Physicist encourages continuing the search for life in Venus’ atmosphere

Image from NASA's Mariner 10 spacecraft in February 1974 as it traveled away from Venus. (Credit: NASA/JPL-Caltech)

In a recent paper accepted to Contemporary Physics, a physicist from Imperial College London uses past missions and recent findings to encourage the importance of searching for life in the atmosphere of the solar system’s most inhospitable planet, Venus. This comes as a 2020 announcement claimed to have discovered the presence of phosphine in Venus’ atmosphere followed by follow-up observations from NASA’s recently-retired SOFIA aircraft in late 2022 that refuted it. Despite this, Dr. David Clements, who is a Reader in Astrophysics in the Department of Physics at Imperial College London, recently told Universe Today that “there is something odd going on in the atmosphere of Venus.”

Continue reading “Physicist encourages continuing the search for life in Venus’ atmosphere”

ESA’s Upcoming Mission Will Tell us if Venus is Still Volcanically Active

Venus Envision mission
EnVision orbiting Venus and studying its surface and atmosphere. The mission will launch in the early 2030s. Courtesy ESA.

When it comes to planetary exploration, particularly of Venus, a big part of the story is under the surface. It’s a story that ESA’s EnVision mission was selected to tell when it gets to the planet in the 2030s. That’s because the spacecraft will include a subsurface radar sounder (SRS) to “peek under the surface” of Venus.

Continue reading “ESA’s Upcoming Mission Will Tell us if Venus is Still Volcanically Active”

SOFIA Fails to Find Phosphine in the Atmosphere of Venus, But the Debate Continues

The spectral data from SOFIA overlain atop this image of Venus from NASA’s Mariner 10 spacecraft is what the researchers observed in their study, showing the intensity of light from Venus at different wavelengths. If a significant amount of phosphine were present in Venus’s atmosphere, there would be dips in the graph at the four locations labeled “PH3,” similar to but less pronounced than those seen on the two ends. Credit: Venus: NASA/JPL-Caltech; Spectra: Cordiner et al.

The on-again, off-again detection of phosphine in the atmosphere of Venus appears to be off-again – for now. The latest study, based on data from the SOFIA telescope, reveals that the flying observatory didn’t see any signs of phosphine. According to the results, if there is any phosphine present in Venus’s atmosphere at all, it’s a maximum of about 0.8 parts per billion, much smaller than the initial estimate.

However, the team that made the initial detection of phosphine, which was announced in 2020, disagrees with the researchers’ interpretation of the SOFIA data.  

Continue reading “SOFIA Fails to Find Phosphine in the Atmosphere of Venus, But the Debate Continues”

Volcanoes are the worst. They’ve caused extinctions on Earth, and probably killed Venus

This is a computer-generated, three-dimensional perspective of the surface of Venus showing Maat Mons. It's Venus's highest volcano and is 8 kilometres (5.0 mi) high. The viewpoint is located 634 kilometers (393 miles) north of Maat Mons at an elevation of 3 kilometers (2 miles) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The vertical scale in this perspective has been exaggerated 10 times. Credits: NASA/JPL

Is there anything good about volcanoes? They can be violent, dangerous, and unpredictable. For modern humans, volcanoes are mostly an inconvenience, sometimes an intriguing visual display, and occasionally deadly.

But when there’s enough of them, and when they’re powerful and prolonged, they can kill the planet that hosts them.

Continue reading “Volcanoes are the worst. They’ve caused extinctions on Earth, and probably killed Venus”

A Mission to Venus Could Sample its Atmosphere Directly, Searching for Life

We’ve reported in the past about the Venus Life Finder (VLF) mission, which is currently in the proposal stage but could potentially one day explore the Venusian clouds for signs of life. What exactly that life would look like is anyone’s guess. Therefore, the instrumentation the mission will use to find that life will be critical. Enter Fluid-Screen (FS), a technology developed by a start-up company spun out of Yale by Dr. Monika Weber. It could potentially directly detect life in the Venusian atmosphere – if only it could deal with the sulfuric acid.

Continue reading “A Mission to Venus Could Sample its Atmosphere Directly, Searching for Life”

Will Venus finally answer, ‘Are we alone?’

We recently examined how and why Saturn’s largest moon, Titan, could answer the longstanding question: Are we alone? It’s the only moon that possesses a thick atmosphere and the only planetary body other than Earth (so far) that has liquid bodies on its surface. These characteristics alone make Titan an enticing location to search for life beyond Earth. In contrast, what if life were to be found in one of the unlikeliest of places and on a planet that is known to possess some of the harshest conditions ever observed?

Continue reading “Will Venus finally answer, ‘Are we alone?’”

What Would it Take to Find Life on Venus?

Life on Venus, or the possibility thereof, has been a hot topic as of late. There’s also been plenty of controversies, including the (still disputed) discovery of phosphine, a potential biomarker in the atmosphere. The best way to lay that controversy to rest would be to go there and actually take samples, which at the very least, would help constrain the existence of life in Venus’ cloud layers. And a wide-ranging team from academia and industry hopes to do just that.

Continue reading “What Would it Take to Find Life on Venus?”

Rocket Lab is Sending its own Mission to Venus to Search for Life

In a recent study published in Instrumentation and Methods for Astrophysics, the private space company, Rocket Lab, outlines a plan to send their high-energy Photon spacecraft to Venus in May 2023 with the primary goal of searching for life within the Venusian atmosphere. The planet Venus has become a recent hot topic in the field of astrobiology, which makes the high-energy Photon mission that much more exciting.

Rocket Lab hopes to build off their recent successful launch of the CAPSTONE mission using its Photon satellite bus, and consists of a CubeSat designed to study the near rectilinear halo orbit (NRHO) around the Moon and its applications for long-term missions such as Gateway.

Continue reading “Rocket Lab is Sending its own Mission to Venus to Search for Life”

ESA’s EnVision Mission Doesn’t Have a lot of Fuel, so it’s Going to Aerobrake in the Atmosphere of Venus

Artist impression of ESA's EnVision mission. Credit:ESA/VR2Planets/Damia Bouic

Venus has almost been “the forgotten planet,” with only one space mission going there in the past 30 years. But the recent resurgence of interest in Earth’s closest neighbor has NASA and ESA committing to three new missions to Venus, all due to launch by the early 2030s.

ESA’s EnVision mission Venus is slated to take high-resolution optical, spectral and radar images of the planet’s surface. But to do so, the van-sized spacecraft will need to perform a special maneuver called aerobraking to gradually slow down and lower its orbit through the planet’s hot, thick atmosphere. Aerobraking uses atmospheric drag to slow down a spacecraft and EnVision will make thousands of passages through Venus’ atmosphere for about two years.

Continue reading “ESA’s EnVision Mission Doesn’t Have a lot of Fuel, so it’s Going to Aerobrake in the Atmosphere of Venus”

High Altitude Life Can’t Explain the Trace Gases in Venus’ Atmosphere

The planet Venus is one of the most inexplainable and mysterious planetary objects in our solar system as its surface is beyond inhospitable for us fragile humans with temperatures at a searing 475 degrees Celsius (900 degrees Fahrenheit) and surface pressures more than 90 times that of Earth. However, its atmosphere is quite a different story as its temperature varies considerably ranging from -143 degrees Celsius (-226 degrees Fahrenheit) at night to 37 degrees Celsius (98 degrees Fahrenheit) in the daytime, and varies based on altitude, as well.

Continue reading “High Altitude Life Can’t Explain the Trace Gases in Venus’ Atmosphere”