Infrared Spectroscopy

Silicates in Alien Asteroids. Credit: NASA/JPL/Caltech

[/caption]
Infrared spectroscopy is spectroscopy in the infrared (IR) region of the electromagnetic spectrum. It is a vital part of infrared astronomy, just as it is in visual, or optical, astronomy (and has been since lines were discovered in the spectrum of the Sun, in 1802, though it was a couple of decades before Fraunhofer began to study them systematically).

For the most part, the techniques used in IR spectroscopy, in astronomy, are the same or very similar to those used in the visual waveband; confusingly, then, IR spectroscopy is part of both infrared astronomy and optical astronomy! These techniques involve use of mirrors, lenses, dispersive media such as prisms or gratings, and ‘quantum’ detectors (silicon-based CCDs in the visual waveband, HgCdTe – or InSb or PbSe – arrays in IR); at the long-wavelength end – where the IR overlaps with the submillimeter or terahertz region – there are somewhat different techniques.

As infrared astronomy has a much longer ground-based history than a space-based one, the terms used relate to the windows in the Earth’s atmosphere where lower absorption spectroscopy makes astronomy feasible … so there is the near-IR (NIR), from the end of the visual (~0.7 &#181m) to ~3 &#181m, the mid (to ~30 &#181m), and the far-IR (FIR, to 0.2 mm).

As with spectroscopy in the visual and UV wavebands, IR spectroscopy in astronomy involves detection of both absorption (mostly) and emission (rather less common) lines due to atomic transitions (the hydrogen Paschen, Brackett, Pfund, and Humphreys series are all in the IR, mostly NIR). However, lines and bands due to molecules are found in the spectra of nearly all objects, across the entire IR … and the reason why space-based observatories are needed to study water and carbon dioxide (to take just two examples) in astronomical objects. One of the most important class of molecules (of interest to astronomers) is PAHs – polycyclic aromatic hydrocarbons – whose transitions are most prominent in the mid-IR (see the Spitzer webpage Understanding Polycyclic Aromatic Hydrocarbons for more details).

Looking for more info on how astronomers do IR spectroscopy? Caltech has a brief introduction to IR spectroscopy. The ESO’s Very Large Telescope (VLT) has several dedicated instruments, including VISIR (which is both an imager and spectrometer, working in the mid-IR); CIRPASS, a NIR integrated field unit spectrograph on Gemini; Spitzer’s IRS (a mid-IR spectrograph); and LWS on the ESA’s Infrared Space Observatory (a FIR spectrometer).

Universe Today stories related to IR spectroscopy include Infrared Sensor Could Be Useful on Earth Too, Search for Origins Programs Shortlisted, and Jovian Moon Was Probably Captured.

Infrared spectroscopy is covered in the Astronomy Cast episode Infrared Astronomy.

Sources:
http://en.wikipedia.org/wiki/Infrared_spectroscopy
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm
http://www.chem.ucla.edu/~webspectra/irintro.html

Gravity Constant

Anaglyph images created from an ESA video animation of global gravity gradients. A more accurate global map will be generated by ESA's GOCE craft. Credit: ESA and Nathaniel Burton Bradford.

[/caption]
The constant of gravity, or gravity constant, has two meanings: the constant in Newton’s universal law of gravitation (so is commonly called the gravitational constant, it also occurs in Einstein’s general theory of relativity); and the acceleration due to gravity at the Earth’s surface. The symbol for the first is G (big G), and the second g (little g).

Newton’s universal law of gravitation in words is something like “the gravitational force between two objects is proportional to the mass of each and inversely proportional to the square of the distance between them“. Or something like F (the gravitational force between two objects) is m1 (the mass of one of the objects) times m2 (the mass of one of the other object) divided by r2 (the square of the distance between them). The “is proportional to” means all you need to make an equation is a constant … which is G.

In other words: F = Gm1m2/r2

The equation for little g is simpler; from Newton we have F = ma (a force F acting on a mass m produces an acceleration a), so the force F on a mass m at the surface of the Earth, due to the gravitational attraction between the m and the Earth is F = mg.

Little g has been known from at least the time of Galileo, and is approximately 9.8 m/s2 – meters per second squared – it varies somewhat, depending on how high you are (altitude) and where on Earth you are (principally latitude).

Obviously, big G and little g are closely related; the force on a mass m at the surface of the Earth is both mg and GmM/r2, where M is the mass of the Earth and r is its radius (in Newton’s law of universal gravitation, the distance is measured between the centers of mass of each object) … so g is just GM/r2.

The radius of the Earth has been known for a very long time – the ancient Greeks had worked it out (albeit not very accurately!) – but the mass of the Earth was essentially unknown until Newton described gravity … and even afterwards too, because neither G nor M could be estimated independently! And that didn’t change until well after Newton’s death (in 1727), when Cavendish ‘weighed the Earth’ using a torsion balance and two pairs of lead spheres, in 1798.

Big G is extremely hard to measure accurately (to 1 part in a thousand, say); today’s best estimate is 6.674 28 (+/- 0.000 67) x 10-11 m3 kg-1 s -2.

The Constant Pull of Gravity: How Does It Work? is a good NASA webpage for students, on gravity; and the ESA’s GOCE mission webpage describes how satellites are being used to measure variations in little g (GOCE stands for Gravity field and steady-state Ocean Circulation Explorer).

The Pioneer Anomaly: A Deviation from Einstein’s Gravity? is a Universe Today story related to big G, as is Is the Kuiper Belt Slowing the Pioneer Spacecraft?; GOCE Satellite Begins Mapping Earth’s Gravity in Lower Orbit Than Expected is one about little g.

No surprise that the Astronomy Cast episode Gravity covers both big G and little g!

2003 ub313

The mysterious Eris and moons. Credit: NASA

[/caption]

In 2003, a celestial object was discovered, but little did astronomers know that this object, which was designated 2003ub313, was going to change astronomy forever. Although the object was first photographed in 2003 by Mike Brown and other astronomers, it was not until 2005 that astronomers announced their discovery. You may better know 2003 ub 313, which was its designation given when it was believed to be a minor planet, as Eris. Eris made such a fuss because it is larger than Pluto – 27% more massive. Some people labeled it as the tenth planet while others did not think it should join the ranks of the nine planets we had. Finally, the International Astronomical Union (IAU) met to decide on a definition of a planet. Eventually, they decided on a definition in 2006, and 2003ub313 was not classified as a planet but rather a dwarf planet.  In addition to Eris, Pluto was reclassified as a dwarf planet, and several other celestial bodies – including Ceres, Haumea, and Makemake – were classified as dwarf planets. Astronomers are evaluating dozens more celestial bodies to see whether they fall under the classification of dwarf planets.

Eris is the ninth largest celestial body in our Solar System that orbits the Sun and the most distant object orbiting the Sun. It takes the dwarf planet 556.7 years to orbit our star. Eris is located in the scattered disc, which is a region beyond the Kuiper Belt. In addition to being a dwarf planet, Eris is also classified as a Trans-Neptunian Object (TNO). The surface of the dwarf planet is grey, and astronomers believe that the surface is covered with methane ice, which is what causes it to appear grey.  Methane is the same substance that makes Uranus and Neptune blue. Scientists think that Eris’ composition is similar to that of Pluto. Eris also has a very eccentric orbit, and it is also highly inclined. At some point in its orbit, Eris will actually be closer to the Sun than Pluto will be.

Like most celestial bodies, Eris was named after a figure in mythology. Eris was the Greek goddess of strife and discourse. Many believe this is a very fitting name for the dwarf planet, which caused so much division over the definition of a planet and the fate of Pluto.  The dwarf planet Eris also has a moon, which was named Dysnomia. Dysnomia was Eris’ daughter in Greek mythology and the demon of lawlessness.

Universe Today has articles on Eris including dwarf planet Eris and plutoid Eris is changing.

For more information, check out the discovery of Eris and former 10th planet officially named Eris.

Astronomy Cast has an episode on Pluto’s planetary crisis you will want to hear.

Source: NASA

Impact in Latvia Creates 20-Meter Crater

Latvia crater. Credit: Delfi

[/caption]
A possible meteorite fall near in northern Latvia on Sunday left a crater approximately 20 meters (66 feet) in diameter and 10 meters (33 feet) deep. UPDATE: Many reports now say the impact was a fake; The Bad Astronomer says “shovel” marks were found around the perimeter of the crater; additionally, a burning impactor is highly unlikely (see video below). And here’s an article from the Associated press. , and another from Yahoo news, where a phone company in Latvia admits the “crater” was a publicity stunt.


Our earlier report:
No one was injured, as the impact occurred outside the small town of Mazsalaca, although houses were nearby. Early reports said it was not clear whether it was an asteroid or a space satellite, but later news indicated it was a meteorite strike. Another account said it might be a hoax, as a cover-up of illegal weapons tests. One report said a witness saw the object falling through the sky, leaving a burning trail behind, and said it was making a noise similar to the one of an aircraft flying at a low altitude. See a video of the crater below.

A spokesperson for the Latvian State Fire and Rescue Service said that rescuers and soldiers immediately cordoned off the territory, as they wanted to guard against any radioactive contamination if it was a satellite.

See this link for more images of the crater.

We’ll post more news about the crater as it becomes available.

Sources: RiaNovosti, ITAR-TASS

Hat tip to @cosmos4U on Twitter

Podcast: Famous Stars

VY Canis Majoris
VY Canis Majoris

This week we’re going to talk about famous stars. But not those boring human ones you read about in People magazine. No, we’re talking about those hot balls of plasma across the distant Universe. The close ones, the bright ones, the massive ones, the giant ones. Let’s get to know some famous stars.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Famous Stars show notes and transcript.

Podcast: Dwarf Stars

Artist illustration of a red dwarf star.
Artist illustration of a red dwarf star.

We think we live near an average star, but that’s not the case at all. Compared to most stars in the Universe, the Sun is a giant! Let’s look at the small end of the stellar spectrum, to stars with a fraction of the size and mass of our own Sun. There are many ways that a star can get small, and they lead dramatically different lives and deaths.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Dwarf Stars show notes and transcript.

Podcast: Dragon*Con With Seth Shostak

Seth Shostak. Image credit: SETI.org
Seth Shostak. Image credit: SETI.org

This week we step away from our regular programming to bring you a live show from Dragon*Con in Atlanta. Pamela shares the stage with SETI researcher Seth Shostak. Together they discuss the technology and science of searching for intelligence, and answer questions from the audience.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Dragon*Con with Seth Shostak show notes and transcript.

Ares I-X Test Flight is Go For Oct. 27 (Video)


Following a flight test readiness review, NASA has given the ‘all systems go’ for the Ares I-X maiden test flight on Tuesday, Oct. 27, at 8 a.m. EDT from NASA’s Kennedy Space Center in Florida. “I am proud of the work this team has done to ready this test rocket for launch,” said Doug Cooke, associate administrator for NASA Exploration Systems Mission Directorate. “This test will yield important data to support the nation’s next steps in exploration. There is no substitute for hard data – flight testing clarifies the distinction between imagined outcomes and real flight experience.”

This is the first time in more than 30 years that NASA has built a vehicle in a new configuration. The uncrewed test flight last two minutes, and go 45 kilometers (28 miles) in altitude. The stages will separate 69 km (43 miles) down range and end 236 km (147 miles) over the Atlantic Ocean, with the dummy upper stage landing in the ocean.

The flight will be broadcast on NASA TV. Watch it online here. In the meantime, here’s a pre-launch video to whet your appetite for a new rocket.

Top Questions That Keep Physicists Awake at Night

Physics panel. Credit: Matin Durrani, PhysicsWorld

[/caption]
We all have things that keep us up at night, as we try to solve the problems in our lives. But just think of the poor physicists: They are trying to solve the problems of the Universe! At a recent physics conference at the Perimeter Institute for Theoretical Physics in Waterloo, Canada, a panel of scientists were asked what questions in physics kept them awake at night. Here are their answers:

Sean Carroll, Caltech
Why are the laws of physics the way they are?

Katherine Freese, University of Michigan
What is the universe made of?

Leo Kadanoff, University of Chicago
How does complexity develop in the universe?

Lawrence Krauss, Arizona State University
Have we come to the limits of our knowledge?

David Tong, Cambridge University
How will we ever know if string theory is correct?

Neil Turok, Director, Perimeter Institute
What happened at the singularity of the Big Bang?

Andrew White, University of Queensland
What is life?

Anton Zeilinger, University of Vienna
How far are we along the road of scientific discovery?

Gino Segrè from the University of Pennslyvania
He is concerned about the world not having enough young physicists to answer all those big questions that keep the rest of the panel awake.

Source: Physics World