Station Astronauts Unload Cygnus Science; Antares Launch Gallery

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – Astronauts aboard the International Space Station are now busily unloading nearly four tons of science experiments, research gear, station equipment and crew supplies – following the spectacular launch of the Orbital ATK Antares rocket earlier this week on Sunday Nov. 12 from Virginia’s eastern shore that propelled the Cygnus cargo freighter to an on time arrival two days later on Tuesday Nov. 14.

The Orbital ATK Cygnus spacecraft was christened the S.S. Gene Cernan and named in honor of NASA’s Apollo 17 lunar landing commander; Gene Cernan.

Among the goodies delivered by the newly arrived S.S. Gene Cernan Cygnus OA-8 supply run to resident the crew of six astronauts and cosmonauts from the US, Russia and Italy are ice cream, pizza and presents for the holidays. They are enjoying the fruits of the earthy labor of thousands of space workers celebrating the mission’s success.

The six-member Expedition 53 crew poses for a portrait inside the Japanese Kibo laboratory module with the VICTORY art spacesuit that was hand-painted by cancer patients in Russia and the United States. On the left (from top to bottom) are NASA astronauts Joe Acaba and Mark Vande Hei with cosmonaut Alexander Misurkin of Roscosmos. On the right (from top to bottom) are European Space Agency astronaut Paolo Nespoli, cosmonaut Sergey Ryazanskiy of Roscosmos and Expedition 53 Commander Randy Bresnik of NASA. Credit: NASA/ESA/Roscosmos

The journey began with the flawless liftoff of the two stage Antares rocket shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Check out the expanding gallery of launch imagery and videos captured by this author and several space colleagues of Antares prelaunch activities around the launch pad and through Sunday’s stunningly beautiful sunrise blastoff.

After a carefully choreographed series of intricate thruster firings to raise its orbit in an orbital pursuit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

The Orbital ATK Cygnus OA-8 spacecraft is pictured after it had been grappled with the Canadarm2 robotic arm by astronauts Paolo Nespoli and Randy Bresnik on Nov. 14, 2017. Credit: NASA

Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik then deftly maneuvered the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm to grapple and successfully capture the Cygnus cargo freighter at 5:04 a.m., Tuesday Nov. 14.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, then maneuvered the arm and robotic hand grappling Cygnus towards the exterior hull and berthed the cargo ship at the Earth-facing port of the stations Unity module.

The berthing operation was completed at 7:15 a.m. after all 16 bolts were driven home for hard mating as the station was flying 252 miles over the North Pacific in orbital night.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Apollo 17 was NASA’s final lunar landing mission. Gere Cernan was the last man to walk on the Moon.

A portrait of Gene Cernan greets the astronauts as they open the hatch to the Cygnus cargo spacecraft named in his honor. Credit: NASA

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and release 14 CubeSats using a NanoRacks deployer, a record number for the spacecraft.

It will then be commanded to fire its main engine to lower its orbit and carry out a fiery and destructive re-entry into Earth’s atmosphere over the Pacific Ocean as it disposes of several tons of trash.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 manifest includes:

Crew Supplies 2,734.1 lbs. / 1,240 kg
Science Investigations 1631.42 lbs. / 740 kg
Spacewalk Equipment 291.0 lbs. / 132 kg
Vehicle Hardware 1,875.2 lbs. / 851 kg
Computer Resources 75.0 lbs. / 34 kg

Total Cargo: 7,359.0 lbs. / 3,338 kg
Total Pressurized Cargo with Packaging: 7,118.7 lbs. / 3,229 kg
Unpressurized Cargo (NanoRacks Deployer): 240.3 lbs. / 109 kg

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Orbital ATK’s Antares rocket and S.S. Gene Cernan Cygnus OA-8 resupply ship pierce the oceanside clouds over NASA Wallops Flight Facility in Virginia, after sunrise liftoff on Nov. 12, 2017 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Orbital ATK Antares rocket and Cygnus resupply ship on Nov. 12, 2017 from NASA Wallops in Virginia to the International Space Station. Credit: Trevor Mahlmann
Orbital ATK Antares rocket lifts off on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia to the International Space Station. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
Orbital ATK Antares rocket and Cygnus spacecraft on the launch pad prior to blastoff for International Space Station on Nov. 12, 2017 from NASA’s Wallops Flight Facility in Virginia. Credit: Peter Kremer
The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com
Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

S.S Gene Cernan Honoring Last Moonwalker Arrives at International Space Station Carrying Tons of Research Gear and Supplies

The Canadarm2 robotic arm is seen grappling the Orbital ATK S.S. Gene Cernan Cygnus resupply ship on Nov. 14, 2017 for berthing to the the International Space Station. Credit: NASA TV

The S.S. Gene Cernan Cygnus spacecraft named in honor of the Apollo 17 lunar landing commander and launched by Orbital ATK from the eastern shore of Virgina at breakfast time Sunday, Nov. 12, arrived at the International Space Station early Tuesday morning, Nov 14, carrying over 3.7 tons of research equipment and supplies for the six person resident crew.

Soon thereafter at 5:04 a.m., Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) assisted by NASA astronaut Randy Bresnik successfully captured Orbital ATK’s Cygnus cargo freighter using the International Space Station’s 57.7-foot-long (17.6 meter-long) Canadarm2 robotic arm.

The station was orbiting 260 statute miles over the South Indian Ocean at the moment Nespoli grappled the S.S. Gene Cernan Cygnus spacecraft with the Canadian-built robotic arm.

Nespoli and Bresnik were working at a robotics work station inside the seven windowed domed Cupola module that offers astronauts the most expansive view outside to snare Cygnus with the robotic arms end effector.

The Cygnus cargo freighter – named after the last man to walk on the Moon – reached its preliminary orbit nine minutes after blasting off early Sunday atop the upgraded 230 version of the Orbital ATK Antares rocket from NASA’s Wallops Flight Facility in Virginia.

The flawless liftoff of the two stage Antares rocket took place shortly after sunrise Sunday at 7:19 a.m. EST, Nov. 12, rocket from Pad-0A at NASA’s Wallops Flight Facility in Virginia.

Orbital ATK Antares rocket blasts off from the ‘On-Ramp’ to the International Space Station on Nov. 12, 2017 carrying the S.S. Gene Cernan Cygnus OA-8 cargo spacecraft from Pad 0A at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

Sunday’s spectacular Antares launch delighted spectators – but came a day late due to a last moment scrub on the originally planned Veteran’s Day liftoff, Saturday, Nov. 11, when a completely reckless pilot flew below radar into restricted airspace just 5 miles away from the launch pad – forcing a sudden and unexpected halt to the countdown under absolutely perfect weather conditions.

After a carefully choreographed series of intricate thruster firings to raise its orbit over the next two days, the Cygnus spacecraft on the OA-8 resupply mission for NASA arrived in the vicinity of the orbiting research laboratory.

With Cygnus firmly in the grip of the robots hand, ground controllers at NASA’s Mission Control at the Johnson Space Center in Texas, maneuvered the arm towards the exterior hull and berth the cargo ship at the Earth-facing port of the stations Unity module.

1st stage capture was completed at 7:08 a. EST Nov 14.

After driving in the second stage gang of bolts, hard mate and capture were completed at 7:15 a.m.

The station was flying 252 miles over the North Pacific in orbital night at the time of berthing.

The Cygnus spacecraft dubbed OA-8 is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing and reliable basis.

NASA TV provided live coverage of the rendezvous and grappling.

Including Cygnus there are now five visiting vehicle spaceships parked at the space station including also the Russian Progress 67 and 68 resupply ships and the Russian Soyuz MS-05 and MS-06 crew ships.

International Space Station Configuration. Five spaceships are parked at the space station including the Orbital ATK Cygnus after Nov. 14, 2017 arrival, the Progress 67 and 68 resupply ships and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery re-entry into Earth’s atmosphere as it disposes of several tons of trash.

On this flight, the Cygnus OA-8 spacecraft is jam packed with its heaviest cargo load to date!

Altogether over 7,400 pounds of science and research, crew supplies and vehicle hardware launched to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 300 ongoing research investigations.

Among the experiments flying aboard Cygnus are the coli AntiMicrobial Satellite (EcAMSat) mission, which will investigate the effect of microgravity on the antibiotic resistance of E. coli, the Optical Communications and Sensor Demonstration (OCSD) project, which will study high-speed optical transmission of data and small spacecraft proximity operations, the Rodent Research 6 habitat for mousetronauts who will fly on a future SpaceX cargo Dragon.

Cernan was commander of Apollo 17, NASA’s last lunar landing mission and passed away in January at age 82. He set records for both lunar surface extravehicular activities and the longest time in lunar orbit on Apollo 10 and Apollo 17.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

Under the Commercial Resupply Services-1 (CRS-1) contract with NASA, Orbital ATK will deliver approximately 66,000 pounds (30,000 kilograms) of cargo to the space station. OA-8 is the eighth of these missions.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

Beginning in 2019, the company will carry out a minimum of six cargo missions under NASA’s CRS-2 contract using a more advanced version of Cygnus.

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of Apollo17, NASA’s final lunar landing mission, on December 7, 1972, as seen from the KSC press site. Credit: Mark and Tom Usciak

………….

Ken’s upcoming outreach events:

Learn more about the upcoming SpaceX Falcon 9 Zuma launch on Nov 16, 2017, upcoming Falcon Heavy and CRS-13 resupply launches, NASA missions, ULA Atlas & Delta launches, SpySats and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Nov 15, 17: “SpaceX Falcon 9 Zuma launch, ULA Atlas NRO NROL-52 spysat launch, SpaceX SES-11, CRS-13 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com
The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/Kenkremer.com
Orbital ATK’s eighth contracted cargo delivery flight to the International Space Station successfully launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at NASA’s Wallops Flight Facility in Virginia, Sunday, Nov. 12, 2017 carrying the Cygnus OA-8 resupply spacecraft. Credit: Ken Kremer/kenkremer.com
Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

Orbital ATK Antares Rocket Set for Breakfast Blastoff from Virginia to Space Station with S.S. Gene Cernan Cargo Freighter Nov. 11: Watch Live

The Orbital ATK Antares rocket topped with the Cygnus OA-8 spacecraft creates a beautiful water reflection in this prelaunch nighttime view across the inland waterways. Launch is targeted for Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – The Orbital ATK Antares rocket is all set for a breakfast time blastoff from the commonwealth of Virginia to the International Space Station for NASA with a Cygnus cargo freighter named in honor of Gene Cernan, the last man to walk on the Moon.

The Antares launch is targeted for 7:37 a.m. EST on Saturday, Nov. 11, 2017 carrying the S.S. Gene Cernan resupply vessel that’s loaded with nearly four tons of science and supplies for the six person crew serving on the station.

Antares liftoff with the Cygnus spaceship also known as OA-8 will take place from launch Pad-0A at NASA’s Wallops Flight Facility located along the eastern shore of Virginia.

The Orbital ATK Antares rocket, with the Cygnus OA-8 spacecraft onboard, is raised into the vertical position on launch Pad-0A for planned launch on Nov. 11, 2017, at NASA’s Wallops Flight Facility in Virginia, in this nighttime view. Credit: Ken Kremer/kenkremer

The rocket was integrated with the Cygnus OA-8 supply ship this week and rolled out to the launch pad starting around 1 a.m. EST this morning Thursday, Nov. 9.

The Cygnus OA-8 spacecraft is Orbital ATK’s eighth contracted cargo resupply mission with NASA to the International Space Station under the unmanned Commercial Resupply Services (CRS) program to stock the station with supplies on a continuing basis.

The upgraded Antares rocket was erected into the vertical position and is now poised for liftoff early Saturday morning.

Tens of millions of spectators could potentially witness the launch with their own eyeballs since NASA’s Wallops Flight Facility is located within a short driving distance of the most heavily populated area of the United States along the eastern seaboard.

Since Saturdays weather forecast is quite favorable at this time this could be your chance to watch an exciting launch on a critical mission for NASA with your family or friends.

See detailed visibility map below.

But be aware that temperatures will be rather chilly, setting record or near record lows in the 20s throughout the Northeast and Atlantic coast states.

If you are wondering whether to watch, consider that Antares launches are infrequent.

The last Antares launch from Wallops took place a year ago on 23 October 2016 for the OA-5 cargo resupply mission to the ISS for NASA.

If you can’t watch the launch in person, you can always follow along via NASA’s live coverage.

Live launch coverage will begin at 7 a.m. Saturday on NASA Television and the agency’s website: www.nasa.gov

The launch window opens at 7:37 a.m. EST.

The windows runs for five minutes extending to 7:42 a.m. EST.

Sunset launchpad view of Orbital ATK Antares rocket and Cygnus OA-8 resupply spaceship the evening before blastoff to the International Space Station on Nov. 11, 2017. Credit: Ken Kremer/kenkremer.com

The 14 story tall commercial Antares rocket will launch for only second first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.

The Cygnus spacecraft will deliver over 7,400 pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory and its crew of six for investigations that will occur during Expeditions 53 and 54.

Hardware for the Orbital ATK Antares rocket launching the Cygnus OA-8 resupply mission to the International Space Station on Nov. 11, 2017 – as it was being assembled for flight inside the Horizontal Integration Facility at NASA’s Wallops Flight Facility. Credit: Ken Kremer/kenkremer.com

The S.S. Gene Cernan manifest includes equipment and samples for dozens of scientific investigations including those that will study communication and navigation, microbiology, animal biology and plant biology. The ISS science program supports over 250 ongoing research investigations.

Among the science: “Cygnus will carry several CubeSats that will conduct a variety of missions, from technology demonstrations of laser communication and increased data downlink rates to an investigation to study spaceflight effects on bacterial antibiotic resistance. Other experiments will advance biological monitoring aboard the station and look at various elements of plant growth in microgravity that may help inform plant cultivation strategies for future long-term space missions. The spacecraft will also transport a virtual reality camera to record a National Geographic educational special on Earth as a natural life-support system.”

“Orbital ATK is proud to name the OA-8 Cygnus Cargo Delivery Spacecraft after former astronaut Eugene “Gene” Cernan,” said Orbital ATK.

“As the last human to step foot on the moon, Cernan set records for both lunar surface extravehicular activities and longest time in lunar orbit, paving the way for future human space exploration. He died in January 2017.”

The last Cygnus was named the S.S. John Glenn, first American to orbit Earth, and launched atop a ULA Atlas V in March 2017.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

After a two day orbital chase Cygnus will reach the stations vicinity on Monday, Nov. 13.

“Expedition 53 Flight Engineers Paolo Nespoli of ESA (European Space Agency) and Randy Bresnik of NASA will use the space station’s robotic arm to capture Cygnus at about 5:40 a.m. NASA TV coverage of rendezvous and capture will begin at 4:15 a.m.,” said NASA.

“After Canadarm2 captures Cygnus, ground commands will be sent to guide the station’s robotic arm as it rotates and attaches the spacecraft to the bottom of the station’s Unity module. Coverage of installation will begin at 7 a.m.”

“Cygnus will remain at the space station until Dec. 4, when the spacecraft will depart the station and deploy several CubeSats before its fiery reentry into Earth’s atmosphere as it disposes of several tons of trash.”

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-8 is the eighth of these missions.

Orbital ATK Cygnus OA-8 mission patch. Credit: Orbital ATK

Watch for Ken’s continuing Antares/Cygnus mission and launch reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer.com
This map shows the visibility of the upcoming launch of Orbital ATK’s CRS-8 mission from Wallops Flight Facility in Virginia, with numeric values indicating the time (in seconds) after liftoff the Antares rocket and Cygnus spacecraft may be visible. Credit: NASA/Orbital ATK
An Antares rocket sunrise prior to blastoff from NASA’s Wallops Flight Facility on 17 Oct. 2016 bound for the ISS. Credit: Ken Kremer/kenkremer.com

Gene Cernan, Last Man on the Moon, Honored at Kennedy Space Center Visitor Complex

Remembrance Ceremony honoring the life of astronaut Eugene Cernan, last Man to walk on the Moon during NASA’s Apollo 17 moon landing mission in Dec. 1972, was held at the Kennedy Space Center Visitor Complex, Florida, on Jan. 18, 2017. Cernan passed away on Jan. 16, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Gene Cernan, the last man to walk on the Moon, and one of America’s most famous and renowned astronauts, was honored in a ceremony held at Kennedy Space Center Visitor Complex, Florida, on Jan. 18. [Story/photos expanded]

Cernan passed away earlier this week on Monday, January 16, 2017 at age 82, after a long illness, surrounded by his family.

Cernan, a naval aviator, flew on three groundbreaking missions for NASA during the Gemini and Apollo programs that paved the way for America’s and humanity’s first moon landing missions.

His trio of historic space flights ultimately culminated with Cernan stepping foot on the moon in Dec. 1972 during the Apollo 17 mission- NASA final moon landing of the Apollo era.

No human has set foot on the Moon since Apollo 17 – an enduring disappointment to Cernan and all space fans worldwide.

Cernan also flew on the Gemini 9 and Apollo 10 missions, prior to Apollo 17.

The Gemini 9 capsule is on display at the KSC Visitor Complex. Cernan was the second NASA astronaut to perform an EVA – during Gemini 9.

The Cernan remembrance ceremony was held at the U.S. Astronaut Hall of Fame inside the newly opened ‘Heroes & Legends’ exhibit at the KSC Visitor Complex – two days after Cernan died. It included remarks from two of his fellow NASA astronauts from the Space Shuttle era, Kennedy Space Center Director Bob Cabana, and space shuttle astronaut Jon McBride, as well as Therrin Protze, chief operating officer, Kennedy Space Center Visitor Complex.

Robert Cabana, director of NASA’s Kennedy Space Center and space shuttle astronaut Jon McBride, following remarks at the Jan 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring the life of astronaut Eugene Cernan. Credit: Julian Leek

A NASA portrait and floral wreath were on display for visitors during the ceremony inside and outside of the ‘Heroes and Legends’ exhibit.

“He was an advocate for the space program and hero that will be greatly missed,” said Kennedy Space Center Director Bob Cabana during the ceremony inside.

“I don’t believe that Gene is going to be the last man on the moon. And one of the things that he was extremely passionate about was our exploring beyond our own planet, and developing that capability that would allow us to go back to the moon and go beyond.

“I feel badly that he wasn’t able to stay alive long enough to actually see this come to fruition,” Cabana said.

Portrait of NASA astronaut Gene Cernan and floral wreath displayed during the Jan. 18, 2017 Remembrance Ceremony at the Kennedy Space Center Visitor Complex, Florida, honoring his life as the last Man to walk on the Moon. Credit: Ken Kremer/kenkremer.com

NASA is now developing the SLS heavy lift rocket and Orion deep space capsule to send our astronauts to the Moon, Mars and Beyond. The maiden launch of SLS-1 on the uncrewed EM-1 mission to the Moon is slated for Fall 2018.

“We are saddened of the loss of our American hero, Astronaut Gene Cernan. As the last man to place footsteps on the surface of the moon, he was a truly inspiring icon who challenged the impossible,” said Therrin Protze, chief operating officer of Kennedy Space Center Visitor Complex.

“People throughout generations have been and will forever be inspired by his actions, and the underlying message that what we can achieve is limited only by our imaginations. He will forever be known as ‘The Last Man on the Moon,” and for the extraordinary impact he had on our country and the world.”

Cernan was one of only 12 astronauts to walk on the moon. Neil Armstong and Buzz Aldrin were the first during the Apollo 11 moon landing mission in 1969 that fulfilled President Kohn F. Kennedy’s promise to land on the Moon during the 1960’s.

Launch of Apollo 17 – NASA’s last lunar landing mission – on 7 December 1972 from Launch Complex-39A on the Kennedy Space Center, Florida. Credit: Julian Leek

Cernan retired from NASA and the U.S. Navy in 1976. He continued to advise NASA as a consultant and appeared frequently on TV news programs during NASA’s manned space missions as an popular guest explaining the details of space exploration and why we should explore.

He advocated for NASA, space exploration and science his entire adult life.

The prime crew for the Apollo 17 lunar landing mission are: Commander, Eugene A. Cernan (seated), Command Module pilot Ronald E. Evans (standing on right), and Lunar Module pilot, Harrison H. Schmitt (left). They are photographed with a Lunar Roving Vehicle (LRV) trainer. Cernan and Schmitt used an LRV during their exploration of the Taurus-Littrow landing site. The Apollo 17 Saturn V Moon rocket is in the background. This picture was taken during October 1972 at Launch Complex 39A, Kennedy Space Center (KSC), Florida. Credit: Julian Leek

“As an astronaut, Cernan left an indelible impression on the moon when he scratched his daughter’s initials in the lunar surface alongside the footprints he left as the last human to walk on the moon. Guests of Kennedy Space Center Visitor Complex can learn more about Cernan’s legacy at the new Heroes & Legends exhibit, where his spacewalk outside the actual Gemini IX space capsule is brought to life through holographic imagery.”

Actual Gemini 9 capsule piloted by Gene Cernan with Commander Thomas P. Stafford on a three-day flight in June 1966 on permanent display in the Heroes and Legends exhibit at the Kennedy Space Center Visitor Complex, Florida. Cernan logged more than two hours outside the orbiting capsule, as depicted in description. Credit: Ken Kremer/kenkremer.com

From NASA’s profile page:

“Cernan was born in Chicago on March 14, 1934. He graduated from Proviso Township High School in Maywood, Ill., and received a bachelor of science degree in electrical engineering from Purdue University in 1956. He earned a master of science degree in aeronautical engineering from the U.S. Naval Postgraduate School in Monterey, Calif.

Cernan is survived by his wife, Jan Nanna Cernan, his daughter and son-in-law, Tracy Cernan Woolie and Marion Woolie, step-daughters Kelly Nanna Taff and husband, Michael, and Danielle Nanna Ellis and nine grandchildren.”

The following is a statement released by NASA on the behalf of Gene Cernan’s family:

A funeral service for Capt. Eugene A. Cernan, who passed away Monday at the age of 82, will be conducted at 2:30 p.m. CST on Tuesday, Jan. 24, at St. Martin’s Episcopal Church, 717 Sage Road in Houston.

NASA Television will provide pool video coverage of the service.

The family will gather for a private interment at the Texas State Cemetery in Austin at a later date, where full military honors will be rendered.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Grand opening ceremony for the ‘Heroes and Legends’ attraction on Nov. 11, 2016 at the Kennedy Space Center Visitor Complex in Florida and attended by more than 25 veteran and current NASA astronauts. Credit: Ken Kremer/kenkremer.com

Last Man on the Moon, Gene Cernan, Has Died

One of Apollo’s finest, astronaut Gene Cernan, has left Earth for the last time. Cernan, the last man to walk on the Moon, died Monday, January 16, 2017.

“Gene Cernan, Apollo astronaut and the last man to walk on the moon, has passed from our sphere, and we mourn his loss,” said NASA Administrator Charlie Bolden in statement. “Leaving the moon in 1972, Cernan said, ‘As I take these last steps from the surface for some time into the future to come, I’d just like to record that America’s challenge of today has forged man’s destiny of tomorrow.’ Truly, America has lost a patriot and pioneer who helped shape our country’s bold ambitions to do things that humankind had never before achieved.”

In a statement, Cernan’s family said he was humbled by his life experiences, and he recently commented, “I was just a young kid in America growing up with a dream. Today what’s most important to me is my desire to inspire the passion in the hearts and minds of future generations of young men and women to see their own impossible dreams become a reality.”

“Even at the age of 82, Gene was passionate about sharing his desire to see the continued human exploration of space and encouraged our nation’s leaders and young people to not let him remain the last man to walk on the Moon,” the family continued.

A trailer for the film “The Last Man on the Moon:”

Cernan was a Captain in the U.S. Navy but he is remembered most for his historic travels off Earth. He flew in space three times, twice to the Moon.

He was one of 14 astronauts selected by NASA in October 1963. He piloted the Gemini 9 mission with Commander Thomas Stafford on a three-day flight in June 1966. Cernan was the second American to conduct a spacewalk, and he logged more than two hours outside the Earth-orbiting Gemini capsule.

During his two hour, eight minute spacewalk on June 5, 1966, Gemini IXA pilot Eugene Cernan is seen outside the spacecraft. Credit: NASA/Tom Stafford.

In May 1969, he was the lunar module pilot of Apollo 10, and dramatically descended to within 5 km (50,000 ft) of the Moon’s surface to test out the lunar lander’s capabilities, paving the way for Apollo 11’s first lunar landing two months later.

As Cernan flew the lunar module close to the surface, he radioed back to Earth, “I’m telling you, we are low. We’re close baby! … We is down among ‘em!”

Apollo 17 Mission Commander Eugene A. Cernan during the second spacewalk on December 12, 1972, standing near the lunar rover. Credit: NASA.

But his ultimate mission was landing on the Moon and walking across its surface during the Apollo 17 mission, the sixth and final mission to land on the Moon. During three EVAs to conduct surface operations within the Taurus-Littrow landing site, Cernan and his crewmate Harrison “Jack” Schmitt collected samples of the lunar surface and deployed scientific instruments.

On December 14, 1972, Cernan returned to the lunar module Challenger after the end of the third moonwalk, officially becoming the last human to set foot upon Moon.

Nobody can take those footsteps I made on the surface of the moon away from me.” – Eugene Cernan

Bolden said that in his last conversation with Cernan, “he spoke of his lingering desire to inspire the youth of our nation to undertake the STEM (science, technology, engineering and mathematics) studies, and to dare to dream and explore. He was one of a kind and all of us in the NASA Family will miss him greatly.”

The words of Cernan as he left the Moon’s surface bring us hope, for one day embarking on human missions of exploration of space once more.

“We shall return, in peace and hope, for all mankind.” – Gene Cernan.

A portion of a poem by space poet Stuart Atkinson is a wonderful remembrance:

Another One Falls

No mournful blare of trumpets but a forlorn Tweet announced
Another one had gone;
Another of the tallest redwoods in the forest of history
Had fallen, leaving a poorer world behind.

One by one they pass – the giants who dared to step
Off Terra, fly through a quarter million miles of deadly night
And stride across the Moon. On huge TVs in living rooms and schools
We watched them bounce across its ancient plains,
Snowmen stained by dust as cold and grey
As crematorium ash, mischievous boys with smiles flashing
Behind visors of burnished gold as they lolloped along,
Hopping like drunk kangaroos between boulders
Big as cars, so, so far away from Earth that their words
Came from the past –

And another one has gone.

(Read the full poem here.)

Apollo 17 mission commander Gene Cernan, the last man to walk on the moon, looks skyward during a memorial service celebrating the life of Neil Armstrong in 2012. Credit: NASA/Bill Ingalls

How NASA Filmed Humans Last Leaving The Moon, 42 Years Ago

When Apollo 17 lifted off from the moon, a camera captured the movements of the spacecraft — even though nobody was left behind to, say, establish a lunar base. How was that possible? With a camera on the lunar rover that could be controlled — or even programmed — from Earth.

Pretty impressive technology for the takeoff 42 years ago yesterday (Dec. 14) in 1972, although it took three tries to get the technique right.

As the Smithsonian National Air and Space Museum explains in a 2011 blog post, the camera was available on Apollos 15, 16 and 17. The television camera communicated from Earth using a high-gain antenna on the rover, but there was a slight time delay for the radio waves to travel (a couple of seconds) between the Earth and the Moon.

So the engineers suggested moving the rover a certain distance from the lunar module and setting the camera to automatically tilt to show the lunar liftoff when commanded from Earth.

That was the plan, at least. On Apollo 15, the tilt mechanism malfunctioned and the camera never moved upwards, allowing the lunar module to slip out of sight. And while the attempt on Apollo 16 gave a longer view of the lunar module rising up, the astronauts actually parked the rover too close to it, which threw off the calculations and timing of the tilt upwards so it left view just a few moments into the flight.

Ed Fendall was the person doing the controlling. In an oral history for NASA done in 2000, he recalled how complex the procedure was.

Now, the way that worked was this. Harley Weyer, who worked for me, sat down and figured what the trajectory would be and where the lunar rover would be each second as it moved out, and what your settings would go to. That picture you see was taken without looking at it [the liftoff] at all. There was no watching it and doing anything with that picture. As the crew counted down, that’s a [Apollo] 17 picture you see, as [Eugene] Cernan counted down and he knew he had to park in the right place because I was going to kill him, he didn’t — and Gene and I are good friends, he’ll tell you that — I actually sent the first command at liftoff minus three seconds. And each command was scripted, and all I was doing was looking at a clock, sending commands. I was not looking at the television. I really didn’t see it until it was over with and played back. Those were just pre-set commands that were just punched out via time. That’s the way it was followed.

Humans Last Landed On The Moon 42 Years Ago Today

For a brief period in the 1960s and 1970s, 12 people ventured all the way to the surface of the Moon. The accomplishment at the time was hailed as a political victory over the Soviet Union, but as decades have passed the landings have taken on more symbolic meaning with NASA — a time of optimism, of science and of the American spirit.

The last lunar landing was Apollo 17, which took place on Dec. 11, 1972. Commander Eugene Cernan and lunar module pilot Harrison Schmitt did three moonwalks in the Taurus-Littrow valley, scoping out the highlands to try to get a geologic sense of the area. Among their more memorable findings are orange soil. You can see some pictures from their sojourn below.

Apollo 17's Saturn V rocket poised on the launch pad before its Dec. 7, 1972 takeoff. Credit:
Apollo 17’s Saturn V rocket poised on the launch pad before its Dec. 7, 1972 takeoff. Credit:
Apollo 17's lunar rover, flag and part of the lunar module in this view taken out the module's window. Credit: NASA
Apollo 17’s lunar rover, flag and part of the lunar module in this view taken out the module’s window. Credit: NASA
Apollo 17 commander Gene Cernan with a gravimeter experiment. The lunar rover is at right. Credit; NASA
Apollo 17 commander Gene Cernan with a gravimeter experiment. The lunar rover is at right. Credit; NASA
Orange soil (from volcanic glass beads) is clearly visible in this image from Apollo 17. Credit: NASA
Orange soil (from volcanic glass beads) is clearly visible in this image from Apollo 17. Credit: NASA
The Apollo 17 command module America and its service module, as photographed by the returning lunar module Challenger. Credit: NASA
The Apollo 17 command module America and its service module, as photographed by the returning lunar module Challenger. Credit: NASA

The Dawn of Orion and the Path Beyond Earth: Spectacular Launch Gallery

Orion’s inaugural launch on Dec. 5, 2014 atop United Launch Alliance Delta 4 Heavy rocket at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station, Florida at 7:05 a.m. Credit: Alex Polimeni/Zero-G News/AmericaSpace
Expanded with a growing gallery![/caption]

KENNEDY SPACE CENTER, FL – After four decades of waiting, the dawn of a new era in space exploration finally began with the dawn liftoff of NASA’s first Orion spacecraft on Friday, Dec. 5, 2014.

The picture perfect liftoff of Orion on its inaugural unmanned test flight relit the path to send humans beyond low Earth orbit for the first time since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Orion soared to space atop a United Launch Alliance Delta IV Heavy rocket at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Enjoy the spectacular launch photo gallery from my fellow space journalists and photographers captured from various up close locations ringing the Delta launch complex.

67362_1507407749532079_1400751375240688366_n

Tens of thousands of spectators descended upon the Kennedy Space Center to be an eyewitness to history and the new space era – and they were universally thrilled.

Orion is the first human rated spacecraft to fly beyond low Earth orbit since Apollo 17 and was built by prime contractor Lockheed Martin.

10623672_1507407529532101_2295273501116938835_o

10344383_1507407539532100_7969689180969692155_o

The EFT-1 mission was a complete success.

The Orion program began about a decade ago.

America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.

1909510_10204709397868312_6000402173516112643_o

544947_10205270421179290_3522729129561283620_n

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

1556432_10152535281502358_8249788738009004794_o

10818397_10152533860107358_4165018015924567588_o

10846045_10205270942192315_2996680947459947271_n

10846147_10205270417619201_4265473521206996346_n

10846488_864699793560364_3321837170085673485_n

10565273_910004025690112_7567901707640800198_n

Apollo 17 launch on Dec. 7, 1972. Credit: Julian Leek
Apollo 17 launch on Dec. 7, 1972. Credit: Julian Leek

1506827_10204422300109282_7367959124543755021_n

10362621_10202151736073421_1135789633135700041_n

10845986_10202153042506081_798115921998272984_n

10430851_10205613710411767_4576755758759417739_n

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com
Orion at dawn moments before liftoff on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Orion at dawn moments before liftoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Comet Landing: Side-By-Side Pics Of Alien Surfaces Humanity Explored

Correction, 11:33 a.m. EST: The University of Central Florida’s Phil Metzger points out that the image composition leaves out Eros, which NEAR Shoemaker landed on in 2001. This article has been corrected to reflect that and to clarify that the surfaces pictured were from “soft” landings.

And now there are eight. With Philae’s incredible landing on a comet earlier this week, humans have now done soft landings on eight solar system bodies. And that’s just in the first 57 years of space exploration. How far do you think we’ll reach in the next six decades? Let us know in the comments … if you dare.

More seriously, this amazing composition comes courtesy of two people who generously compiled images from the following missions: Rosetta/Philae (European Space Agency), Hayabusa (Japan Aerospace Exploration Agency), Apollo 17 (NASA), Venera 14 (Soviet Union), the Spirit rover (NASA) and Cassini-Huygens (NASA/ESA). Omitted is NEAR Shoemaker, which landed on Eros in 2001.

Before Philae touched down on Comet 67P/Churyumov–Gerasimenko Wednesday, the NASA Jet Propulsion Laboratory’s Mike Malaska created a cool infographic of nearly every place we’ve lived or visited before then. This week, Michiel Straathof updated the infographic to include 67P (and generously gave us permission to use it.)

And remember that these are just the SURFACES of solar system bodies that we have visited. If you include all of the places that we have flown by or taken pictures from of a distance in space, the count numbers in the dozens — especially when considering prolific imagers such as Voyager 1 and Voyager 2, which flew by multiple planets and moons.

To check out a small sampling of pictures, visit this NASA website that shows some of the best shots we’ve taken in space.

Water On The Moon Was Blown in by Solar Wind

When they first set foot on the Moon, the Apollo 11 astronauts painted a picture of the landscape as a bone-dry desert. So astronomers were naturally surprised when in 2009, three probes showed that a lot of water is locked up in minerals in the soil. There has been some debate as to where the water came from, but now two researchers with the National Museum of Natural History in Paris, France, have determined that most of the water in the soil on the surface of the Moon was formed due to protons in the solar wind colliding with oxygen in lunar dust, rather than from comet or meteorite impacts.

The first hints that there was water on the Moon came when India’s Chandrayaan-1 found hints of water across the lunar surface when it measured a dip in reflected sunlight at a wavelength absorbed only by water and hydroxyl, a molecule that contains one atom of hydrogen and one atom of oxygen.

To help clarify this picture, NASA scientists turned to data collected by two of their space probes – the Cassini probe, which buzzed the moon in 1999 on its way to Saturn, and NASA’s Deep Impact spacecraft, which flew past the moon in June 2009 en route to an encounter with the comet Hartley 2. Both spacecraft confirmed the evidence of water and hydroxyl, molecules that are likely both present on the moon.

Lunar Crater as imaged by NASA's  Moon Mineralogy Mapper. Image Credit: SRO/NASA/JPL-Caltech/USGS/Brown Univ.
Lunar Crater as imaged by NASA’s Moon Mineralogy Mapper. Image Credit: SRO/NASA/JPL-Caltech/USGS/Brown Univ.

There were three likely explanations as to how that water got there. Comets and meteorites were two possibilities, while others believed it may be caused by solar wind. In the latter case, the water would have been formed by streams of plasma emanating from the sun’s upper atmosphere and smashing high-energy protons into the moon’s surface. Cosmic rays from outside the solar system could inject ions into lunar rocks as well, causing chemical changes that create water.

To find out the likeliest source of the water, Alice Stephant and Francois Robert measured the ratio of hydrogen and deuterium in soil samples from the Apollo 16 and Apollo 17 missions. They ran the samples through a type of mass spectrometer that not only detects which isotopes are present but how deep down they are in a surface sample.

In studying tiny grains of lunar soil samples, they found that the reduction of oxygen from silicates in the soil by protons from the solar wind was almost certainly the means by which the water was generated. They came to that conclusion through determining the lithium isotope ratio in the samples which gave the isotope ratio for the hydrogen. From that, they were able to calculate the deuterium-hydrogen ratio which they compared to the amount of water actually in the granule sample.

Because there tends to be more deuterium further from the sun, each possible source of lunar water should give a different ratio. Comets and meteorites have distinctive proportions, while protons from the solar wind or cosmic rays would each have different ratios.

What they found was that on average, the granules contained just 15 percent water from somewhere else (presumably comets or meteorites) leaving the rest to have been formed due to the solar wind interaction. They note also that for some samples, all of the water was due to solar wind interaction.

“We confirm that result,” said Stephant. “Water-rich meteorite and comet impacts do not bring important amounts of water to the surface of the moon.”

Alberto Saal at Brown University in Providence, Rhode Island, is pleased with the result. “I think the idea that most of the water in the surface of the moon comes from solar wind implantations is most likely correct,” he says.

In their paper published in Proceedings of the National Academy of Sciences, Alice Stephant and François Robert describe their study and the results they found. However, they were also quick to point out that their conclusions only relate to water found on the surface of the moon – whereas the origin of the water below the surface is still open to interpretation.

Further reading: PNAS