here. The Eagle has landed.” Once the crew had gone through their checklist and depressurized the cabin, the Eagles’ hatch was opened and Armstrong began walking down the ladder to the Lunar surface first.

When he reached the bottom of the ladder, Armstrong said: “I’m going to step off the LEM now” (referring to the Lunar Excursion Module). He then turned and set his left boot on the surface of the Moon at 2:56 UTC July 21st, 1969, and spoke the famous words “That’s one small step for [a] man, one giant leap for mankind.”

About 20 minutes after the first step, Aldrin joined Armstrong on the surface and became the second human to set foot on the Moon. The two then unveiled a plaque commemorating their flight, set up the Early Apollo Scientific Experiment Package, and planted the flag of the United States before blasting off in the Lunar Module.

Aldrin on the Moon. Astronaut Buzz Aldrin walks on the surface of the moon near the leg of the lunar module Eagle during the Apollo 11 mission. Mission commander Neil Armstrong took this photograph with a 70mm lunar surface camera. While astronauts Armstrong and Aldrin explored the Sea of Tranquility region of the moon, astronaut Michael Collins remained with the command and service modules in lunar orbit. Image Credit: NASA
Buzz Aldrin on the Moon during the Apollo 11 mission, with the reflection of Neil Armstrong visible in his face plate. Credit: NASA

Several more Apollo missions followed which expanded on the accomplishments of the Apollo-11 crew. The US and NASA would remain the only nation and space agency to successfully land astronauts on the Moon, an accomplishment that has not been matched to this day.

Today, multiple space agencies (and even private companies) are contemplating returning to the Moon. Between NASA, the European Space Agency (ESA), the Russian Space Agency (Roscosmos), and the Chinese National Space Administration (CNSA), there are several plans for crewed missions, and even the construction of permanent bases on the Moon.

We have written many great articles about the Moon here at Universe Today. Here’s Who Were the First Men on the Moon?, How Many People Have Walked on the Moon?, How Do We Know the Moon Landing Isn’t Fake?, Where Were You When Apollo 11 Landed on the Moon?, What Does The Apollo 11 Moon Landing Site Look Like Today?

Want more information about the Moon? Here’s NASA’s Lunar and Planetary Science page. And here’s NASA’s Solar System Exploration Guide.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Sources:

Falcon Heavy Vs. Saturn V

The Saturn V (left) and the Falcon Heavy (right). Credit: NASA/SpaceX

Its an Epic Rocket Battle! Or a Clash of the Titans, if you will. Except that in this case, the titans are the two of the heaviest rockets the world has ever seen. And the contenders couldn’t be better matched. On one side, we have the heaviest rocket to come out of the US during the Space Race, and the one that delivered the Apollo astronauts to the Moon. On the other, we have the heaviest rocket created by the NewSpace industry, and which promises to deliver astronauts to Mars.

And in many respects, the Falcon Heavy is considered to be the successor of the Saturn V. Ever since the latter was retired in 1973, the United States has effectively been without a super-heavy lifter. And with the Space Launch System still in development, the Falcon Heavy is likely to become the workhorse of both private space corporations and space agencies in the coming years.

So let’s compare these two rockets, taking into account their capabilities, specifications, and the history of their development and see who comes out on top. BEGIN!

Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA
Launch of the modified Saturn V rocket carrying the Skylab space station. Credit: NASA

Development History:

The development of the Saturn V began in 1946 with Operation Paperclip, a US government program which led to the recruitment of Wernher von Braun and several other World War II-era German rocket scientists and technicians. The purpose of this program was to leverage the expertise of these scientists to give the US an edge in the Cold War through the development of intercontinental ballistic missiles (ICBMs).

Between 1945 and the mid-to-late 50s von Braun acted as an advisor to US armed forces for the sake of developing military rockets only. It was not until 1957, with the Soviet launch of Sputnik-1 using an R-7 rocket – a Soviet ICBM also capable of delivering thermonuclear warheads –  that the US government began to consider the use of rockets for space exploration.

Thereafter, von Braun and his team began developing the Jupiter series of rockets –  a modified Redstone ballistic missile with two solid-propellant upper stages. These proved to be a major step towards the Saturn V, hence why the Jupiter series was later nicknamed “an infant Saturn”. Between 1960 and 1962, the Marshall Space Flight Center began designing the rockets that would eventually be used by the Apollo Program.

After several iterations, the Saturn C-5 design (later named the Saturn V) was created. By 1964, it was selected for NASA’s Apollo Program as the rocket that would conduct a Lunar Orbit Rendezvous (LRO). This plan called for a large rocket to launch a single spacecraft to the Moon, but only a small part of that spacecraft (the Lunar Module) would actually land on the surface. That smaller module would then rendezvous with the main spacecraft – the Command/Service Module (CSM) – in lunar orbit and the crew would return home.

A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.
A Saturn V launching the historic Apollo 11 mission. Credit: NASA/Michael Vuijlsteke. Public Domain image.

Development of the Falcon Heavy was first announced in 2011 at the National Press Club in Washington D.C. In a statement, Musk drew direct comparisons to the Saturn V, claiming that the Falcon Heavy would deliver “more payload to orbit or escape velocity than any vehicle in history, apart from the Saturn V moon rocket, which was decommissioned after the Apollo program.”

Consistent with this promise of a “super heavy-lift” vehicle, SpaceX’s original specifications indicated a projected payload of 53,000 kg (117,000 lbs) to Low-Earth Orbit (LEO), and 12,000 kgg (26,000 lbs) to Geosynchronous Transfer Orbit (GTO). In 2013, these estimates were revised to 54,400 kg (119,900 lb) to LEO and 22,200 kg (48,900 lb) to GTO, as well as 16,000 kilograms (35,000 lb) to translunar trajectory, and 13,600 kilograms (31,000 lb) on a trans-Martian orbit to Mars, and 2,900 kg (6,400 lb) to Pluto.

In 2015, the design was changed – alongside changes to the Falcon 9 v.1.1 – to take advantage of the new Merlin 1D engine and changes to the propellant tanks. The original timetable, proposed in 2011, put the rocket’s arrival at SpaceX’s west-coast launch location – Vandenberg Air Force Base in California – at before the end of 2012.

The first launch from Vandenberg was take place in 2013, while the first launch from Cape Canaveral was to take place in late 2013 or 2014. But by mid-2015, delays caused by failures with Falcon 9 test flights caused the first launch to be pushed to late 2016. The rocket has also been relocated to the Kennedy Space Center Launch Complex in Florida.

Artist's concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX
Artist’s concept of the SpaceX Red Dragon spacecraft launching to Mars on SpaceX Falcon Heavy as soon as 2018. Credit: SpaceX

SpaceX also announced in July 0f 2016 that it planned to expand its landing facility near Cape Canaveral to take advantage of the reusable technology. With three landing pads now planned (instead of one on land and a drone barge at sea), they hope to be able to recover all of the spent boosters that will be used for the launch of a Falcon Heavy.

Design:

Both the Saturn V and Falcon Heavy were created to do some serious heavy lifting. Little wonder, since both were created for the sole purpose of “slipping the surly bonds” of Earth and putting human beings and cargo onto other celestial bodies. For its part, the Saturn V‘s size and payload surpassed all other previous rockets, reflecting its purpose of sending astronauts to the Moon.

With the Apollo spacecraft on top, it stood 111 meters (363 feet) tall and was 10 meters (33 feet) in diameter, without fins. Fully fueled, the Saturn V weighed 2,950 metric tons (6.5 million pounds), and had a payload capacity estimated at 118,000 kg (261,000 lbs) to LEO, but was designed for the purpose of sending 41,000 kg (90,000 lbs) to Trans Lunar Insertion (TLI).

Later upgrades on the final three missions boosted that capacity to 140,000 kg (310,000 lbs) to LEO and 48,600 kg (107,100 lbs) to the Moon. The Saturn V was principally designed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, while numerous subsystems were developed by subcontractors. This included the engines, which were designed by Rocketdyne, a Los Angeles-based rocket company.

Diagram of Saturn V Launch Vehicle. Credit: NASA/MSFC
Diagram of Saturn V Launch Vehicle. Credit: NASA/MSFC

The first stage (aka. S-IC) measured 42 m (138 feet) tall and 10 m (33 feet) in diameter, and had a dry weight of 131 metric tons (289,000 lbs) and a total weight of over 2300 metric tons (5.1 million lbs) when fully fueled. It was powered by five Rocketdyne F-1 engines arrayed in a quincunx (four units arranged in a square, and the fifth in the center) which provided it with 34,000 kN (7.6 million pounds-force) of thrust.

The Saturn V consisted of three stages – the S-IC first stage, S-II second stage and the S-IVB third stage – and the instrument unit. The first stage used Rocket Propellant-1 (RP-1), a form of kerosene similar to jet fuel, while the second and third stages relied on liquid hydrogen for fuel. The second and third stage also used solid-propellant rockets to separate during launch.

The Falcon Heavy is based around a core that is a single Falcon 9 with two additional Falcon 9 first stages acting as boosters. While similar in concept to the Delta IV Heavy launcher and proposals for the Atlas V HLV and Russian Angara A5V, the Falcon Heavy was specifically designed to exceed all current designs in terms of operational flexibility and payload. As with other SpaceX rockets, it was also designed to incorporate reusability.

The rocket relies on two stages, with the possibility of more to come, that measure 70 m (229.6 ft) in height and 12.2 m (39.9 ft) in width. The first stage is powered by three Falcon 9 cores, each of which is equipped with nine Merlin 1D engines. These are arranged in a circular fashion with eight around the outside and one in th middle (what SpaceX refers to as the Octaweb) in order to streamline the manufacturing process. Each core also includes four extensible landing legs and grid fins to control descent and conduct landings.

Chart comparing SpaceX's Falcon 9 and Falcon Heavy. Credit: SpaceX
Chart comparing SpaceX’s Falcon 9 and Falcon Heavy rocket. Credit: SpaceX

The first stage of the Falcon Heavy relies on Subcooled LOX (liquid oxygen) and chilled RP-1 fuel; while the upper stage also uses them, but under normal conditions. The Falcon Heavy has a total sea-level thrust at liftoff of 22,819 kN (5,130,000 lbf) which rises to 24,681 kN (5,549,000 lbf) as the craft climbs out of the atmosphere. The upper stage is powered by a single Merlin 1D engine which has a thrust of 34 kN (210,000 lbf) and has been modified for use in a vacuum.

Although not a part of the initial Falcon Heavy design, SpaceX has been extending its work with reusable rocket systems to ensure that the boosters and core stage can be recovered. Currently, no work has been announced on making the upper stages recoverable as well, but recent successes recovering the first stages of the Falcon 9 may indicate a possible change down the road.

The consequence of adding reusable technology will mean that the Falcon Heavy will have a reduced payload to GTO. However, it will also mean that it will be able to fly at a much lower cost per launch. With full reusability on all three booster cores, the GTO payload will be approximately 7,000 kg (15,000 lb). If only the two outside cores are reusable while the center is expendable, the GTO payload would be approximately 14,000 kg (31,000 lb).

Cost:

The Saturn V rocket was by no means a small investment. In fact, one of the main reasons for the cancellation of the last three Apollo flights was the sheer cost of producing the rockets and financing the launches. Between 1964 and 1973, a grand total of $6.417 billion USD was appropriated for the sake of research, development, and flights.

Looking at the business end of the Saturn V as it gets moved towards the barge that will transport it to Mississippi. Image: Infinity Science Center.
A Saturn V rocket viewed from the rear, showing its five Rocketdyne F-1 engines. Credit: Infinity Science Center

Adjusted to 2016 dollars, that works out to $41.4 billion USD. In terms of individual launches, the Saturn V would cost between $185 and $189 million USD, of which $110 million was spent on production alone. Adjusted for inflation, this works out to approximately $1.23 billion per launch, of which $710 million went towards production.

By contrast, when Musk appeared before the US Senate Committee on Commerce, Science and Transportation in May 2004, he stated that his ultimate goal with the development of SpaceX was to bring the total cost per launch down to $1,100 per kg ($500/pound). As of April 2016, SpaceX has indicated that a Falcon Heavy could lift 2268 kg (8000 lbs) to GTO for a cost of $90 million a launch – which works out to $3968.25 per kg ($1125 per pound).

No estimates are available yet on how a fully-reusable Falcon Heavy will further reduce the cost of individual launches. And again, it will vary depending on whether or not the boosters and the core, or just the external boosters are recoverable. Making the upper stage recoverable as well will lead to a further drop in costs, but will also likely impact performance.

Specifications:

So having covered their backgrounds, designs and overall cost, let’s move on to a side-by-side comparison of these two bad boys. Let’s see how they stack up, pound for pound, when all things are considered – including height, weight, lift payload, and thrust.

Saturn V: Falcon Heavy:
Height: 110.6 m (363 ft) 70 m (230 ft)
Diameter: 10.1 m (33 ft) 12.2 m (40 ft)
Weight: 2,970,000 kg
(6,540,000 lbs)
1,420,788 kg
(3,132,301 lb)
Stages:  3  2+
Engines
(1st Stage):
5 Rocketdyne F-1 3 x 9 Merlin 1D
   2nd stage 5 Rocketdyne J-2 1 Merlin 1D
   3rd stage 1 Rocketdyne J-2
Thrust
(1st stage):
34,020 kN

22,918 kN (sea level);
24,681 kN (vacuum)

   2nd stage 4,400 kN 934 kN
   3rd stage 1,000 kN
Payload (LEO): 140,000 kg
(310,000 lbs)
54,400 kg
(119,900 lbs)
Payload (TLI):  48,600 kg
(107,100 lbs)

 16,000 kg
(35,000 lbs)

When put next to each other, you can see that the Saturn V has the advantage when it comes to muscle. It’s bigger, heavier, and can deliver a bigger payload to space. On the other hand, the Falcon Heavy is smaller, lighter, and a lot cheaper. Whereas the Saturn V can put a heavier payload into orbit, or send it on to another celestial body, the Falcon Heavy could perform several missions for every one mounted by its competitor.

But whereas the contributions of the venerable Saturn V cannot be denied, the Falcon Heavy has yet to demonstrate its true worth to space exploration. In many ways, its like comparing a retired champion to an up-and-comer who, despite showing lots of promise and getting all the headlines, has yet to win a single bout.

But should the Falcon Heavy prove successful, it will likely be recognized as the natural successor to the Saturn V. Ever since the latter was retired in 1973, NASA has been without a rocket with which to mount long-range crewed missions. And while heavy-lift options have been available – such as the Delta IV Heavy and Atlas V – none have had the performance, payload capacity, or the affordability that the new era of space exploration needs.

In truth, this battle will take several years to unfold. Only after the Falcon Heavy is rigorously tested and SpaceX manages to deliver on their promises of cheaper space launches, a return to the Moon and a mission to Mars (or fail to, for that matter) will we be able to say for sure which rocket was the true champion of human space exploration! But in the meantime, I’m sure there’s plenty of smack talk to be had by fans of both! Preferably in a format that rhymes!

Further Reading: NASA, SpaceX

And a tip of the hat to ERB!

How Do We Terraform The Moon?

Artist's concept of a terraformed moon. According to a new study, the Moon may have had periods of habitability in its past where it had an atmosphere and liquid water on its surface. Credit: Ittiz

Welcome back to our ongoing series, “The Definitive Guide To Terraforming”! We continue with a look at the Moon, discussing how it could one day be made suitable for human habitation.

Ever since the beginning of the Space Age, scientists and futurists have explored the idea of transforming other worlds to meet human needs. Known as terraforming, this process calls for the use of environmental engineering techniques to alter a planet or moon’s temperature, atmosphere, topography or ecology (or all of the above) in order to make it more “Earth-like”. As Earth’s closest celestial body, the Moon has long been considered a potential site.

All told, colonizing and/or terraforming the Moon would be comparatively easy compared to other bodies. Due to its proximity, the time it would take to transport people and equipment to and from the surface would be significantly reduced, as would the costs of doing so. In addition, it’s proximity means that extracted resources and products manufactured on the Moon could be shuttled to Earth in much less time, and a tourist industry would also be feasible.

Continue reading “How Do We Terraform The Moon?”

Moonbase by 2022 For $10 Billion, Says NASA

Based on a series of articles that were recently made available to the public, NASA predicts it could build a base on the Moon by 2022, and for cheaper than expected. Credit: NASA

Returning to the Moon has been the fevered dream of many scientists and astronauts. Ever since the Apollo Program culminated with the first astronauts setting foot on the Moon on July 20th, 1969, we have been looking for ways to go back to the Moon… and to stay there. In that time, multiple proposals have been drafted and considered. But in every case, these plans failed, despite the brave words and bold pledges made.

However, in a workshop that took place in August of 2014, representatives from NASA met with Harvard geneticist George Church, Peter Diamandis from the X Prize Foundation and other parties invested in space exploration to discuss low-cost options for returning to the Moon. The papers, which were recently made available in a special issue of New Space, describe how a settlement could be built on the Moon by 2022, and for the comparatively low cost of $10 billion.

Continue reading “Moonbase by 2022 For $10 Billion, Says NASA”

Who was Gerard Kuiper?

Gerard Kuiper, founder of the Lunar and Planetary Laboratory. Credit: lpl.arizona.edu

In the outer reaches of the Solar System, beyond the orbit of Neptune, lies a region permeated by celestial objects and minor planets. This region is known as the “Kuiper Belt“, and is named in honor of the 20th century astronomer who speculated about the existence of such a disc decades before it was observed. This disc, he reasoned, was the source of the Solar Systems many comets, and the reason there were no large planets beyond Neptune.

Gerard Kuiper is also regarded by many as being the “father of planetary science”. During the 1960s and 70s, he played a crucial role in the development of infrared airborne astronomy, a technology which led to many pivotal discoveries that would have been impossible using ground-based observatories. At the same time, he helped catalog asteroids, surveyed the Moon, Mars and the outer Solar System, and discovered new moons.

Continue reading “Who was Gerard Kuiper?”

What Does NASA Stand For?

NASA Logo. Credit: NASA

Chances are that if you have lived on this planet for the past half-century, you’ve heard of NASA. As the agency that is in charge of America’s space program, they put a man on the Moon, launched the Hubble Telescope, helped establish the International Space Station, and sent dozens of probes and shuttles into space.

But do you know what the acronym NASA actually stands for? Well, NASA stands for the National Aeronautics and Space Administration. As such, it oversees America’s spaceflight capabilities and conducts valuable research in space. NASA also has various programs on Earth dedicated to flight, hence why the term “Aeronautics” appears in the agency’s name.

Continue reading “What Does NASA Stand For?”