Aerojet Rocketdyne Tests Out its New Advanced Ion Engine System

When it comes to the next generation of space exploration, a number of key technologies are being investigated. In addition to spacecraft and launchers that will be able to send astronauts farther into the Solar System, NASA and other space agencies are also looking into new means of propulsion. Compared to conventional rockets, the goal is to create systems that offer reliable thrust while ensuring fuel-efficiency.
Continue reading “Aerojet Rocketdyne Tests Out its New Advanced Ion Engine System”

NASA Selects Aerojet Rocketdyne to Develop Solar Electric Propulsion for Deep Space Missions

This prototype 13-kilowatt Hall thruster was tested at NASA's Glenn Research Center in Cleveland and  will be used by industry to develop high-power solar electric propulsion into a flight-qualified system.  Credits: NASA
This prototype 13-kilowatt Hall thruster was tested at NASA’s Glenn Research Center in Cleveland and will be used by industry to develop high-power solar electric propulsion into a flight-qualified system. Credits: NASA

NASA has selected Aerojet Rocketdyne to design and develop an advanced solar electric propulsion (SEP) system that will serve as a critical enabling technology for sending humans and robots on deep space exploration missions to cislunar space, asteroids and the Red Planet.

Under the 3 year, $67 million contract award, Aerojet Rocketdyne will develop the engineering development unit for an Advanced Electric Propulsion System (AEPS) with the potential for follow on flight units.

NASA hopes that the work will result in a 10 fold increase in “spaceflight transportation fuel efficiency compared to current chemical propulsion technology and more than double thrust capability compared to current electric propulsion systems.”

The SEP effort is based in part on NASA’s exploratory work on Hall ion thrusters which trap electrons in a magnetic field and uses them to ionize and accelerate the onboard xenon gas propellant to produce thrust much more efficiently than chemical thrusters.

The solar electric propulsion (SEP) system technology will afford benefits both to America’s commercial space and scientific space exploration capabilities.

For NASA, the SEP technology can be applied for expeditions to deep space such as NASA’s planned Asteroid Robotic Redirect Mission (ARRM) to snatch a boulder from the surface of an asteroid and return it to cislunar space during the 2020s, as well as to carry out the agency’s ambitious plans to send humans on a ‘Journey to Mars’ during the 2030s.

“High power SEP is a perfect example of NASA developing cross cutting technologies to enable both human and robotic deep space missions. Basically it enables high efficiency and better gas mileage,” said Steve Jurczyk, associate administrator of NASA’s Space Technology Mission Directorate (STMD) in Washington, at a media briefing.

“The advantage here is the higher power and the higher thrust.”

“Our plan right now is to flight test the higher power solar electric propulsion that Aerojet Rocketdyne will develop for us on the Asteroid Redirect Robotic Mission (ARRM), which is going to go out to an asteroid with a robotic system, grab a boulder off of an asteroid, and bring it back to a lunar orbit.”

ARRM would launch around 2020 or 2021. Astronauts would blast off several years later in NASA’s Orion crew capsule in 2025 after the robotic probes travels back to lunar orbit.

For industry, electric propulsion is used increasingly to maneuver thrusters in Earth orbiting commercial satellites for station keeping in place of fuel.

“Through this contract, NASA will be developing advanced electric propulsion elements for initial spaceflight applications, which will pave the way for an advanced solar electric propulsion demonstration mission by the end of the decade,” says Jurczyk.

“Development of this technology will advance our future in-space transportation capability for a variety of NASA deep space human and robotic exploration missions, as well as private commercial space missions.”

This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion.  Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA
This 13-kilowatt Hall thruster is being evaluated at NASA’s Glenn Research Center in Cleveland for advanced solar electric propulsion. Hall thrusters trap electrons in a magnetic field and use them to ionize the onboard propellant. Credits: NASA

“This is also a critical capability for enabling human missions to Mars, with respect to delivering cargo to the surface to Mars that will allow people to live and work there on the surface. Also for combined chemical and SEP systems on a spacecraft to propel humans to Mars,” elaborated Jurczyk at the briefing.

“Another application is round trip robotic science missions to Mars to bring back samples – such as a Mars Sample Return (MSR) mission.”

The starting point is NASA’s development and technology readiness testing of a prototype 13-kilowatt Hall thruster and power processing unit at NASA’s Glenn Research Center in Cleveland.

Under the contract award Aerojet Rocketdyne aims to carry out the industrial development of “high-power solar electric propulsion into a flight-qualified system.”

They will develop, build, test and deliver “an integrated electric propulsion system consisting of a thruster, power processing unit (PPU), low-pressure xenon flow controller, and electrical harness,” as an engineering development unit.

This engineering development unit serves as the basis for producing commercial flight units.

If successful, NASA has an option to purchase up to four integrated flight units for actual space missions. Engineers from NASA Glenn and the Jet Propulsion Laboratory (JPL) will provide technical support.

“We could string together four of these engine units to get approximately 50 kilowatts of electrical propulsion capability and with that we can do significant orbital transfer operations. That then becomes the next step in deep space exploration operations that we are trying to do,” said Bryan Smith, director of the Space Flight Systems Directorate at NASA’s Glenn Research Center in Cleveland, at the media briefing.

“We hope to buy four of these units for the ARRM mission.”

What were some of NASA’s research and development (R&D) activities and further plans for Aerojet Rocketdyne?

“NASA is driving out the technology itself for feasibility. So we produced a developmental device to operate at these levels,” Smith told Universe Today during the briefing.

“Other key characteristics we were looking for is the ability to do magnetic shielding. The purpose was to allow for a long life thruster operation. We investigated attributes like thermal problems and balancing the erosion mechanisms in developmental units. So we were looking for things to get longer life and feasibility in developmental units.”

“Once we were comfortable with the feasibility in developmental units, we are now transferring the information, technology and knowhow into what is a production article, in this contract.”

Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s.   Credit: Ken Kremer/kenkremer.com
Robotic sampling arm and capture mechanism to collect a multi-ton boulder from an asteroid are under development at NASA Goddard and other agency centers for NASA’s unmanned Asteroid Redirect Vehicle and eventual docking in lunar orbit with Orion crew vehicle by the mid 2020s. Credit: Ken Kremer/kenkremer.com

Solar electric ion propulsion is already being used in NASA’s hugely successful Dawn asteroid orbiter mission.

Dawn was launched in 2007. It orbited and surveyed Vesta in 2011 and 2012 and then traveled outward to Ceres.

Dawn arrived at dwarf planet Ceres in March 2015 and is currently conducting breakthrough science at its lowest planned science mapping orbit.

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

A key part of the Journey to Mars, NASA will be sending cargo missions to the Red Planet to pave the way for human expeditions with the Orion crew module and Space Launch System.

Aerojet Rocketdyne states that “Solar Electric Propulsion (SEP) systems have demonstrated the ability to reduce the mission cost for NASA Human Exploration cargo missions by more than 50 percent through the use of existing flight-proven SEP systems.”

“Using a SEP tug for cargo delivery, combined with NASA’s Space Launch System and the Orion crew module, provides an affordable path for deep space exploration,” said Aerojet Rocketdyne Vice President, Space and Launch Systems, Julie Van Kleeck.

Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne
Aerojet Rocketdyne artists concept for solar electric propulsion system for deep space missions. Credit: Aerojet Rocketdyne

Another near term application of high power solar electric propulsion could be for NASA’s proposed Mars 2022 telecom orbiter, said Smith at the media briefing.

Other NASA technology work in progress includes development of more efficient, advanced solar array systems to generate the additional power required for the larger electric thrusters.

Orbital ATK was part of the development effort and already used some of its technology development in the ultraflex solar arrays on the recent Cygnus cargo ships delivering supplies to the ISS.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Awards Contract to Aerojet Rocketdyne to Restart RS-25 Engine Production for SLS Mars Rocket

NASA took another big step on the path to propel our astronauts back to deep space and ultimately on to Mars with the long awaited decision to formally restart production of the venerable RS-25 engine that will power the first stage of the agency’s mammoth Space Launch System (SLS) heavy lift rocket, currently under development.

Aerojet Rocketdyne was awarded a NASA contract to reopen the production lines for the RS-25 powerplant and develop and manufacture a certified engine for use in NASA’s SLS rocket. The contract spans from November 2015 through Sept. 30, 2024.

The SLS is the most powerful rocket the world has ever seen and will loft astronauts in the Orion capsule on missions back to the Moon by around 2021, to an asteroid around 2025 and then beyond on a ‘Journey to Mars’ in the 2030s – NASA’s overriding and agency wide goal. The first unmanned SLS test flight is slated for late 2018.

The core stage (first stage) of the SLS will initially be powered by four existing RS-25 engines, recycled and upgraded from the shuttle era, and a pair of five-segment solid rocket boosters that will generate a combined 8.4 million pounds of liftoff thrust, making it the world’s most powerful rocket ever.

The newly awarded RS-25 engine contract to Sacramento, California based Aerojet Rocketdyne is valued at 1.16 Billion and aims to “modernize the space shuttle heritage engine to make it more affordable and expendable for SLS,” NASA announced on Nov. 23. NASA can also procure up to six new flight worthy engines for later launches.

“SLS is America’s next generation heavy lift system,” said Julie Van Kleeck, vice president of Advanced Space & Launch Programs at Aerojet Rocketdyne, in a statement.

“This is the rocket that will enable humans to leave low Earth orbit and travel deeper into the solar system, eventually taking humans to Mars.”

The lead time is approximately 5 or 6 years to build and certify the first new RS-25 engine, Van Kleek told Universe Today in an interview. Therefore NASA needed to award the contract to Aerojet Rocketdyne now so that its ready when needed.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The RS-25 is actually an upgraded version of former space shuttle main engines (SSMEs) originally built by Aerojet Rocketdyne.

The reusable engines were used with a 100% success rate during NASA’s three decade-long Space Shuttle program to propel the now retired shuttle orbiters to low Earth orbit.

Atlantis rolls over  from the Orbiter Processing Facility (OPF-1, at right)  processing hanger to the Vehicle Assembly Building (VAB, at left) at KSC for the STS-135 mission.  Credit: Ken Kremer
Space Shuttles were powered by a trio of Space Shuttle Main Engines (SSMEs) now recycled and upgraded as RS-25 engines for SLS. Atlantis rolls over from the Orbiter Processing Facility (OPF-1, at right) processing hanger to the Vehicle Assembly Building (VAB, at left) at KSC for the STS-135 mission. Credit: Ken Kremer

Those same engines are now being modified for use by the SLS on missions to deep space starting in 2018.

But NASA only has an inventory of 16 of the RS-25 engines, which is sufficient for a maximum of the first four SLS launches only. Although they were reused numerous times during the shuttle era, they will be discarded after each SLS launch.

During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi.  Credit: NASA
During a 535-second test on August 13, 2015, operators ran the Space Launch System (SLS) RS-25 rocket engine through a series of tests at different power levels to collect engine performance data on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Credit: NASA

And since the engines cannot be recovered and reused as during the shuttle era, a brand new set of RS-25s will have to be manufactured from scratch.

Therefore, the engine manufacturing process can and will be modernized and significantly streamlined – using fewer part and welds – to cut costs and improve performance.

“The RS-25 engines designed under this new contract will be expendable with significant affordability improvements over previous versions,” added Jim Paulsen, vice president, Program Execution, Advanced Space & Launch Programs at Aerojet Rocketdyne. “This is due to the incorporation of new technologies, such as the introduction of simplified designs; 3-D printing technology called additive manufacturing; and streamlined manufacturing in a modern, state-of-the-art fabrication facility.”

“The new engines will incorporate simplified, yet highly reliable, designs to reduce manufacturing time and cost. For example, the overall engine is expected to simplify key components with dramatically reduced part count and number of welds. At the same time, the engine is being certified to a higher operational thrust level,” says Aerojet Rocketdyne.

The existing stock of 16 RS-25s are being upgraded for use in SLS and also being run through a grueling series of full duration hot fire test firings to certify them for flight, as I reported previously here at Universe Today.

Among the RS-25 upgrades is a new engine controller specific to SLS. The engine controller functions as the “brain” of the engine, which checks engine status, maintains communication between the vehicle and the engine and relays commands back and forth.

RS-25 test firing in progress on the A-1 test stand at NASA's Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015.  Credit: NASA
RS-25 test firing in progress on the A-1 test stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, on Aug. 13, 2015. Credit: NASA

Each of the RS-25’s engines generates some 500,000 pounds of thrust. They are fueled by cryogenic liquid hydrogen and liquid oxygen. For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.

They have to withstand and survive temperature extremes ranging from -423 degrees F to more than 6000 degrees F.

The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS, Orion, SpaceX, Orbital ATK Cygnus, ISS, ULA Atlas rocket, Boeing, Space Taxis, Mars rovers, Antares, NASA missions and more at Ken’s upcoming outreach events:

Dec 1 to 3: “Orbital ATK Atlas/Cygnus launch to the ISS, ULA, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Dec 8: “America’s Human Path Back to Space and Mars with Orion, Starliner and Dragon.” Amateur Astronomers Assoc of Princeton, AAAP, Princeton University, Ivy Lane, Astrophysics Dept, Princeton, NJ; 7:30 PM.

Boeing Rejects Aerojet Rocketdyne Bid for ULA and Affirms Vulcan Rocket Support, Lockheed Martin Noncommittal

Boeing has officially and publicly rejected a bid by Aerojet Rocketdyne to buy rocket maker United Launch Alliance (ULA), which the firm co-owns with rival aerospace giant Lockheed Martin. Furthermore Boeing affirmed support for ULA’s new next generation Vulcan rocket now under development, a spokesperson confirmed to Universe Today.

Aerojet Rocketdyne, which supplies critical rocket engines powering ULA’s fleet of Atlas and Delta rockets, recently made an unsolicited offer to buy ULA for approximately $2 Billion in cash, as Universe Today reported last week.

The Vulcan is planned to replace all of ULA’s existing rockets – which are significantly more costly than those from rival launch provider SpaceX, founded by billionaire entrepreneur Elon Musk.

Boeing never “seriously entertained” the Aerojet-Rocketdyne buyout offer, Universe Today confirmed with Boeing spokesperson Cindy Anderson.

Meanwhile in stark contrast to Boeing, Lockheed Martin has “no comment” regarding the Aerojet-Rocketdyne offer to buy ULA, Universe Today confirmed with Lockheed Martin Director External Communications Matt Kramer.

Furthermore Lockheed Martin is not only noncommittal about the future of ULA but is also “currently assessing our options” concerning the development of ULA’s Vulcan rocket, Kramer told me.

“With regard to reports of an unsolicited proposal for ULA, it is not something we seriously entertained for a number of reasons,” Boeing spokesperson Anderson told Universe Today.

“Regarding Aerojet and ULA, as a matter of policy Lockheed Martin does not have a comment,” Lockheed Martin spokesman Kramer told Universe Today.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Who owns ULA is indeed of significance to all Americans – although most have never head of the company – because ULA holds a virtual monopoly on launches of vital US government national security payloads and the nation’s most critical super secret spy satellites that safeguard our national defense 24/7. ULA’s rocket fleet also launched scores of NASA’s most valuable science satellites including the Curiosity Mars rover, Dawn and New Horizons Pluto planetary probe.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets.

“ULA is a huge part of our strategic portfolio going forward along with our satellites and manned space business. This bid we’ve really not spent much time on it at all because we’re focusing on a totally different direction,” said Chris Chadwick, president and chief executive of Boeing Defense, Space & Security, on Sept. 16 at the Air Force Association’s annual technology expo in National Harbor, Maryland – according to a report by Space News.

Boeing offered strong support for ULA and the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space that can propel payloads to low Earth orbit as well as throughout the solar system – including Pluto. It is slated for an inaugural liftoff in 2019.

Vulcan’s continued development is being funded by Lockheed Martin and Boeing, but only on a quarterly basis.

The key selling point of Vulcan is that it will be an all American built rocket and it will dramatically reduce launch costs to compete toe to toe with the SpaceX Falcon rocket family.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” ULA VP Dr. George Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

And there is a heated competition on which of two companies will provide the new American built first stage engine that will replace the Russian-built RD-180 that currently powers the ULA Atlas V.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

This week ULA announced an expanded research agreement with Blue Origin about using the BE-4.

But ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne – the company that wants to buy ULA.

The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014, raising the ire of Congress and enactment of a ban on their use several years in the future.

ULA is expected to make a final decision on which first stage engine to use between Blue Origin and Aerojet-Rocketdyne, sometime in 2016.

The engine choice would clearly be impacted if Aerojet-Rocketdyne buys ULA.

Boeing for its part says they strongly support ULA and continued development of the Vulcan.

“Boeing is committed to ULA and its business, and to continued leadership in all aspects of space, as evidenced by the recent announcement of an agreement with Blue Origin,” Boeing spokesperson Anderson told me.

Lockheed Martin in complete contrast did not express any long term commitment to Vulcan and just remarked they were merely “actively evaluating continued investment,” as is their right as a stakeholder.

“We have made no long-term commitments on the funding of a new rocket, and are currently assessing our options. The board is actively evaluating continued investment in the new rocket program and will continue to do so,” Lockheed Director, External Communications Matt Kramer told Universe Today.

Another factor is that Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced, officials have told me.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
Aerojet-Rocketdyne made a bid to buy ULA, manufacturer of the Atlas V, for approximately $2 Billion. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

The Atlas V enjoys unparalleled success. Earlier this month on Sept. 2, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

Boeing has also chosen the Atlas V as the launcher that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

Starliner will eventually blastoff atop Vulcan after the Atlas V is retired in the next decade.

Lockheed provided me this update on Vulcan and ULA on Sept 21:

“Lockheed Martin is proud of ULA’s unparalleled track record of mission success, with 99 consecutive successful launches to date. We support the important role ULA plays in providing the nation with assured access to space. ULA’s Vulcan rocket takes the best performance elements of Atlas and Delta and combines them in a new system that will be superior in reliability, cost, weight, and capability. The government is working to determine its strategy for an American-made engine and future launch services. As they make those determinations we’ll adjust our strategy to make sure we’re aligned with the government’s objectives and goals.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

First view of upper half of the Boeing CST-100 'Starliner' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com

Aerojet-Rocketdyne Seeks to Buy United Launch Alliance for $2 Billion

America’s premier rocket launch services provider United Launch Alliance, or ULA, may be up for sale according to media reports, including Reuters and the Wall Street Journal. Any such sale would result in a major shakeup of the American rocket launching business with far reaching implications.

Aerojet-Rocketdyne has apparently made a bid to buy ULA for approximately $2 Billion in cash, based on behind the scenes information gathered from unnamed sources.

ULA was formed in 2006 as a 50:50 joint venture between aerospace giants Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

According to Reuters, Aerojet Rocketdyne recently proffered a $2 billion cash offer to buy ULA from Lockheed Martin and Boeing.

“Aerojet Rocketdyne board member Warren Lichtenstein, the chairman and chief executive of Steel Partners LLC, approached ULA President Tory Bruno and senior Lockheed and Boeing executives about the bid in early August,” sources told Reuters.

ULA’s Bruno declined to comment on the story via twitter.

“Wish I could, but as a matter of policy, we don’t comment on this type of story,” Bruno tweeted in response to inquiries.

Aerojet-Rocketdyne currently is a major supplier to ULA by providing first and second stage engines for use in the Atlas V and Delta IV rockets. They also manufacture the Space Shuttle Main Engines now being repurposed as the RS-25 to serve as first stage engines for NASA’s mammoth new SLS deep space rocket.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets and also enjoyed a virtual launch monopoly with the US Government and for the nations most critical national security military payloads.

And just last week, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force launches from Cape Canaveral Air Force Station, Fl, on July 23, 2015. Credit: Ken Kremer/kenkremer.com

But the recent emergence of rival SpaceX – founded by billionaire Elon Musk – with the lower cost Falcon 9 rocket and the end of the ULA’s launch monopoly for high value military and top secret spy satellites has the potential to undermine ULA’s long term business model and profitability. In May, the US Air Force certified the SpaceX Falcon 9 for national security payload launches.

Furthermore a Congressional ban on importing the Russian-made RD-180 first stage engines that power the Atlas V rocket, that takes effect in a few years, has threatened the rockets future viability. The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014.

To date the Atlas V enjoys a 100 percent success rate after over 50 launches.

The Falcon 9 no longer enjoys a 100 percent success rate after the launch failure on June 28, 2015 on a critical NASA cargo resupply mission to the International Space Station (ISS).

The Atlas V will also serve as the launch vehicle for Boeing’s new ‘Starliner’ space taxi to transport astronauts to the ISS as soon as 2017 – detailed in my onsite story here.

In response to the Congressional RD-180 engine ban and relentless cost pressures from SpaceX, ULA CEO Tory Bruno and ULA Vice President for Advanced Concepts and Technology George Sowers announced ULA will develop a cost effective new rocket named Vulcan using American made engines.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

However, Lockheed Martin and Boeing are only providing funds to ULA on a quarterly basis to continue development of the Vulcan.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

Interestingly, ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne.

The final decision on which engine to use is expected sometime in 2016.

The engine choice could clearly be impacted if Aerojet-Rocketdyne buys ULA.

Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced.

To this writer, ULA would seem to be worth far more than $2 Billion. They own manufacturing and rocket launch facilities on both coasts and in several states.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Weekly Space Hangout – Jan. 30, 2015: Paul Hildebrandt Fights for Space!

Host: Fraser Cain (@fcain)

Guests:
Ramin Skibba (@raminskibba)
Dave Dickinson (@astroguyz / www.astroguyz.com)

Special Guest: Paul Hildebrandt from Fight For Space
Continue reading “Weekly Space Hangout – Jan. 30, 2015: Paul Hildebrandt Fights for Space!”