Nearly Earth-sized Planet, Possible Watery World Spotted Near Another Star

Astronomers are announcing a newly discovered exoplanet in the habitable zone of its star, and another one — in the same system — that’s just twice the size of Earth.

The Gliese 581 planetary system now has four known planets, with masses of about 1.9 (planet e, left in the foreground), 16 (planet b, nearest to the star), 5 (planet c, center), and 7 Earth-masses (planet d, with the bluish colour).

gliese-581-chart1

This diagram shows the distances of the planets in the Solar System (upper row) and in the Gliese 581 system (lower row), from their respective stars (left). The habitable zone is indicated as the blue area, showing that Gliese 581 d is located inside the habitable zone around its low-mass red star. Based on a diagram by Franck Selsis, Univ. of Bordeaux.

Michel Mayor, a well-known exoplanet researcher from the Geneva Observatory, announced the find today. The planet, “e,” in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. 

Both planets were discovered by the so-called “wobble method,” using the HARPS spectrograph attached to the 3.6-meter (11.8-foot) ESO telescope at La Silla, Chile.

The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star’s motion that can just be detected on Earth with today’s most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced.

Many more exoplanets have been discovered using the transit method being employed by NASA’s Kepler mission: as planets pass between their host stars and Earth, they cause an observable, periodic dimming.

Planet Gliese 581 e orbits its host star – located only 20.5 light-years away in the constellation Libra (“the Scales”) — in just 3.15 days.

“With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet,” says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet e is not in the habitable zone. But another planet in this system appears to be.

“Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star,” added team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. “‘d’ could even be covered by a large and deep ocean — it is the first serious ‘water world’ candidate,” he said.

Mayor said it’s “amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 — the one around 51 Pegasi. The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years.”

But the astronomers aren’t finished yet. “With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable,” says Bonfils. “The hunt continues.”

The findings were presented this week at the European Week of Astronomy & Space Science, which is taking place at the University of Hertfordshire in the UK. The results have also been submitted for publication in the research journal Astronomy & Astrophysics. A preprint is available here.

Source: ESO. (The site also offers numerous videos about the find.)

Should We Really Tell ET Our Problems?

The design etched to the Pioneer probes. The first interstellar pornography? (NASA)

[/caption]So, you have a radio transmitter and you’ve been tasked to send a message into space to try to communicate with a hypothetical alien civilization. Where do you begin? Probably high on your list is to seek out the best candidate stars to send a signal to. As we only have experience of life on Earth, it’s a pretty good idea to look for Sun-like stars, as for all you know, that is the only place where Life As We Know It™ could exist.

So now you have found the potential location of an alien civilization, what message should you send? Firstly you’d probably want to make a good impression; perhaps sending directions to Earth, a universal map with an arrow pointing at the Solar System. Secondly you might want to identify what/who you are (insert some human physiology here). And third? Perhaps you’d consider sending information about our culture, civilization, history, science; all the good stuff that makes us human.

Would it cross your mind to mention there are 23 bloody conflicts going on right now amongst our own kind? Would you think about telling our potential alien neighbours about what you just had for dinner? Would it be a good idea to tell them about the political corruption in your country, the vast poverty worldwide or the ecological damage we are doing to our own home?

In a recent article written by the director of interstellar message composition at the SETI Institute, the question about communicating honestly with ET, without sanitizing the truth, is asked. Should we really tell an alien civilization about our problems?

Communication with potential alien races is a tricky business (Ian O'Neill)
Communication with potential alien races is a tricky business (Ian O'Neill)
For five decades, the Search for Extraterrestrial Intelligence (SETI) has been scouring the skies for any signal from an intelligent alien civilization. This is a painstaking task that requires much patience and lots of ingenuity. After all, what are we looking for? Assuming extraterrestrial civilizations have worked out how to transmit radio, perhaps we could listen out for that. Unfortunately, apart from the 72 second Wow! signal in 1977, it all seems very quiet out there. If the Drake Equation is to be taken literally, the Milky Way should be teeming with life, some of which should be transmitting their greatest hits right now. There are problems with this theory, as some believe that although aliens might be transmitting, radio signals might not reach us. Perhaps then a sufficiently advanced alien race might be using powerful laser beacons or moving stars to communicate with us. Alas, nothing. Yet.

OK, so let’s turn this around. Perhaps we’ll have more luck if we start transmitting radio signals to Sun-like stars in the hope of an alien race as advanced as ourselves receiving it. This program is known as Messaging Extraterrestrial Intelligence (METI) or “Active-SETI.” But what do we say? One of the earliest messaging attempts was the plaque bolted to the side of the Pioneer spacecraft (pictured top), even though the naked human figures representing male and female caused a stir (some groups considered the naked human form interstellar pornography). Despite a few disputes about what we should be sending into space, generally the messages have been very positive, trying to portray the human race in a very positive light.

Douglas Vakoch, from the SETI Institute in Mountain View, California, disagrees with the policy of sending only positive messages into space via radio transmissions or metal plaques strapped to the sides of spaceships.

An acknowledgment of our flaws and frailties seems a more honest approach than sending a sanitised, one-sided story,” Vakoch said in a recent New Scientist column. “Honesty is a good starting point for a conversation that could last for generations.”

As the director of interstellar message composition, Vakoch obviously knows a thing or two about sending messages to our potential alien neighbours. However, the question as to whether or not we should sanitize our communications seems a little strange. Of course we should transmit the best mankind has to offer! I don’t believe sending messages of culture, science, mathematics, art and music would be setting us up for a fall. If we are indeed the new kids on the block of extraterrestrial civilizations, I think we’d need to make a great impression (depending on whether ET understands what we are trying to communicate in the first place).

The 1977 Wow! signal (SETI)
The 1977 Wow! signal (SETI)
Vakoch is keen to point out that a sufficiently advanced alien civilization is going to be savvy as to what it takes to be a a galactic race (it’s not all roses after all). If they receive a message from mankind full of positive messages, perhaps they won’t trust us. Worse still, as they get to know us, they think we were hiding our human flaws, misleading them in some way. Therefore, we need to be honest up-front. We need to send the views and opinions of as many people as possible, for good or bad, so extraterrestrial civilizations know what they are dealing with; a talented, yet flawed race.

Unfortunately, that goes against human nature. What’s the first thing you do when moving into a new neighbourhood? You might throw a house-warming party, as a way to introduce yourself to the new neighbours. You probably wouldn’t tell your neighbours about your family/money/alcohol/drug/criminal problems at the party. If you did, you might find the room emptying very quickly. It’s not that you are being dishonest, you’re trying to gain their first-impression trust and interest. This principal holds true for companies trying to sell a product (I have yet to have a doorstep sales person telling me his encyclopaedia collection is actually useless when the world has Wikipedia) and to countries forming new diplomatic ties. We know there’s more to the story than just first impressions, but first impressions are the bonds that help develop the relationship in the future.

Assimilation could be ET's solution to human problems
Assimilation could be ET's solution to human problems
So going back to being honest with messaging alien civilizations, if we send “the truth” about our race, we would actually be doing ourselves a disservice. What if the receiving alien civilization doesn’t want to be associated with us as we are considered too aggressive, cruel, greedy or weird?

We can’t second-guess how an extraterrestrial civilization is going to respond to us, there is no precedent of alien communications, so perhaps we should take the “sanitized” approach. Positive information is probably enough information; too much information could turn us into interstellar outcasts before we’ve even had a chance to receive a message from another star. (I thought it was a little too quiet out there, perhaps they received our commercial TV signals.)

And if the advanced alien race deems us “not worthy” on account of the mixed signals we are sending out, they might turn hostile sooner rather than later

Where is the Most Remote Location on Earth?

A heat map of travel-times to nearest city

[/caption]

According to a new study, less than 10% of the world’s land is more than 48 hours of travel from the nearest city. This doesn’t include air travel, it is ground-travel only (i.e. on foot, train, car, boat, bike, horse, donkey). So no matter where you are in the world, there’s a good chance you can get to somewhere substantially populated within two days. At face-value, this might not seem very important, but when you look at the maps, you see many wilderness locations aren’t quite as remote as we once thought they were. The Amazon Rainforest for example is surprisingly well connected (rivers are quite useful in that respect), and the remote deserts of Africa have a pretty efficient road network.

So, where is the most remote location on Earth? How long would it take to get there?

I can happily say that for 5 months I lived in one of the most remote places in the world. The Norwegian archipelago of Svalbard in the High Arctic turns out to be a very extreme place even if you put the polar bears and -30°C temperatures to one side. No matter how hard you try, it would take 2-3 days by boat to travel from Longyearbyen (on the main island of Spitsbergen) to the Norwegian mainland city of Tromsø. Unfortunately, the number of places around the globe that can boast this are rapidly shrinking.

The fact is, the travel time of any point from the nearest settlement of over 50,000 people using only ground-travel is decreasing rapidly. Transportation infrastructures are spreading and population density is increasing, meaning more people are making bigger cities closer together.

Travel times as used by the researchers
Travel times as used by the researchers
A new set of maps created by researchers at the European Commission’s Joint Research Centre in Ispra, Italy, and the World Bank illustrates just how “connected” our world has become and it also highlights the dwindling number of “true” wildernesses.

Based on a computer model that calculates the journey time to the nearest city of 50,000+ people taking only land or water. The variables included in this complex model are types of terrain, road, rail and river network access, altitude, terrain steepness and obstacles (such as border crossings). The key conclusions the researchers gained are that less than 10% of the planet’s landmass is more than 48 hours ground-travel away from the nearest city. The Amazon, for example, only has 20% of its landmass more than 2 days away from the nearest Brazilian city (owed primarily to its vast network of rivers).

The most striking maps include the plotting of the busiest waterways (the English Channel, Mediterranean and South China Seas are the most crowded) and the scope of the world’s road network. In fact, it is little wonder the international community is worried about the increasing numbers of Somalian pirate attacks; another very busy shipping lane is sandwiched between Somalia and Yemen (the key route from the Indian Ocean to the Mediterranean).

The most remot point on the entire planet: 34.7°N 85.7°E - the Tibeten plateau
The most remote point on the entire planet: 34.7°N 85.7°E - the Tibetan plateau
So where is the most remote place on Earth? The Tibetan plateau (pictured left). From 34.7°N 85.7°E, it would take three whole weeks to travel to the cities of Lhasa or Korla. If you were to take this trip, expect to walk for 20 days and drive by car for one day. Partly due to the rough terrain and 5200 metres in altitude, Tibet will probably remain the most extreme place on Earth for some time to come.

It is hoped these maps will serve as a baseline for future studies, showing how nations deal with population growth, how nature is being eroded and possibly providing some insight as to how to manage the planet a little better than we are at present…

View all the maps »

Source: New Scientist

More Troubles for Spirit Rover

NASA's Mars Exploration Rover Spirit drove 6.98 meters (22.9 feet) southeastward on the 1,871st Martian day, or sol, of the rover's mission on Mars (April 8, 2009). As usual since losing the use of its right-front wheel in 2006, Spirit drove backward, dragging the immobile wheel. Image credit: NASA/JPL-Caltech. Full image and caption

[/caption]

Poor Spirit. She’s getting old, arthritic and forgetful. The “oldest” of the two Mars Exploration Rovers had another bout of what engineers from JPL are calling “amnesia.” About a week ago, she experienced some unexpected reboots of her computer. Then, she had three good days in a row, completing Earth-commanded activities without incident. But then on April 17 and 18, she became forgetful – she failed to record data into her flash memory (where information is preserved when Spirit is powered down) and rebooted herself again. The last reboot put Spirit into autonomous operation in which the rover keeps itself healthy, and engineers are running diagnostics to try to regain control of the rover.

“We are proceeding cautiously, but we are encouraged by knowing that Spirit is stable in terms of power and thermal conditions and has been responding to all communication sessions for more than a week now,” said JPL’s Sharon Laubach, chief of the rover sequencing team, which develops and checks each day’s set of commands.

Engineers operating Spirit are investigating the reboots, and trying to determine if the amnesia events are related to the reboots. Spirit has had three of these amnesia events in the past 10 days, plus one on Jan. 25. No causal link has been determined between the amnesia events and the reboots.

Engineers have found ways to cope with various symptoms of aging on both rovers. The current diagnostic efforts with Spirit are aimed at either recovering undiminished use of the rover or, if some capabilities have been diminished, to determine the best way to keep using the rover.

Spirit driving off into the sunset, a special effects image. credit: NASA/JPL-Caltech/Cornell
Spirit driving off into the sunset, a special effects image. credit: NASA/JPL-Caltech/Cornell

Laubach said, “For example, if we do determine that we can no longer use the flash memory reliably, we could design operations around using the random-access memory.” Spirit has 128 megabytes of random-access memory, or RAM, which can store data as long as the rover is kept awake before its next downlink communications session.

During the past week of diagnostic activities, the rover has successfully moved its high-gain dish antenna and its camera mast, part of checking whether any mechanical issues with those components may be related to the reboots, the amnesia events, or the failure to wake up for three consecutive communication sessions two weeks ago.

Spirit and her twin, Opportunity, have been on Mars since 2004. Spirit’s right front wheel is stuck, and so she now drives backwards and drags the crippled wheel behind. The top image shows how the wheel is dragged through the Martian regolith.

Source: JPL

Stars Strip Atmospheres of Close-forming Planets

It may be a while yet before astronomers agree on a standard model for planet formation around stars. Until recently, after all, Earthlings lacked reliable techniques for glimpsing much beyond our own solar system.

Based on our own backyard, one prevailing theory is that rocky planets like Mercury, Earth and Mars form slowly, close to the sun, from collisions of smaller, solid bodies while gas giants form faster, and farther from the star — often within the first two million years of a star’s life — from smaller rocky cores that readily attract gases.

But new data are suggesting that some gas giants form close to their stars — so close that intense stellar winds rob them of those gases, stripping them back to their cores.

An international research team has found that giant exoplanets orbiting very close to their stars — closer than 2 percent of an Astronomical Unit (AU) — could lose a quarter of their mass during their lifetime. An AU is the distance between the Earth and the Sun.

Such planets may lose their atmospheres completely.

The team, led by Helmut Lammer of the Space Research Institute of the Austrian Academy of Sciences, believes that the recently discovered CoRoT-7b “Super Earth,” which has less than twice the mass of the Earth, could be the stripped core of a Neptune-sized planet.

hubble_400

The team used computer models to study the possible atmospheric mass loss over a stellar lifecycle for exoplanets at orbiting distances of less than 0.06 AU, where the planetary and stellar parameters are very well known from observations. 

Mercury is our only neighbor orbiting the Sun in that range; Venus orbits at about .72 AUs.

The 49 planets considered in the study included hot gas giants, planets with masses similar or greater than that of Saturn and Jupiter, and hot ice giants, planets comparable to Uranus or Neptune. All the exoplanets in the sample were discovered using the transit method, where the size and mass of the planet is deduced by observing how much its parent star dims as it the planet passes in front of it.

“If the transit data are accurate, these results have great relevance for planetary formation theories,” said Lammer, who is presenting results at the European Week of Astronomy and Space Science, April 20-23 at the University of Hertfordshire in the UK.

“We found that the Jupiter-type gas giant WASP-12b may have lost around 20-25 percent of its mass over its lifetime, but that other exoplanets in our sample had negligible mass loss. Our model shows also that one major important effect is the balance between the pressure from the electrically charged layer of the planet’s atmosphere and the pressure from the stellar wind and coronal mass ejections (CMEs). At orbits closer than 0.02 AU, the CMEs — violent explosions from the star’s outer layers — overwhelm the exoplanet’s atmospheric pressure causing it to lose maybe several tens of percent of its initial mass during its lifetime.”

The team found that gas giants could evaporate down to their core size if they orbit closer than 0.015 AU. Lower-density ice giants could completely lose their hydrogen envelope at 0.045 AU. Gas giants orbiting at more than 0.02 AU lost about 5-7 percent of their mass. Other exoplanets lost less than 2 percent. Results suggest that CoRoT-7b could be an evaporated Neptune-like planet but not the core of a larger gas giant. Model simulations indicate that larger mass gas giants could not have been evaporated to the mass range determined for CoRoT-7b.

For more information:

The European Week of Astronomy and Space Science
The Royal Astronomical Society

Most Complex Organics Ever Detected in Interstellar Space

Is your mouth watering? It should be. That molecule at left is called ethyl formate  (C2H5OCHO), and it’s partly responsible for the flavors in brandy, butter, raspberries and rum.

 

 

a-n-prcn

As for this one, it’s a solvent called n-Propyl cyanide (C3H7CN); not so tasty. 

They’re both highly complex organics, and they’ve both been detected in space, according to new research — adding mouth-watering evidence to the search for extra-terrestrial life.

The research team hails from Cornell University in Ithaca, New York and the University of Cologne and the Max Planck Institute for Radio Astronomy (MPIfR), both in Germany. Their discoveries represent two of the most complex molecules yet discovered in interstellar space. 

picoveleta

To make the observations, the team used the Institut de RadioAstronomie Millimétrique (IRAM) 30m Telescope at Pico Veleta in southern Spain. 

Their computational models of interstellar chemistry also indicate that yet larger organic molecules may be present — including the so-far elusive amino acids, believed to be essential for life. The simplest amino acid, glycine (NH2CH2COOH), has been looked for in the past, but has not been successfully detected. However, the size and complexity of this molecule is matched by the two new molecules discovered by the team.

The results are being presented this week at the European Week of Astronomy and Space Science at the University of Hertfordshire, in the UK.

The IRAM was focused on the star-forming region Sagittarius B2, close to the centre of our galaxy. The two new molecules were detected in a hot, dense cloud of gas known as the “Large Molecule Heimat,” which contains a luminous newly-formed star. Large, organic molecules of many different sorts have been detected in this cloud in the past, including alcohols, aldehydes, and acids. The new molecules ethyl formate n-propyl cyanide  represent two different classes of molecule — esters and alkyl cyanides — and they are the most complex of their kind yet detected in interstellar space.

Atoms and molecules emit radiation at very specific frequencies, which appear as characteristic “lines” in the electromagnetic spectrum of an astronomical source. Recognizing the signature of a molecule in that spectrum is akin to identifying a human fingerprint.

“The difficulty in searching for complex molecules is that the best astronomical sources contain so many different molecules that their “fingerprints” overlap, and are difficult to disentangle,” says Arnaud Belloche, scientist at the Max Planck Institute and first author of the research paper.

“Larger molecules are even more difficult to identify because their “fingerprints” are barely visible: their radiation is distributed over many more lines that are much weaker,” added Holger Mueller, researcher at the University of Cologne. Out of 3,700 spectral lines detected with the IRAM telescope, the team identified 36 lines belonging to the two new molecules.

The researchers then used a computational model to understand the chemical processes that allow these and other molecules to form in space. Chemical reactions can take place as the result of collisions between gaseous particles; but there are also small grains of dust suspended in the interstellar gas, and these grains can be used as landing sites for atoms to meet and react, producing molecules. As a result, the grains build up thick layers of ice, composed mainly of
water, but also containing a number of basic organic molecules like methanol, the simplest alcohol. 

“But,” says Robin Garrod, an astrochemist at Cornell University, “the really large molecules don’t seem to build up this way, atom by atom.” Rather, the computational models suggest that the more complex molecules form section by section, using pre-formed building blocks that are provided by molecules, such as methanol, that are already present on the dust grains. The computational models show that these sections, or “functional groups,” can add together efficiently, building up a molecular “chain” in a series of short steps. The two newly-discovered molecules seem to be produced in this way.

Adds Garrod, “There is no apparent limit to the size of molecules that can be formed by this process — so there’s good reason to expect even more complex organic molecules to be there, if we can detect them.”

The team believes this will happen in the near future, particularly with future instruments like the Atacama Large Millimeter Array (ALMA) in Chile.

Sources: Royal Astronomical Society. The original paper is in press in the journal Astronomy & Astrophysics.

European Week of Astronomy and Space Science
Max Planck Institute for Radio Astronomy 
Cologne Database for Molecular Spectroscopy
Reference list of all 150 molecules presently known in space
Cornell University
Institut fuer Radioastronomie im Millimeterbereich (IRAM)
Atacama Large Millimeter Array (ALMA)

Solar Sigmoids Explained

This figure shows the time evolution and final eruption of the sigmoid. Credit: NASA / STFC / ISAS / JAXA / A. Hood (St. Andrews), V. Archontis (St. Andrews)

[/caption]
S-shaped structures called ‘Sigmoids’ have been found in the outer atmosphere of the Sun — the corona. Sigmoids are thought to be a crucial part of explosive events like solar flares. Now a group of astronomers have developed the first model to reproduce and explain the nature of the different stages of a sigmoid’s life. Recently, the X-Ray Telescope (XRT) on board the Hinode space mission was used to obtain the first images of the formation and eruption phase of a sigmoid at high resolution. These observations revealed sigmoids have very complex structures.

Professor Alan Hood and Dr. Vasilis Archontis, both from the Mathematical Institute at St. Andrews University, Scotland, presented their team’s findings today at the European Week of Astronomy and Space Science conference at the University of Hertfordshire.
Over the years a series of theoretical and numerical models have been proposed to explain the nature of sigmoids but until now there was no explanation on how such complex structures form, erupt and fade away. The new model describes how sigmoids consist of many thin and twisted layers (or ribbons) of strong electric current. When these layers interact it leads to the formation of the observed powerful flares and the eruption of strong magnetic fields which carry highly energetic particles into interplanetary space. The team also found that as the sigmoids die out, they produce a ‘flare’ eruption.

Dr. Archontis sees the connection between the two astronomers’ model and work on predicting solar flares. He remarks, “Sigmoids work as ‘mangers’ or ‘cocoons’ for solar eruptions. There is a high probability that they will result in powerful eruptions and other explosive events. Our model helps scientists understand how this happens.”

Prof. Hood adds that these events have real significance for life on Earth, “Sigmoids are among the most interesting features for scientists trying to forecast the solar eruptions – events that can disrupt telecommunications, damage satellites and affect the way navigation systems are operated’.

Explanation of image: This figure shows the time evolution and final eruption of the sigmoid. It consists of three columns (time is running from top to bottom). Columns 1 and 2 show results from numerical experiments. The yellow isosurfaces are surfaces of electric current (left panels). Column 2 (middle panels) shows temperature. Column 3 shows ‘temperature’ (intensity) as it is recorded by the observations (Hinode mission). Notice that the agreement on the shape of the sigmoid, internal structure and thermal distribution along the sigmoid, between numerical experiments and observations is very good and fairly balanced. Notice, that even the ‘flaring’ episode (flashing) at the middle of the sigmoid at the down-right snapshot from observations is reproduced exceptionally well by our numerical experiments (down-middle). Credit: NASA / STFC / ISAS / JAXA / A. Hood (St. Andrews), V. Archontis (St. Andrews)

Source: RAS

Nancy Comes Out of the Closet on 365 Days of Astronomy

The International Space Station. Credit: NASA

[/caption]
For Universe Today readers who know me only as a journalist, there’s something I’ve never revealed until today. But I tell all on today’s 365 Days of Astronomy podcast. The truth is, I’m a closet musician and songwriter. But while most musicians write songs about love, or love gone wrong, or that kinda stuff, being the space geek that I am, I write songs about things like, well, satellites, spacecraft and space missions. Today’s podcast is about the International Space Station, and I share a song I wrote after I saw the ISS for the first time in the night sky.

The first time I saw the ISS was back in December of 2000, just after the first set of large solar arrays were brought to the station. At that point, the ISS was then big enough and bright enough that I could finally see it in the light polluted skies over Minneapolis, where I lived at the time. But of course we had a couple of weeks of typical Minnesota winter cloudy weather, so I had to wait what seemed like an eternity until I could finally see it. But I’ll never forget how awe-inspiring it was to see that bright light moving quickly across the sky, knowing the Expedition 1 crew was on board that point of light.

So anyway, check out today’s 365 Days of Astronomy podcast. A friend of mine, Mike Spainhour, and I threw this recording together in about an hour, but I hope you enjoy it.

Physicist Hawking Gravely Ill

Stephen Hawking at NASA's StarChild Learning Center in the 1980s. Credit: NASA

[/caption]
Famed theoretical physicist Stephen Hawking has been rushed to a hospital and is seriously ill. Cambridge University released information today that Hawking has been fighting a chest infection for several weeks, and was taken to a hospital in Cambridge.”Professor Hawking is very ill,” said Gregory Hayman, the university’s head of communications. “He is undergoing tests. He has been unwell for a couple of weeks.” Hawking, 67, is well known for his work on black holes, and has remained active despite being diagnosed at 21 with ALS, (amyotrophic lateral sclerosis), an incurable degenerative disorder also known as Lou Gehrig’s disease.

For several years, Hawking has been almost entirely paralyzed, and he communicates through an electronic voice synthesizer.

“Professor Hawking is a remarkable colleague. We all hope he will be amongst us again soon,” said Professor Peter Haynes, head of the university’s Department of Applied Mathematics and Theoretical Physics.

Hawking had canceled an appearance at Arizona State University on April 6 because of his illness.

He announced last year that he would step down from his post as Lucasian Professor of Mathematics, a title once held by the great 18th century physicist Isaac Newton, and the end of this academic year. However, the university said Hawking intended to continue working as Emeritus Lucasian Professor of Mathematics.

Hawking has described himself as “lucky” despite his disease[29]. Its slow progression has allowed him time to make influential discoveries and it has not hindered him from having a very full life.

Source: Yahoo News

Ancient Solar Systems Found Around Dead Stars

Asteroids Around Dead Stars. Credit: NASA/JPL

[/caption]
Were there once habitable planets long ago around stars that are now dead? A team of astronomers have found evidence that between 1-3 percent of white dwarf stars are orbited by rocky planets and asteroids, suggesting these objects once hosted solar systems similar to our own. White dwarf stars are the compact, hot remnants left behind when stars like our Sun reach the end of their lives. Using data from the Spitzer Space Telescope, an international team of astronomers have determined that asteroids are found in orbit around a large number of white dwarfs, perhaps as many as 5 million in our own Milky Way Galaxy.

The atmospheres of these white dwarf stars should consist entirely of hydrogen and helium but are sometimes found to be contaminated with heavier elements like calcium and magnesium. The new observations suggest that these Earth-sized stars are often polluted by a gradual rain of closely orbiting dust that emits infrared radiation picked up by Spitzer.

Presenting his team’s findings at the European Week of Astronomy and Space Science conference at the University of Hertfordshire, Dr. Jay Farihi of the University of Leicester said that the data from Spitzer suggest that at least 1 in 100 of white dwarf stars are contaminated in this way and that the dust originates from rocky bodies like asteroids (also known as minor planets). In our Solar System, minor planets are the left over building blocks of the rocky terrestrial planets like the Earth.

“In the quest for Earth-like planets, we have now identified numerous systems which are excellent candidates to harbour them,” said Farihi. “Where they persist at white dwarfs, any terrestrial planets will likely not be habitable, but may have been sites where life developed during a previous epoch. “

The new findings indicate the dust is completely contained within the Roche limit of the star — close enough that any object larger than a few kilometers would be ripped apart by gravitational tides (the same phenomenon which led to the creation of Saturn’s rings). This backs up the team’s hypothesis that the dust disks around white dwarfs are produced by tidally disrupted minor planets. In order to pass this close to the white dwarf, an asteroid must be perturbed from its regular orbit further out – and this can occur during a close encounter with as yet unseen planets.

Because white dwarfs descend from main sequence stars like the Sun, the team’s work implies that at least 1% to 3% of main sequence stars have terrestrial planets around them.

Emissions from the White Dwarf System GD 16. Credit: NASA, JPL -Caltech, University of Leicester
Emissions from the White Dwarf System GD 16. Credit: NASA, JPL -Caltech, University of Leicester

Perhaps the most exciting and important aspect of this research is that the composition of these crushed asteroids can be measured using the heavy elements seen in the white dwarf.

Farihi sees this as a crucial step forward. “With high quality optical and ultraviolet observations (e.g. the Hubble Space Telescope), we should be able to measure up to two dozen different elements in debris-polluted white dwarfs. We can then address the question, “Are the rocky extrasolar planets we find similar to the terrestrial planets of our Solar System?”

Source: RAS