Aerocapture is a Free Lunch in Space Exploration

Visualisation of the ExoMars Trace Gas Orbiter aerobraking at Mars. Credit: ESA/ATG medialab.

This article was updated on 11/28/23

When spacecraft return to Earth, they don’t need to shed all their velocity by firing retro-rockets. Instead, they use the atmosphere as a brake to slow down for a soft landing. Every planet in the Solar System except Mercury has enough of an atmosphere to allow aerocapture maneuvers, and could allow high-speed exploration missions. A new paper looks at the different worlds and how a spacecraft must fly to take advantage of this “free lunch” to slow down at the destination.

Continue reading “Aerocapture is a Free Lunch in Space Exploration”

Venus Might Have Had Plate Tectonics Just Like Earth

Radar image of Venus created by the Solar System Visualization project and the Magellan science team at the JPL Multimission Image Processing Laboratory. Credit: NASA/JPL.

Even though Venus is very similar to Earth in many ways, it’s a hell-world with a runaway greenhouse effect. It was assumed this was because it lacked plate tectonics like Earth to sequester carbon inside the planet. A new study suggests that the high nitrogen and argon in its atmosphere are evidence from outgassing when it had plate tectonics billions of years ago. This could mean that Venus was habitable for a long time before something went horribly wrong.

Continue reading “Venus Might Have Had Plate Tectonics Just Like Earth”

Floating Seismometers Could Help Peer Into The Core of Venus

Seismology has been ubiquitous on Earth for decades, and missions such as InSight have recently provided the same data for the inside of Mars. Understanding a planet’s inner workings is key to understanding its geology and climate. However, the inner workings of Venus, arguably our closest sister planet, have remained a mystery. The sulfuric acid cloud and scorching surface temperatures probably don’t help. But Siddharth Krishnamoorthy from NASA’s Jet Propulsion Laboratory and Daniel Bowman of Sandia National Laboratory think they have a solution – use seismometers hanging from balloons.

Continue reading “Floating Seismometers Could Help Peer Into The Core of Venus”

Did Powerful Asteroid Impacts Make Venus So Different From Earth?

Artist's impression of a bolide impact on a young Venus. Credit: SwRI

Venus and Earth have several things in common. Both are terrestrial planets composed of silicate minerals and metals that are differentiated between a rocky mantle and crust and a metal core. Like Earth, Venus orbits within our Sun’s circumsolar habitable zone (HZ), though Venus skirts the inner edge of it. And according to a growing body of evidence, Venus has active volcanoes on its surface that contribute to atmospheric phenomena (like lightning). However, that’s where the similarities end, and some rather stark differences set in.

In addition to Venus’ hellish atmosphere, which is about 100 times as dense as Earth’s and hot enough to melt lead, Venus has a very “youthful” surface. Compared to other bodies in the Solar System (like Mercury, the Moon, and Mars), Venus’ surface retains little evidence of the many bolides impacts it experienced over billions of years. According to new research from the Southwest Research Institute (SwRI) and Yale University, this may result from bolide impacts that provided a high-energy, rejuvenating boost to the planet in its early years.

Continue reading “Did Powerful Asteroid Impacts Make Venus So Different From Earth?”

Venus Needed Asteroid Impacts to Get its Volcanoes Going

Illustration of early Venus after a major impact. Credit: Southwest Research Institute

With its thick, cloudy atmosphere, Venus has long held mysteries about its surface. It was only in the late 20th century that astronomers had detailed observations of the Venusian landscape, with the Russian Venera landers in the 1970s and 1980s, and later the 1990 Magellan mission, which made high-resolution radar maps of the surface. There are many things we still don’t know, but one thing we do know is that the surface of Venus is young. And a new study in Nature Astronomy may know why.

Continue reading “Venus Needed Asteroid Impacts to Get its Volcanoes Going”

Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive

Image from NASA's Mariner 10 spacecraft in February 1974 as it traveled away from Venus. (Credit: NASA/JPL-Caltech)

The surface of Venus is like a scene from Dante’s Inferno – “Abandon all hope, ye who enter here!” and so forth. The temperature is hot enough to melt lead, the air pressure is almost one hundred times that of Earth’s at sea level, and there are clouds of sulfuric acid rain to boot! But roughly 48 to 60 km (30 to 37.3 mi) above the surface, the temperatures are much cooler, and the air pressure is roughly equal to Earth’s at sea level. As such, scientists have speculated that life could exist above the cloud deck (possibly in the form of microbes) as it does on Earth.

Unfortunately, these clouds are not composed of water but of concentrated sulfuric acid, making the likelihood that life could survive among them doubtful. However, a new study led by scientists from the Massachusetts Institute of Technology (MIT) reveals that the basic building blocks of life (nucleic acid bases) are stable in concentrated sulfuric acid. These findings indicate that Venus’ atmosphere could support the complex chemistry needed for life to survive, which could have profound implications in the search for habitable planets and extraterrestrial life.

Continue reading “Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive”

A Practical Use for Space Power: Beaming Energy to Probes on Venus

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

A few weeks ago, a team of scientists from Caltech announced that they had successfully transmitted energy from an orbiting satellite down to Earth. It wasn’t a lot of energy, but it showed that it was possible.

Eventually, we might be able to beam energy from solar satellites down to Earth, making solar energy available almost anywhere and helping combat climate change. But there’s another potential use: powering surface probes on Venus.

Continue reading “A Practical Use for Space Power: Beaming Energy to Probes on Venus”

The Clouds of Venus Could Support Life

Image of Venus taken by NASA’s Pioneer-Venus Orbiter in 1979. (Credit: NASA)

A recent study published in Astrobiology examines the likelihood of the planet Venus being able to support life within the thick cloud layer that envelopes it. This study holds the potential to help us better understand how life could exist under the intense Venusian conditions, as discussions within the scientific community about whether life exists on the second planet from the Sun continue to burn hotter than Venus itself.

Continue reading “The Clouds of Venus Could Support Life”

If You’re Going to Visit Venus, Why Not Include an Asteroid Flyby Too?

Radar image of Venus created by the Solar System Visualization project and the Magellan science team at the JPL Multimission Image Processing Laboratory. This is a single frame from a video released at the October 29, 1991, JPL news conference. (Credit: NASA/JPL)

A recent study submitted to Acta Astronautica examines the prospect of designing a Venus mission flight plan that would involve visiting a nearby asteroid after performing a gravity assist maneuver at Venus but prior to final contact with the planet. The study was conducted by Vladislav Zubko, who is a researcher and PhD Candidate at the Space Research Institute of the Russian Academy of Science (RAS) and has experience studying potential flight plans to various planetary bodies throughout the solar system.

Continue reading “If You’re Going to Visit Venus, Why Not Include an Asteroid Flyby Too?”

We Now Have a Map of all 85,000 Volcanoes on Venus

The most comprehensive map of all volcanic edifices on Venus ever compiled. Map created by Rebecca Hahn, Washington University in St. Louis.

A new map created with decades-old radar imagery from NASA’s 1990’s Magellan mission shows the locations of a whopping 85,000 volcanoes on Venus. The detailed map displays where the volcanoes are, how they’re clustered, and how their distributions compare with other geophysical properties of the planet such as crustal thickness.

This comprehensive study of Venus will help planetary scientists answer many outstanding questions about the planet’s geological history, such as why doesn’t it have plate tectonics like Earth? Was it ever habitable, and if so, for how long?

Continue reading “We Now Have a Map of all 85,000 Volcanoes on Venus”