Has a New Dwarf Galaxy Been Found Hiding Behind Andromeda?

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans

One of the greatest challenges of astronomy is locating objects in space that are obscured by the light of nearby, brighter objects. In addition to making extra-solar planets very difficult to directly image, this problem also intrudes on surveys of the local Universe, where astronomers are unable to detect dwarf and isolated galaxies because of all the brighter ones surrounding them.

Because of this, astronomers are unable to do a full inventory of small galaxies in the volume of space surrounding the Milky Way (aka. the Local Volume). However, thanks to the efforts of an amateur astronomer and an international team of scientists, a dwarf spheroidal galaxy was recently discovered lurking behind the Andromeda Galaxy. The discovery of this object, named Donatiello I, could help astronomers learn more about the process of galaxy formation.

Continue reading “Has a New Dwarf Galaxy Been Found Hiding Behind Andromeda?”

Andromeda Shredded and Consumed a Massive Galaxy About Two Billion Years Ago

Scientists have long understood that in the course of cosmic evolution, galaxies become larger by consuming smaller galaxies. The evidence of this can be seen by observing galactic halos, where the stars of cannibalized galaxies still remain. This is certainly true of the Andromeda Galaxy (aka. M31, Earth’s closest neighbor) which has a massive and nearly-invisible halo of stars that is larger than the galaxy itself.

For some time, scientists believed that this halo was the result of hundreds of smaller mergers. But thanks to a new study by a team of researchers at the University of Michigan, it now appears that Andromeda’s halo is the result of it cannibalizing a massive galaxy some two billion years ago. Studying the remains of this galaxy will help astronomers understand how disk galaxies (like the Milky Way) evolve and survive large mergers.

The study, titled “The Andromeda galaxy’s most important merger about 2 billion years ago as M32’s likely progenitor“, recently appeared in the scientific journal Nature. The study was conducted by Richard D’Souza, a postdoctoral researcher at the University of Michigan and the Vatican Observatory; and Eric F. Bell, the Arthur F. Thurnau Professor at the University of Michigan.

In this image, the Andromeda galaxy shreds the large galaxy M32p, which eventually resulted in M32 and a giant halo of stars. Credit: Richard D’Souza. Credit: AAS/IOP/Wei-Hao Wang

Using computer models, Richard D’Souza and Eric Bell were able to piece together how a once-massive galaxy (named M32p) disrupted and eventually came to merge with Andromeda. From their simulations, they determined that M32p was at least 20 times larger than any galaxy that has merged with the Milky Way over the course of its lifetime.

M32p would have therefore been the third-largest member of the Local Group of galaxies, after the Milky Way and Andromeda galaxies, and was therefore something of a “long-lost sibling”. However, their simulations also indicated that many smaller companion galaxies merged with Andromeda over time. But for the past, Andromeda’s halo is the result of a single massive merger. As D’Souza explained in a recent Michigan News press statement:

“It was a ‘eureka’ moment. We realized we could use this information of Andromeda’s outer stellar halo to infer the properties of the largest of these shredded galaxies. Astronomers have been studying the Local Group—the Milky Way, Andromeda and their companions—for so long. It was shocking to realize that the Milky Way had a large sibling, and we never knew about it.”

This study will not only help astronomers understand how galaxies like the Milky Way and Andromeda grew through mergers, it might also shed light on a long-standing mystery – which is how Andromeda’s satellite galaxy (M32) formed. According to their study, D’Souza and Bell believe that M32 is the surviving center of M32p, which is what remained after its spiral arms were stripped away.

Messier 31 (the Andromeda Galaxy), along with Messier 32 and Messier 110. Credit: Wikisky

“M32 is a weirdo,” said Bell. “While it looks like a compact example of an old, elliptical galaxy, it actually has lots of young stars. It’s one of the most compact galaxies in the universe. There isn’t another galaxy like it.” According to D’Souza and Bell, this study may also alter the traditional understanding of how galaxies evolve. In astronomy, conventional wisdom says that large interactions would destroy disk galaxies and form elliptical galaxies.

But if Andromeda did indeed survive an impact with a massive galaxy, it would indicate that this is not the case. The timing of the merger may also explain recent research findings which indicated that two billion years ago, the disk of the Andromeda galaxy thickened, leading to a burst in star formation. As Bell explained:

“The Andromeda Galaxy, with a spectacular burst of star formation, would have looked so different 2 billion years ago. When I was at graduate school, I was told that understanding how the Andromeda Galaxy and its satellite galaxy M32 formed would go a long way towards unraveling the mysteries of galaxy formation.”

In the end, this method could also be used to study other galaxies and determine which were the most massive mergers they underwent. This could allow scientists to better understand the complicated process that drives galaxy growth and how mergers affect galaxies. This knowledge will certainly come in handy when it comes to determining what will happen to our galaxy when it merges with Andromeda in a few billion years.

Further Reading: Michigan News

It Turns Out, Andromeda is Younger Than Earth… Sort Of

Since ancient times, astronomers have looked up at the night sky and seen the Andromeda galaxy. As the closest galaxy to our own, scientists have been able to observe and scrutinize this giant spiral galaxy for millennia. By the 20th century, astronomers realized that Andromeda was the Milky Way’s sister galaxy and was moving towards us. In 4.5 billion years, it will even merge with our own to form a supergalaxy.

However, it seems astronomers were wrong about the Andromeda galaxy in one major respect. According to recent study led by a team of French and Chinese astronomers, this giant spiral galaxy formed from a major merger that occurred less than 3 billion years ago. This means that Andromeda, as we know it today, is effectively younger than our very own Solar System, which has it beat by about 1.5 billion years!

The study, titled “A 2-3 billion year old major merger paradigm for the Andromeda galaxy and its outskirts“, recently appeared in the Monthly Notices of the Royal Astronomical Society. Led by Francois Hammer, the Principle Investigator of the Galaxies, Etoiles, Physique et Instrumentation (GEPI) department at the Paris Observatory, the team included members from the Chinese Academy of Sciences and the University of Strasbourg.

For the sake of their study, the relied on data gathered by recent surveys that noted considerable differences between the Andromeda and Milky Way galaxies. The first of these studies, which took place between 2006 and 2014, demonstrated all Andromeda has a wealth of young blue stars in its disk (less than 2 billion years old) that undergo random motions over large scales. This is contrast to the stars in the Milky Way’s disk, which are subject only to simple rotation.

In addition, deep observations conducted between 2008 and 2014 with the French-Canadian telescope in the Hawaiian Islands (CFHT) indicated some interesting things about Andromeda’s halo. This vast region, which is 10 times the size of the galaxy itself, is populated by gigantic currents of stars. The most prominent of which is called the “Giant Stream”, a warped disk that has shells and clumps at its very edges.

Using this data, the French-Chinese collaboration then created a detailed numerical model of Andromeda using the two most powerful computers available in France – the Paris Observatory’s MesoPSL and the National Center for Scientific Research’s (CNRS) IDRIS-GENCI supercomputer. With the resulting numerical model, the team was able to demonstrate that these recent observations could be explained only by a recent collision.

Basically, they concluded that between 7 and 10 billion years ago, Andromeda consisted of  two galaxies that had slowly achieved a encountering orbit. After optimizing the trajectories of both galaxies, they determined that they would have collided 1.8 to 3 billion years ago. This collision is what gave birth to Andromeda as we know it today, which effectively makes it younger than our Solar System – which formed almost 4.6 billion years ago.

What’s more, they were able to calculate mass distributions for both parent galaxies that merged to formed Andromeda, which indicated that the larger galaxy was four times the size of the smaller. But most importantly, the team was able to reproduce in detail all the structures that compose Andromeda today – including the bulge, the bar, the huge disk, and the presence of young stars.

The presence of young blue stars in its disk, which has remained unexplained until now, is attributable to a period of intense star formation that took place after the collision. In addition, structures like the “Giant Stream” and the shells of the halo belonged to the smaller parent galaxy, whereas the diffuse clumps and the warped nature of the halo were derived from the larger one.

Their study also explains why the features attributed to the smaller galaxy have an under-abundance in heavy elements compared to the others – i.e. it was less massive so it formed fewer heavy elements and stars. This study is immensely significant when it comes to galactic formation and evolution, mainly because it is the first numerical simulation that has succeeded in reproducing a galaxy in such detail.

It is also of significance given that such a recent impact it could have left materials in the Local Group. In other words, this study could have implications that range far beyond our galactic neighborhood. It is also a good example of how increasingly sophisticated instruments are leading to more detailed observations which, when combined with increasingly sophisticated computers and algorithms, are leading to more detailed models.

One can only wonder if future extra-terrestrial intelligence (ETI) will draw similar conclusions about our own galaxy once it merges with Andromeda, billions of years from now. The collision and resulting features are sure to be of interest to anyone advanced species that’s around to study it!

Further Reading: Paris Observatory, Monthly Notices of the Royal Astronomical Society search and more info website

Gaia Looks Beyond our Galaxy to Other Islands of Stars

The European Space Agency’s (ESA) Gaia mission is an ambitious project. Having launched in December of 2013, the purpose of this space observatory has been to measure the position and distances of 1 billion objects – including stars, extra-solar planets, comets, asteroids and even quasars. From this, astronomers hope to create the most detailed 3D space catalog of the cosmos ever made.

Back in 2016, the first batch of Gaia data (based on its first 14 months in space) was released. Since then, scientists have been poring over the raw data to obtain clearer images of the neighboring stars and galaxies that were studied by the mission. The latest images to be released, based on Gaia data, included revealing pictures of the Large Magellanic Cloud (LMC), the Andromeda galaxy, and the Triangulum galaxy.

The first catalog of Gaia data consisted of information on 1.142 billion stars, including their precise position in the night sky and their respective brightness. Most of these stars are located in the Milky Way, but a good fraction were from galaxies beyond ours, which included about ten million belonging to the LMC. This satellite galaxy, located about 166 000 light-years away, has about 1/100th the mass of the Milky Way.

Gaia’s view of the Large Magellanic Cloud. Click here for further details, full credits, and larger versions of the image. Credit: ESA/Gaia/DPAC

The two images shown above display composite data obtained by the Gaia probe. The image on the left, which was compiled by mapping the total density of stars detected by Gaia, shows the large-scale distribution of stars in the LMC. This image also delineates the extent of the LMC’s spiral arms, and is peppered with bright dots that represent faint clusters of stars.

The image on the right, on the other hand, reveals other aspects of the LMC and its stars. This image was created by mapping radiation flux in the LMC and is dominated by the brightest and most massive stars. This allows the bar of the LMC to be more clearly defined and also shows individual regions of star-formation – like 30 Doradus, which is visible just above the center of the galaxy in the picture.

The next set of images (shown below), which were also obtained using data from the first 14 months of the Gaia mission, depict two nearby spiral galaxies – the Andromeda galaxy (M31) and its neighbor, the Triangulum galaxy (M33). The Andromeda galaxy, located 2.5 million light-years away, is the largest galaxy in our vicinity and slightly more massive than our own. It is also destined to merge with the Milky Way in roughly 4 billion years.

The Triangulum galaxy, meanwhile, is a fraction the size of the Milky Way (with an estimated fifty billion stars) and is located slightly farther from us than Andromeda – about 2.8 million light-years distant. As with the LMC images, the images on the left are based on the total density of stars and show stars of all types, while images on the right are based on the radiation flux of each galaxy and mainly show the bright end of the stellar population.

Gaia’s view of the Andromeda galaxy. Credit: ESA/Gaia/DPAC

Another benefit of the images on the right is that they indicate the regions where the most intense star formation is taking place. For many years, astronomers have known that the LMC boasts a significant amount of star-forming activity, forming stars at five times the rate of the Milky Way Galaxy. Andromeda, meanwhile, has reached a point of near-inactivity in the past 2 billion years when it comes to star formation.

In comparison, the Triangulum Galaxy still shows signs of star formation, at a rate that is about four and a half times that of Andromeda. Thanks to the Gaia images, which indicate the relative rates of star formation from elevated levels of radiation flux and brightness, these differences between Andromeda, Triangulum and the LMC is illustrated quite beautifully.

What’s more, by analyzing the motions of individual stars in external galaxies like the LMC, Andromeda, or Triangulum, it will be possible to learn more about the overall rotation of stars within these galaxies. It will also be possible to determine the orbits of the galaxies themselves, which are all part of the larger structure known as the Local Group.

This region of space, which the Milky Way is part of, measures roughly 10 million light-years across and has an estimated 1.29 billion Solar masses. This, in turn, is just one of several collections of galaxies in the even larger Virgo Supercluster. Measuring how stars and galaxies orbit about these larger structures is key to determining cosmic evolution, how the Universe came to be as it is today and where it is heading.

The Triangulum galaxy (M33), based on data compiled by the Gaia mission. Credit: ESA/Gaia/DPAC

An international team of astronomers recently attempted to do just that using the CosmicFlows surveys. These studies, which were conducted between 2011 and 2016, calculated the distance and speed of neighboring galaxies. By pairing this data with other distance estimates and data on the galaxies gravity fields, they were able to chart the motions of almost 1,400 galaxies within 100 million light years over the course of the past 13 billion years.

In the case of the LMC, another team of astronomers recently attempted to measure its orbit using a subset of data from the first Gaia release – the Tycho–Gaia Astrometric Solution (TGAS). Combined with additional parallax and proper motion data from the Hipparcos mission, the team was able to identify 29 stars in the LMC and measure their proper motion, which they then used to estimate the rotation of the galaxy.

Gaia’s observations of the LMC and the Small Magellanic Cloud (SMC) are also important when it comes to studying Cepheid and RR Lyrae variables. For years, astronomers have indicated that these stars could be used as indicators of cosmic distances for galaxies beyond our own. In addition, astronomers working at the Gaia Data Processing and Analysis Consortium (DPAC) tested this method on hundreds of LMC variable stars in order to validate data from the first release.

Astronomers are eagerly awaiting the second release of Gaia data, which is scheduled for April of 2018. This will also contain measurements on stellar distances and their motions across the sky, and is expected to reveal even more about our galaxy and its neighbors. But in the meantime, there are still plenty of revelations to be found from the first release, and scientists expect to be busy with it for many years to come.

Further Reading: ESA

Messier 33 – The Triangulum Galaxy

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Triangulum Galaxy, also known as Messier 33. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these is the Triangulum Galaxy, a spiral galaxy located approximately 3 million light-years from Earth in the direction of the Triangulum constellation. As the third-largest member of the Local Group of galaxies (behind the Andromeda Galaxy and the Milky Way), it is the one of the most distant objects that can be seen with the naked eye. Much like M32, M33 is very close to Andromeda, and is believed to be a satellite of this major galaxy.

Description:

At some 3 million light years away from Earth, the Triangulum Galaxy is the third largest galaxy in our Local Group and it may be a gravitationally bound companion of the Andromeda Galaxy. Its beautiful spiral arms show multitudes of red HII regions and blue clouds of young stars. The largest of these HII regions (NGC 604) spans nearly 1500 across and is the largest so far known.

The Triangulum Galaxy (M33), taken by the Swift Gamma-Ray Burst Mission. Credit: NASA/Swift

It has a spectrum similar to the Orion Nebula – our own Milky Way’s most celebrated starbirth region. “M33 is a gigantic laboratory where you can watch dust being created in novae and supernovae, being distributed in the winds of giant stars, and being reborn in new stars,” said University of Minnesota researcher and lead author Elisha Polomski. By studying M33, “you can see the Universe in a nutshell.”

Of course, our curiousity about our neighboring galaxy has driven us to try to understand more over the years. Once Edwin Hubble set the standard with Cepheid variables, we began measuring distance by discovering about 25 of them in M33. By 2004 we were studying the red giant star branch to peer even further. As A.W. McConnachie said in a 2004 study of the galaxy:

“The absolute bolometric luminosity of the point of core helium ignition in old, metal-poor, red giant stars is of roughly constant magnitude, varying only very slightly with mass or metallicity. It can thus be used as a standard candle. This technique then allows for the determination of realistic uncertainties which reflect the quality of the luminosity function used. Finally, we apply our technique to the Local Group spiral galaxy M33 and the dwarf galaxies Andromeda I and II, and derive distance. The result for M33 is in excellent agreement with the Cepheid distances to this galaxy, and makes the possibility of a significant amount of reddening in this object unlikely.”

By 2005, astronomers had detected two water masers on either side of M33 and for the first time ever – revealed what direction it as going in. According to Andreas Brunthaler (et al), who published a study about the distance and proper motion of the galaxy in 2005:

“We measured the angular rotation and proper motion of the Triangulum Galaxy (M33) with the Very Long Baseline Array by observing two H2O masers on opposite sides of the galaxy. By comparing the angular rotation rate with the inclination and rotation speed, we obtained a distance of 730 +/- 168 kiloparsecs. This distance is consistent with the most recent Cepheid distance measurement. This distance is consistent with the most recent Cepheid distance measurement. M33 is moving with a velocity of 190 +/- 59 kilometers per second relative to the Milky Way. These measurements promise a method to determine dynamical models for the Local Group and the mass and dark-matter halos of M31, M33, and the Milky Way.”

Composite image of the Triangulum Galaxy (Messier 33), taken at Mount Lemmon Observatory. Credit: Adam Block/Mount Lemmon SkyCenter/University of Arizona

Yes, it’s moving toward the Andromeda Galaxy, much like how Andromeda is moving towards us! In 2006, a group of astronomers announced the discovery of an eclipsing binary star in M33. As A.Z. Bonanos, the lead author of the study that detailed the discovery, said:

“We present the first direct distance determination to a detached eclipsing binary in M33, which was found by the DIRECT Project. Located in the OB 66 association, it was one of the most suitable detached eclipsing binaries found by DIRECT for distance determination, given its 4.8938 day period.”

By studying the eclipsing binary, astronomers soon knew their size, distance, temperature and absolute magnitude. But more was yet to come! In 2007, the Chandra X-ray Observatory revealed even more when a black hole nearly 16 times the mass of the Sun was revealed. The black hole, named M33 X-7, orbits a companion star which it eclipses every 3.5 days. This means the companion star must also have an incredibly large mass as well….

Yet how huge must the parent star have been to have formed a black hole in advance of its companion? As Jerome Orosz, of San Diego State University, was quoted as saying in a 2007 Chandra press release:

“This discovery raises all sorts of questions about how such a big black hole could have been formed. Massive stars can be much less extravagant than people think by hanging onto a lot more of their mass toward the end of their lives. This can have a big effect on the black holes that these stellar time-bombs make.”

Artist’s rendering of the black hole found in orbit of the large blue star in M33 . Credit: Chandra/Harvard/HST

Stellar bombs? You bet. Gigantic stellar explosions even. Although no supernovae events have been detected in the Triangulum galaxy, it certainly doesn’t lack for evidence of supernova remnants. According to a 2004 study by F. Haberl and W. Pietsch of the Max-Planck-Institute:

“We present a catalogue of 184 X-ray sources within 50′ of the nucleus of the local group spiral galaxy M 33. The catalogue is derived from an analysis of the complete set of ROSAT archival data pointed in the direction of M 33 and contains X-ray position, existence likelihood, count rates and PSPC spectral hardness ratios. To identify the sources the catalog was correlated with previous X-ray catalogues, optical and radio catalogues. In addition sources were classified according to their X-ray properties. We find seven candidates for supersoft X-ray sources, of which two may be associated with known planetary nebulae in M 33. The majority of X-ray detected supernova remnants is also detected at radio frequencies and seen in optical lines. The low overall X-ray detection rate of optically selected SNRs can probably be attributed to their expansion into interstellar matter of low density.”

Or the creation of black holes…

History of Observation:

While the Triangulum Galaxy was probably first observed by Hodierna before 1654 (back when skies were dark), it was independently rediscovered by Charles Messier, and cataloged by him on August 25, 1764. As he recorded in his notes on the occasion:

“I have discovered a nebula between the head of the northern Fish and the large Triangle, a bit distant from a star which had not been known, of sixth magnitude, of which I have determined the position; the right ascension of that star was 22d 7′ 13″, and its declination 29d 54′ 10″ north: near that star, there is another one which is the first of Triangulum, described by the letter b. Flamsteed described it in his catalog, of sixth magnitude; it is less beautiful than that of which I have given the position, and one should set it to the rank of the stars of the eighth class. The nebula is a whitish light of 15 minutes in diameter, of an almost even density, despite a bit more luminous at two third of its diameter; it doesn’t contain any star: one sees it with difficulty with an ordinary refractor of one foot.”

The location of the Triangulum Galaxy in the night sky. Credit: Wikisky

While Sir William Herschel wouldn’t publish papers on Messier’s findings, he was an astronomically curious soul and couldn’t help but study M33 intently on his own, writing:

“There is a suspicion that the nebula consists of exceedingly small stars. With this low power it has a nebulous appearance; and it vanishes when I put on the higher magnifying powers of 278 and 460.” He would continue to observe this grand galaxy again and again over the years, cataloging its various regions with their own separate numbers and keeping track of his findings: “The stars of the cluster are the smallest points imaginable. The diameter is nearly 18 minutes.”

Yet it would take a very special observer, one named Bill Parsons – the third Earl of Rosse – to become the very first to describe it as spiral. As he wrote of it:

“September 16, 1849. – New spiral: Alpha the brighter branch; Gamma faint; Delta short but pretty bright; Beta pretty distinct; Epsilon but suspected; the whole involved in a faint nebula, which probably extends past several knots which lie about it in different directions. Faint nebula seems to extend very far following: drawing taken.”

Quite the description indeed, since it would eventually lead to Rosse’s description of M33 being “…full of knots. Spiral arrangement. Two similar curves like an “S” cross in the center”, and to other astronomers discovering that these “spiral nebulae” were extra-galactic!

The location of Messier 33 in the Triangulum constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Locating Messier 33:

While actually locating Messier 33 isn’t so difficult, seeing Messier 33 can be. Even though it is billed at nearly unaided eye magnitude, this huge, low surface brightness galaxy requires some experience with equipment and observing conditions or you may hunt forever in the right place and never find it. Let’s begin first by getting you in the proper area! First locate the Great Square of Pegasus – and its easternmost bright star, Alpha. About a hand span further east you will see the brightest star in Triangulum – Alpha.

M33 is just a couple of degrees (about 2 finger widths) west. Now, the most important part to understand is that you must use the lowest magnification possible, or you won’t be able to see the proverbial forest because of the trees. The image you see here at the top of the page is around a full degree of sky – about 1/3 the field of view of average binoculars and far larger than your average telescope eyepiece.

However, by using the least amount of magnification with a telescope you are causing M33 to appear much smaller – allowing it to fit within eyepiece field of view range. The larger the aperture, the more light it gathers and the brighter the image will be. The next thing to understand is M33 really is low surface brightness… Light pollution, a fine haze in the sky, moonlight… All of these things will make it difficult to find. Yet, there are places left here on Earth where the Triangulum Galaxy can be seen with no optical aid at all!

Enjoy your quest for M33. You may find it your first time out and it may be years before you see it in all its glory. But when you do, we guarantee you’ll never forget! Be sure to enjoy this video of the Triangulum galaxy too, courtesy of the European Southern Observatory:

Enjoy your quest for M33. You may find it your first time out and it may be years before you see it in all its glory. But when you do, we guarantee you’ll never forget!

And here are the quick facts on M33 to help you get started:

Object Name: Messier 33
Alternative Designations: M33, NGC 598, Triangulum Galaxy, Pinwheel Galaxy
Object Type: Type Sc, Spiral Galaxy
Constellation: Triangulum
Right Ascension: 01 : 33.9 (h:m)
Declination: +30 : 39 (deg:m)
Distance: 3000 (kly)
Visual Brightness: 5.7 (mag)
Apparent Dimension: 73×45 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 32 – the “Le Gentil” Dwarf Elliptical Galaxy

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at dwarf elliptical galaxy known as Messier 32. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the dwarf elliptical galaxy known as Messier 32 (aka. NGC 221). Located about 2.65 million light-years from Earth, in the direction of the Andromeda constellation, this dwarf is actually a satellite galaxy of the massive Andromeda Galaxy (M31). Along with Andromeda, the Milky Way and the Triangulum Galaxy (M33) is a member of the Local Group.

Description:

M32 is an elliptical dwarf galaxy which contains about 3 billion solar masses. While it looks small compared to its massive neighbor, this little guy actually stretches across space some 8,000 light years in diameter. Once you pick it up, you’ll notice it’s really quite bright on its own – and with very good reason – its nucleus is almost identical to M31. Both contain about 100 million solar masses in rapid motion around a central supermassive object!

The dwarf elliptical galaxy Messier 32 (Le Gentil). Credit: Wikisky

As Alister W. Graham wrote in his 2002 study – titled “Evidence for an outer disk in the Prototype `Compact Elliptical’ Galaxy M32“:

“M32 is the prototype for the relatively rare class of galaxies referred to as compact ellipticals. It has been suggested that M32 may be a tidally disturbed r1/4 elliptical galaxy or the remnant bulge of a disk-stripped early-type spiral galaxy reveals that the surface bightness profile, the velocity dispersion measurements, and the estimated supermassive black hole mass in M32 are inconsistent with the galaxy having, and probably ever having had, an r1/4 light profile. Instead, the radial surface brightness distribution of M32 resembles an almost perfect (bulge+exponential disk) profile; this is accompanied by a marked increase in the ellipticity profile and an associated change in the position angle profile where the “disk” starts to dominate. Compelling evidence that this bulge/disk interpretation is accurate comes from the best-fitting r1/n bulge model, which has a Sersic index of n=1.5, in agreement with the recently discovered relation between a bulge’s Sersic index and the mass of a bulge’s supermassive black hole.”

By probing deeply into Messier 32, we’ve learned this little galaxy is home to mainly mature red and yellow stars. And they’re good housekeepers, too… because there’s practically no dust or gas to be found. While this seems neat and tidy, it also means there isn’t any new star formation going on either, but there are signs of some lively doings in the not too distant past.

Because M32 has shared “space” with neighboring massive M31, the strong tidal field of the larger galaxy may have ripped away what once could have been spiral arms – leaving only its central bulge and triggering starburst in the core. As Kenji Bekki (et al) wrote in their 2001 study:

“The origin of M32, the closest compact elliptical galaxy (cE), is a long-standing puzzle of galaxy formation in the Local Group. Our N-body/smoothed particle hydrodynamics simulations suggest a new scenario in which the strong tidal field of M31 can transform a spiral galaxy into a compact elliptical galaxy. As a low-luminosity spiral galaxy plunges into the central region of M31, most of the outer stellar and gaseous components of its disk are dramatically stripped as a result of M31’s tidal field. The central bulge component on the other hand, is just weakly influenced by the tidal field, owing to its compact configuration, and retains its morphology. M31’s strong tidal field also induces rapid gas transfer to the central region, triggers a nuclear starburst, and consequently forms the central high-density and more metal-rich stellar populations with relatively young ages. Thus, in this scenario, M32 was previously the bulge of a spiral galaxy tidally interacting with M31 several gigayears ago. Furthermore, we suggest that cE’s like M32 are rare, the result of both the rather narrow parameter space for tidal interactions that morphologically transform spiral galaxies into cE’s and the very short timescale (less than a few times 109 yr) for cE’s to be swallowed by their giant host galaxies (via dynamical friction) after their formation.”

Messier 31 (the Andromeda Galaxy), along with Messier 32 and Messier 110. Credit: Wikisky

History of Observation:

M32 was discovered by Guillaume Le Gentil on October 29th, 1749 and became the first elliptical galaxy ever observed. Although it wasn’t cataloged by Charles Messier until August 3rd, 1764, he had also seen it some seven years earlier while studying at the Paris Observatory, but his notes had been suppressed. But no matter, for he made sure to include it in his notes with a drawing! As he wrote of the object:

“I have examined in the same night [August 3 to 4, 1764], and with the same instruments, the small nebula which is below and at some [arc] minutes from that in the girdle of Andromeda. M. le Gentil discovered it on October 29, 1749. I saw it for the first time in 1757. When I examined the former, I did not know previously of the discovery which had been made by M. Le Gentil, although he had published it in the second volume of the Memoires de Savans erangers, page 137. Here is what I found written in my journal of 1764. That small nebula is round and may have a diameter of 2 minutes of arc: between that small nebula and that in the girdle of Andromeda one sees two small telescopic stars. In 1757, I made a drawing of that nebula, together with the old one, and I have not found and change at each time I have reviewed it: One sees with difficulty that nebula with an ordinary refractor of three feet and a half; its light is fainter than that of the old one, and it doesn’t contain any star. At the passage of that new nebula through the Meridian, comparing it with the star Gamma Andromedae, I have determined its position in right ascension as 7d 27′ 32″, and its declination as 38d 45′ 34″ north.”

Later, Messier 32 would be examined again, this time by Admiral Symth who said:

“An overpowering nebula, with a companion about 25′ in the south vertical M32 … The companion of M31 was discovered in November, 1749, by Le Gentil, and was described by him as being about an eighth of the size of the principal one. The light is certainly more feeble than here assigned. Messier – whose No. 32 it is – observed it closely in 1764, and remarked, that no change had taken place since the time of its being first recorded. In form it is nearly circular. The powerful telescope of Lord Rosse is a reflector of three feet in diameter, of performance hitherto unequalled. It was executed by the Earl of Rosse, under a rare union of skill, assiduity, perseverance, and muniference. The years of application required to accomplish this, have not worn his Lordship’s zeal and spirit; like a giant refreshed, he has returned to his task, and is now occupied upon a metallic disc of no less than six feet in diameter. Should the figure of this prove as perfect as the present one, we may soon over-lap what many absurdly look upon as the boundaries of the creation.”

The location of Messier 32 location in the Andromeda constellation. Credit: Roberto Mura

Locating Messier 32:

Locating M32 is as easy as locating the Andromeda Galaxy, but it will require large binoculars or at least a small telescope to see. Even under moderately light polluted skies the Great Andromeda Galaxy can be easily be found with the unaided eye – if you know where to look. Seasoned amateur astronomers can literally point to the sky and show you the location of M31, but perhaps you have never tried to find it.

Believe it or not, this is an easy galaxy to spot even under the moonlight. Simply identify the large diamond-shaped pattern of stars that is the Great Square of Pegasus. The northernmost star is Alpha, and it is here we will begin our hop. Stay with the northern chain of stars and look four finger widths away from Alpha for an easily seen star.

The next along the chain is about three more finger widths away… And we’re almost there. Two more finger widths to the north and you will see a dimmer star that looks like it has something smudgy nearby. Point your binoculars there, because that’s no cloud – it’s the Andromeda Galaxy!

Now aim your binoculars or telescope its way… Perhaps one of the most outstanding of all galaxies to the novice observer, M31 spans so much sky that it takes up several fields of view in a larger telescope, and even contains its own clusters and nebulae with New General Catalog designations. If you have larger binoculars or a telescope, you will be able to pick up M31’s two companions – M32 and M110. Messier 32 is the elliptical galaxy to the south.

Why not stretch your own boundaries? Go observing! Halton Arp included Messier 32 as No. 168 in his Catalogue of Peculiar Galaxies. It’s bright, easy and fun! And here are the quick facts on this Messier Object to help you get started:

Object Name: Messier 32
Alternative Designations: M32, NGC 221
Object Type: Type E2, Elliptical Galaxy
Constellation: Andromeda
Right Ascension: 00 : 42.7 (h:m)
Declination: +40 : 52 (deg:m)
Distance: 2900 (kly)
Visual Brightness: 8.1 (mag)
Apparent Dimension: 8×6 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

Messier 31 – Observing Andromeda (M31)

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at the Andromeda Galaxy, also known as Messier 31. Enjoy!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of them so that others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is the famed Andromeda Galaxy, the closest spiral galaxy to the Milky Way which is named for the area of the sky it appears in (in the vicinity of the Andromeda constellation). It is the largest galaxy in the Local Group, and has the distinction of being one of the few objects that is actually getting closer to the Milky Way (and is expected to merge with us in a few billion years!).

Description:

Approaching us at roughly 300 kilometers per second, our massive galactic neighbor has been the object of studies of spiral structure, globular and open clusters, interstellar matter, planetary nebulae, supernova remnants, galactic nucleus, companion galaxies, and more for as long as we’ve been peering its way with a telescope. It’s part of our Local Group of galaxies and its two easily visible companions are only part of the eleven others that swarm around it.

One day, this galaxy will collide with our own, much as it is now consuming its neighbor – M32. However, this won’t come to pass for several billions years, so don’t go worrying about the immense gravitational disturbances just yet! And not surprisingly, a giant galaxy like Andromeda doesn’t get to be so big by keeping to itself. How many times now has the Great Andromeda Galaxy consumed another? More than once!

In 1993, the Hubble Space Telescope revealed that M31 has a double nucleus – a ‘leftover’ from another meal! As NASA and the ESA stated about the discovery at the time:

“Each of the two light-peaks contains a few million densely packed stars. The brighter object is the “classic” nucleus as studied from the ground. However, HST reveals that the true center of the galaxy is really the dimmer component. One possible explanation is that the brighter cluster is the leftover remnant of a galaxy cannibalized by M31. Another idea is that the true center of the galaxy has been divided in two by deep dust absorption across the middle, creating the illusion of two peaks. This green-light image was taken with HST’s Wide Field and Planetary Camera (WF/PC), in high resolution mode, on July 6, 1991. The two peaks are separated by 5 light-years. The Hubble image is 40 light-years across.”

Perhaps one of the most fascinating discovery recent years in Messier 31 was made by the orbiting Chandra X-Ray Observatory. The X-ray image below, made with the Chandra X-Ray Astronomy Center’s Advanced CCD Imaging Spectrometer (ACIS), shows the central portion of the Andromeda Galaxy. The Chandra X-ray Observatory is part of NASA’s fleet of “Great Observatories” along with the Hubble Space Telescope.

The Andromeda galaxy as seen in optical light, and Chandra’s X-ray vision of the changing supermassive black hole in Andromeda’s heart. Credit: X-Ray NASA/CXC/SAO/Li et al.), Optical (DSS)

The blue dot in the center of the image is a “cool” million degree X-ray source where Andromeda’s massive central object, with the mass of 30 million suns, is located, which many astronomers consider to be a supermassive black hole. Most of these are probably due to X-ray binary systems, in which a neutron star (or perhaps a stellar black hole) is in a close orbit around a normal star.”

Over the years our studies have advanced even more with the discovery of an eclipsing binary star in Messier 31. As Ignasi Ribas (et al) put it in a 2005:

“We present the first detailed spectroscopic and photometric analysis of an eclipsing binary in the Andromeda Galaxy (M31). This is a 19.3 mag semidetached system with late O and early B spectral type components. From the light and radial velocity curves we have carried out an accurate determination of the masses and radii of the components. Their effective temperatures have been estimated by modeling the absorption-line spectra. The analysis yields an essentially complete picture of the properties of the system, and hence an accurate distance determination to M31.”

In 2005, we discovered more. At that time, Scott Chapman of Caltech, Rodrigo Ibata of the Observatoire de Strasbourg, and their colleagues conducted detailed studies on the motions and metals of nearly 10,000 stars in Andromeda, which that the galaxy’s stellar halo is “metal-poor.” Essentially, this indicated that the stars lying in the outer bounds of the galaxy are lacking in elements heavier than hydrogen.

Image of the Andromeda Galaxy, showing Messier 32 to the lower left, which is currently merging with Andromeda. Credit: Wikipedia Commons/Torben Hansen

According to Chapman, this was surprising since one of the key differences thought to exist between Andromeda and the Milky Way was that the former’s stellar halo was metal-rich and the latter’s was metal-poor. If both galaxies are metal-poor, then they must have had very similar evolutions. As Chapman explained:

“Probably, both galaxies got started within a half billion years of the Big Bang, and over the next three to four billion years, both were building up in the same way by protogalactic fragments containing smaller groups of stars falling into the two dark-matter haloes.”

While no one yet knows what dark matter is made of, its existence is well established because of the mass that must exist in galaxies for their stars to orbit the galactic centers. In fact, current theories of galactic evolution assume that dark-matter wells acted as a sort of “seed” for today’s galaxies, with the dark matter pulling in smaller groups of stars as they passed nearby.

What’s more, galaxies like Andromeda and the Milky Way have each probably gobbled up about 200 smaller galaxies and protogalactic fragments over the last 12 billion years. Chapman and his colleagues arrived at the conclusion about the metal-poor Andromeda halo by obtaining careful measurements of the speed at which individual stars are coming directly toward or moving directly away from Earth.

The Andromeda Galaxy, viewed using conventional optics and IR. Credit: Kitt Peak National Observatory

This measure is called the radial velocity, and can be determined very accurately with the spectrographs of major instruments such as the 10-meter Keck-II telescope, which was used in the study. Of the approximately 10,000 Andromeda stars for which the researchers have obtained radial velocities, about 1,000 turned out to be stars in the giant stellar halo that extends outward by more than 500,000 light-years.

These stars, because of their lack of metals, are thought to have formed quite early, at a time when the massive dark-matter halo had captured its first protogalactic fragments. The stars that dominate closer to the center of the galaxy, by contrast, are those that formed and merged later, and contain heavier elements due to stellar evolution processes.In addition to being metal-poor, the stars of the halo follow random orbits and are not in rotation.

By contrast, the stars of Andromeda’s visible disk are rotating at speeds upwards of 200 kilometers per second.According to Ibata, the study could lead to new insights on the nature of dark matter. “This is the first time we’ve been able to obtain a panoramic view of the motions of stars in the halo of a galaxy,” says Ibata. “These stars allow us to weigh the dark matter, and determine how it decreases with distance.”

History of Observation:

Andromeda was known as the “Little Cloud” to Persian astronomer Abd-al-Rahman Al-Sufi, who described and depicted it in 964 AD in his Book of Fixed Stars. This wonderful galaxy was also cataloged by Giovanni Batista Hodierna in 1654, Edmund Halley in 1716, by Bullialdus 1664, and again by Charles Messier in 1764.

The Andromeda Galaxy is a spiral galaxy approximately 2.5 million light-years away in the constellation Andromeda. Credit: Wikipedia Commons/Adam Evans

Like most of the objects he added to the Messier Catalog, he mistook the galaxy initially for a nebulous object. As he wrote of the object in his notes:

“The sky has been very good in the night of August 3 to 4, 1764; and the constellation Andromeda was near the Meridian, I have examined with attention the beautiful nebula in the girdle of Andromeda, which was discovered in 1612 by Simon Marius, and which has been observed since with great care by different astronomers, and at last by M. le Gentil who has given a very ample and detailed description in the volume of the Memoirs of the Academy for 1759, page 453, with a drawing of its appearance. I will not report here what I have written in my Journal: I have employed different instruments for examining that nebula, and above all an excellent Gregorian telescope of 30 pouces focal length, the large mirror having 6 pouces in diameter, and magnifying 104 times these objects: the middle of that nebula appeared rather bright with this instrument, without any appearance of stars; the light went diminishing up to extinguishing; it resembles two cones or pyramids of light, opposed at their bases, of which the axis was in the direction form North-West to South-East; the two points of light or the two summits are about 40 minutes of arc apart; I say about, because of the difficulty to recognize these two extremities. The common base of the two pyramids is 15 minutes: these measures have been made with a Newtonian telescope of 4 feet and a half focal length, equipped with a micrometer of silk wires. With the same instrument I have compared the middle of the summits of the two cones of light with the star Gamma Andromedae of fourth magnitude which is very near to it, and little distant from its parallel. From these observations, I have concluded the right ascension of the middle of this nebula as 7d 26′ 32″, and its declination as 39d 9′ 32″ north. Since fifteen years during which I viewed and observed this nebula, I have not noticed any change in its appearances; having always perceived it in the same shape.”

A great many astronomers would observe the Andromeda Galaxy over the years, each colorfully describing it. However, as we know from history, it would be quite some time before its true nature as an external galaxy would be discovered. Here is where we must give the utmost respect to Sir William Herschel, who knew way ahead of everyone else, that there was something very, very different about Messier’s Object 31!

Composite Infrared/visble light image of the Andromeda Galaxy, taken by NASA’s Wide-field Infrared Survey Explorer (WISE). Credit: NASA/JPL-Caltech/WISE Team

Although he never publicly published his observing notes on another astronomer’s discoveries, it’s a shame he did not for this is what he had to say:

“.. But when an object is of such a construction, or at such a distance from us, that the highest power of penetration, which hitherto has been applied to it, leaves it undetermined whether it belongs to the class of nebulae or of stars, it may be called ambiguous. As there is, however, a considerable difference in the ambiguity of such objects, I have arranged 71 of them into the following four collections. The first contains seven objects that may be supposed to consist of stars, but where the observations hitherto made, of either their appearance or form, leave it undecided into which class they should be placed. Connoiss. 31 [M31] is: A large nucleus with very extensive nebulous branches, but the nucleus is very gradually joined to them. The stars which are scattered over it appear to be behind it, and seem to lose part of their lustre in the passage of their light through the nebulosity; there are not more of them scattered over the immediate neighborhood. I examined it in the meridian with a mirror of 24 inches in diameter, and saw it in high perfection; but its nature remains mysterious. Its light, instead of appearing resolvable with this aperture, seemed to be more milky. The objects in this collection must at present remain ambiguous.”

Locating Messier 31:

Even under moderately light polluted skies the Great Andromeda Galaxy, located in the Andromeda constellation, can be easily be found with the unaided eye – if you know where to look. Seasoned amateur astronomers can literally point to the sky and show you the location of M31, but perhaps you have never tried to find it. Believe it or not, this is an easy galaxy to spot even under the moonlight.

Simply identify the large diamond-shaped pattern of stars that is the Great Square of Pegasus. The northernmost star is Alpha, and it is here we will begin our hop. Stay with the northern chain of stars and look four finger widths away from Alpha for an easily seen star. The next along the chain is about three more finger widths away. Two more finger widths to the north and you will see a dimmer star that looks like it has something smudgy nearby.

The location of Messier 31, in the Andromeda constellation (from which it takes its name). Credit: IAU/Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

Point your binoculars there, because that’s no cloud – it’s the Andromeda Galaxy! Now aim your binoculars or small telescope its way… Perhaps one of the most outstanding of all galaxies to the novice observer, M31 spans so much sky that it takes up several fields of view in a larger telescope, and even contains its own clusters and nebulae with New General Catalog designations.

If you have a slightly larger telescope, you may also be able to pick up M31’s two companions – M32 and M110. Even with no scope or binoculars, it’s pretty amazing that we can see something – anything! – that is over two million light-years away!

Enjoy this wonderful and mysterious galaxy at any and every opportunity! Even the most modest of optical aids will reveal it for what it is… Another island universe!

And here are ye’ ole’ quick facts. Enjoy!

Object Name: Messier 31
Alternative Designations: M31, NGC 224, Andromeda Galaxy
Object Type: Type Sb Galaxy
Constellation: Andromeda
Right Ascension: 00 : 42.7 (h:m)
Declination: +41 : 16 (deg:m)
Distance: 2900 (kly)
Visual Brightness: 3.4 (mag)
Apparent Dimension: 178×63 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.

Sources:

What is the Closest Galaxy to the Milky Way?

Scientists have known for some time that the Milky Way Galaxy is not alone in the Universe. In addition to our galaxy being part of the Local Group – a collection of 54 galaxies and dwarf galaxies – we are also part of the larger formation known as the Virgo Supercluster. So you could say the Milky Way has a lot of neighbors.

Of these, most people consider the Andromeda Galaxy to be our closest galactic cohabitant. But in truth, Andromeda is the closest spiral galaxy, and not the closest galaxy by a long shot. This distinction falls to a formation that is actually within the Milky Way itself, a dwarf galaxy that we’ve only known about for a little over a decade.

Closest Galaxy:

At present, the closet known galaxy to the Milky Way is the Canis Major Dwarf Galaxy – aka. the Canis Major Overdensity. This stellar formation is about 42,000 light years from the galactic center, and a mere 25,000 light years from our Solar System. This puts it closer to us than the center of our own galaxy, which is 30,000 light years away from the Solar System.

Illustration of the Canis Dwarf Dwarf Galaxy, Credit: R. Ibata (Strasbourg Observatory, ULP) et al./2MASS/NASA
Illustration of the Canis Dwarf Galaxy and its associated tidal (shown in red) in relation to our Milky Way. Credit: R. Ibata (Strasbourg Observatory, ULP) et al./2MASS/NASA

Characteristics:

The Canis Major Dwarf Galaxy Dwarf Galaxy is believed to contain one billion stars in all, a relatively high-percentage of which are in the Red Giant Branch phase of their lifetimes. It has a roughly elliptical shape and is thought to contain as many stars as the Sagittarius Dwarf Elliptical Galaxy, the previous contender for closest galaxy to our location in the Milky Way.

In addition to the dwarf galaxy itself, a long filament of stars is visible trailing behind it. This complex, ringlike structure – which is sometimes referred to as the Monoceros Ring – wraps around the galaxy three times. The stream was first discovered in the early 21st century by astronomers conducting the Sloan Digital Sky Survey (SDSS).

It was in the course of investigating this ring of stars, and a closely spaced group of globular clusters similar to those associated with the Sagittarius Dwarf Elliptical Galaxy, that the Canis Major Dwarf Galaxy was first discovered. The current theory is that this galaxy was accreted (or swallowed up) by the Milky Way Galaxy.

Other globular clusters that orbit the center of our Milky Way as a satellite – i.e. NGC 1851, NGC 1904, NGC 2298 and NGC 2808 – are thought to have been part of the Canis Major Dwarf Galaxy before its accretion. It also has associated open clusters, which are thought to have formed as a result of the dwarf galaxy’s gravity perturbing material in the galactic disk and stimulating star formation.

Images of a few examples of merging galaxies taken by the Hubble Space Telescope. Credit: NASA/ESA/STScI/A. Evans/NRAO/Caltech

Discovery:

Prior to its discovery, astronomers believed that the Sagittarius Dwarf Galaxy was the closest galactic formation to our own. At 70,000 light years from Earth, this galaxy was determined in 1994 to be closer to us than the Large Magellanic Cloud (LMC), the irregular dwarf galaxy that is located 180,000 light years from Earth, and which previously held the title of the closest galaxy to the Milky Way.

All of that changed in 2003 when The Canis Major Dwarf Galaxy was discovered by the Two Micron All-Sky Survey (2MASS). This collaborative astronomical mission, which took place between 1997 and 2001, relied on data obtained by the Mt. Hopkins Observatory in Arizona (for the Northern Hemisphere) and the Cerro Tololo Inter-American Observatory in Chile (for the southern hemisphere).

From this data, astronomers were able to conduct a survey of 70% of the sky, detecting about 5,700 celestial sources of infrared radiation. Infrared astronomy takes advantage of advances in astronomy that see more of the Universe, since infrared light is not blocked by gas and dust to the same extent as visible light.

Because of this technique, the astronomers were able to detect a very significant over-density of class M giant stars in a part of the sky occupied by the Canis Major constellation, along with several other related structures composed of this type of star, two of which form broad, faint arcs (as seen in the image close to the top).

An artist depicts the incredibly powerful flare that erupted from the red dwarf star EV Lacertae. Credit: Casey Reed/NASA
An artist depicts the incredibly powerful flare that erupted from the red dwarf star EV Lacertae. Credit: Casey Reed/NASA

The prevalence of M-class stars is what made the formation easy to detect. These cool, “Red Dwarfs” are not very luminous compared to other classes of stars, and cannot even be seen with the naked eye. However, they shine very brightly in the infrared, and appeared in great numbers.

The discovery of this galaxy, and subsequent analysis of the stars associated with it, has provided some support for the current theory that galaxies may grow in size by swallowing their smaller neighbors. The Milky Way became the size it is now by eating up other galaxies like Canis Major, and it continues to do so today. And since stars from the Canis Major Dwarf Galaxy are technically already part of the Milky Way, it is by definition the nearest galaxy to us.

As already noted, it was the Sagittarius Dwarf Elliptical Galaxy that held the position of closest galaxy to our own prior to 2003. At 75,000 light years away. This dwarf galaxy, which consists of four globular clusters that measure some 10,000 light-years in diameter, was discovered in 1994. Prior to that, the Large Magellanic Cloud was thought to be our closest neighbor.

The Andromeda Galaxy (M31) is the closest spiral galaxy to us, and though it’s gravitationally bound to the Milky Way, it’s not the closest galaxy by far – being 2 million light years away. Andromeda is currently approaching our galaxy at a speed of about 110 kilometers per second. In roughly 4 billion years, the Andromeda Galaxy is expected to merge with out own, forming a single, super-galaxy.

Future of the Canis Major Dwarf Galaxy:

Astronomers also believe that the Canis Major Dwarf Galaxy is in the process of being pulled apart by the gravitational field of the more massive Milky Way Galaxy. The main body of the galaxy is already extremely degraded, a process which will continue as it travels around and through our Galaxy.

In time, the accretion process will likely culminate with the Canis Major Dwarf Galaxy merging entirely with the Milky Way, thus depositing its 1 billion stars to the 200 t0 400 billion that are already part of our galaxy.

We have written many interesting articles on galaxies here at Universe Today. Here’s Closest Galaxy Discovered, How did the Milky Way Form?, How Many Galaxies are there in the Universe?, What is the Milky Way Collision, Spiral Galaxies Could eat Dwarfs all over the Universe and The Canis Major Constellation.

For more information, check out this article from the Spitzer Space Telescope‘s website about the galaxies that are closest to the Milky Way Galaxy. And here is a video by the same author on the subject.

Astronomy Cast has some interesting episodes on the subject. Here’s Episode 97: Galaxies and Episode 99: The Milky Way.

Sources:

What is a Supermassive Black Hole?

In 1971, English astronomers Donald Lynden-Bell and Martin Rees hypothesized that a supermassive black hole (SMBH) resides at the center of our Milky Way Galaxy. This was based on their work with radio galaxies, which showed that the massive amounts of energy radiated by these objects was due to gas and matter being accreted onto a black hole at their center.

By 1974, the first evidence for this SMBH was found when astronomers detected a massive radio source coming from the center of our galaxy. This region, which they named Sagittarius A*, is over 10 million times as massive as our own Sun. Since its discovery, astronomers have found evidence that there are supermassive black holes at the centers of most spiral and elliptical galaxies in the observable Universe.

Description:

Supermassive black holes (SMBH) are distinct from lower-mass black holes in a number of ways. For starters, since SMBH have a much higher mass than smaller black holes, they also have a lower average density. This is due to the fact that with all spherical objects, volume is directly proportional to the cube of the radius, while the minimum density of a black hole is inversely proportional to the square of the mass.

In addition, the tidal forces in the vicinity of the event horizon are significantly weaker for massive black holes. As with density, the tidal force on a body at the event horizon is inversely proportional to the square of the mass. As such, an object would not experience significant tidal force until it was very deep into the black hole.

Formation:

How SMBHs are formed remains the subject of much scholarly debate. Astrophysicists largely believe that they are the result of black hole mergers and the accretion of matter. But where the “seeds” (i.e. progenitors) of these black holes came from is where disagreement occurs. Currently, the most obvious hypothesis is that they are the remnants of several massive stars that exploded, which were formed by the accretion of matter in the galactic center.

Another theory is that before the first stars formed in our galaxy, a large gas cloud collapsed into a “qausi-star” that became unstable to radial perturbations. It then turned into a black hole of about 20 Solar Masses without the need for a supernova explosion. Over time, it rapidly accreted mass in order to become an intermediate, and then supermassive, black hole.

In yet another model, a dense stellar cluster experienced core-collapse as the as a result of velocity dispersion in its core, which happened at relativistic speeds due to negative heat capacity. Last, there is the theory that primordial black holes may have been produced directly by external pressure immediately after the Big Bang. These and other theories remain theoretical for the time being.

Sagittarius A*:

Multiple lines of evidence point towards the existence of a SMBH at the center of our galaxy. While no direct observations have been made of Sagittarius A*, its presence has been inferred from the influence it has on surrounding objects. The most notable of these is S2, a star that flows an elliptical orbit around the Sagittarius A* radio source.

S2 has an orbital period of 15.2 years and reaches a minimal distance of 18 billion km (11.18 billion mi, 120 AU) from the center of the central object. Only a supermassive object could account for this, since no other cause can be discerned. And from the orbital parameters of S2, astronomers have been able to produce estimates on the size and mass of the object.

For instance, S2s motions have led astronomers to calculated that the object at the center of its orbit must have no less than 4.1 million Solar Masses (8.2 × 10³³ metric tons; 9.04 × 10³³ US tons). Furthermore, the radius of this object would have to be less than 120 AU, otherwise S2 would collide with it.

However, the best evidence to date was provided in 2008 by the Max Planck Institute for Extraterrestrial Physics and UCLAs Galactic Center Group. Using data obtained over a 16 year period by the ESO’s Very Large Telescope and Keck Telescope, they were able to not only accurately estimate the distance to the center of our galaxy (27,000 light years from Earth), but also track the orbits of the stars there with immense precision.

As Reinhard Genzel, the team leader from the Max-Planck-Institute for Extraterrestrial Physics said:

Undoubtedly the most spectacular aspect of our long term study is that it has delivered what is now considered to be the best empirical evidence that supermassive black holes do really exist. The stellar orbits in the Galactic Centre show that the central mass concentration of four million solar masses must be a black hole, beyond any reasonable doubt.”

Another indication of Sagittarius A*s presence came on January 5th, 2015, when NASA reported a record-breaking X-ray flare coming from the center of our galaxy. Based on readings from the Chandra X-ray Observatory, they reported emissions that were 400 times brighter than usual. These were thought to be the result of an asteroid falling into the black hole, or by the entanglement of magnetic field lines within the gas flowing into it.

Other Galaxies:

Astronomers have also found evidence of SMBHs at the center of other galaxies within the Local Group and beyond. These include the nearby Andromeda Galaxy (M31) and elliptical galaxy M32, and the distant spiral galaxy NGC 4395. This is based on the fact that stars and gas clouds near the center of these galaxies show an observable increase in velocity.

Another indication is Active Galactic Nuclei (AGN), where massive bursts of radio, microwave, infrared, optical, ultra-violet (UV), X-ray and gamma ray wavebands are periodically detected coming from the regions of cold matter (gas and dust) at the center of larger galaxies. While the radiation is not coming from the black holes themselves, the influence such a massive object would have on surrounding matter is believed to be the cause.

In short, gas and dust form accretion disks at the center of galaxies that orbit supermassive black holes, gradually feeding them matter. The incredible force of gravity in this region compresses the disk’s material until it reaches millions of degrees kelvin, generating bright radiation and electromagnetic energy. A corona of hot material forms above the accretion disc as well, and can scatter photons up to X-ray energies.

The interaction between the SMBH rotating magnetic field and the accretion disk also creates powerful magnetic jets that fire material above and below the black hole at relativistic speeds (i.e. at a significant fraction of the speed of light). These jets can extend for hundreds of thousands of light-years, and are a second potential source of observed radiation.

When the Andromeda Galaxy merges with our own in a few billion years, the supermassive black hole that is at its center will merge with our own, producing a much more massive and powerful one. This interaction is likely to kick several stars out of our combined galaxy (producing rogue stars), and is also likely to cause our galactic nucleus (which is currently inactive) to become active one again.

The study of black holes is still in its infancy. And what we have learned over the past few decades alone has been both exciting and awe-inspiring. Whether they are lower-mass or supermassive, black holes are an integral part of our Universe and play an active role in its evolution.

Who knows what we will find as we peer deeper into the Universe? Perhaps some day we the technology, and sheer audacity, will exist so that we might attempt to peak beneath the veil of an event horizon. Can you imagine that happening?

We have written many interesting articles about black holes here at Universe Today. Here’s Beyond Any Reasonable Doubt: A Supermassive Black Hole Lives in Centre of Our Galaxy, X-Ray Flare Echo Reveals Supermassive Black Hole Torus, How Do You Weigh a Supermassive Black Hole? Take its Temperature, and What Happens When Supermassive Black Holes Collide?

Astronomy Cast also some relevant episodes on the subject. Here’s Episode 18: Black Holes Big and Small, and Episode 98: Quasars.

More to explore: Astronomy Cast’s episodes Quasars, and Black Holes Big and Small.

Sources:

What is Galactic Evolution?

On a clear night, you can make out the band of the Milky Way in the night sky. For millennia, astronomers looked upon it in awe, slowly coming to the realization that our Sun was merely one of billions of stars in the galaxy. Over time, as our instruments and methods improved, we came to realize that the Milky Way itself was merely one of billions of galaxies that make up the Universe.

Thanks to the discovery of Relativity and the speed of light, we have also come to understand that when we look through space, we are also looking back in time. By seeing an object 1 billion light-years away, we are also seeing how that object looked 1 billion years ago. This “time machine” effect has allowed astronomers to study how galaxies came to be (i.e. galactic evolution).

The process in which galaxies form and evolve is characterized by steady growth over time, which began shortly after the Big Bang. This process, and the eventual fate of galaxies, remain the subject of intense fascination, and is still fraught with its share of mysteries.

Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. The goal of the Frontier Fields is to peer back further than the Hubble Ultra Deep Field and get a wealth of images of galaxies as they existed in the first several hundred million years after the Big Bang. Note that the unit of time is not linear in this illustration. Illustration Credit: NASA and A. Feild (STScI)
Illustration of the depth by which Hubble imaged galaxies in prior Deep Field initiatives, in units of the Age of the Universe. Credit: NASA and A. Feild (STScI)

Galaxy Formation:

The current scientific consensus is that all matter in the Universe was created roughly 13.8 billion years ago during an event known as the Big Bang. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the Universe as we know it began.

After rapidly expanding and cooling, all matter was almost uniform in distribution. Over the course of the several billion years that followed, the slightly denser regions of the Universe began to become gravitationally attracted to each other. They therefore grew even denser, forming gas clouds and large clumps of matter.

These clumps became primordial galaxies, as the clouds of hydrogen gas within the proto-galaxies underwent gravitational collapse to become the first stars. Some of these early objects were small, and became tiny dwarf galaxies, while others were much larger and became the familiar spiral shapes, like our own Milky Way.

Galactic Mergers:

Once formed, these galaxies evolved together in larger galactic structures called groups, clusters and superclusters. Over time, galaxies were attracted to one another by the force of their gravity, and collided together in a series of mergers. The outcome of these mergers depends on the mass of the galaxies in the collision.

Small galaxies are torn apart by larger galaxies and added to the mass of larger galaxies. Our own Milky Way recently devoured a few dwarf galaxies, turning them into streams of stars that orbit the galactic core. But when large galaxies of similar size come together, they become giant elliptical galaxies.

When this happens, the delicate spiral structure is lost, and the merged galaxies become large and elliptical. Elliptical galaxies are some of the largest galaxies ever observed. Another consequence of these mergers is that the supermassive black holes (SMBH) at their centers become even larger.

Not all mergers will result in elliptical galaxies, mind you. But all mergers result in a change in the structure of the merged galaxies. For example, it is believed that the Milky Way is experiencing a minor merger event with the nearby Magellanic Clouds; and in recent years, it has been determined that the Canis Major dwarf galaxy has merged with our own.

While mergers are seen as violent events, actual collisions are not expected to happen between star systems, given the vast distances between stars. However, mergers can result in gravitational shock waves, which are capable of triggering the formation of new stars. This is what is predicted to happen when our own Milky Way galaxy merges with the Andromeda galaxy in about 4 billion years time.

Galactic Death:

Ultimately, galaxies cease forming stars once they deplete their supply of cold gas and dust. As the supply runs out, star forming slows over the course of billions of years until it ceases entirely. However, ongoing mergers will ensure that fresh stars, gas and dust are deposited in older galaxies, thus prolonging their lives.

At present, it is believed that our galaxy has used up most of its hydrogen, and star formation will slow down until the supply is depleted. Stars like our Sun can only last for 10 billion years or so; but the smallest, coolest red dwarfs can last for a few trillion years. However, thanks to the presence of dwarf galaxies and our impending merger with Andromeda, our galaxy could exist even longer.

However, all galaxies in this vicinity of the Universe will eventually become gravitationally bound to each other and merge into a giant elliptical galaxy. Astronomers have seen examples of these sorts of “fossil galaxies”, a good of which is Messier 49 – a supermassive elliptical galaxy.

These galaxies have used up all their reserves of star forming gas, and all that’s left are the longer lasting stars. Eventually, over vast lengths of time, those stars will wink out one after the other, until the whole thing is the background temperature of the Universe.

After our galaxy merges with Andromeda, and goes on to merge with all other nearby galaxies in the local group, we can expect that it too will undergo a similar fate. And so, galaxy evolution has been occurring over billions of years, and it will continue to happen for the foreseeable future.

We have written many articles about galaxies for Universe Today. Here’s What is the Milky Way?, How did the Milky Way Form?, What Happens When Galaxies Collide?, What Happens When Galaxies Die?, A New Spin on Galactic Evolution, and Supercomputer will Study Galaxy Evolution,

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We have also recorded an episode of Astronomy Cast about galaxies – Episode 97: Galaxies.

Sources: