Tricks to Remember the Planets

Need an easy way to remember the order of the planets in our Solar System? The technique used most often to remember such a list is a mnemonic device. This uses the first letter of each planet as the first letter of each word in a sentence. Supposedly, experts say, the sillier the sentence, the easier it is to remember.

So by using the first letters of the planets, (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune), create a silly but memorable sentence.

Here are a few examples:

  • My Very Excellent Mother Just Served Us Noodles (or Nachos)
  • Mercury’s Volcanoes Erupt Mulberry Jam Sandwiches Until Noon
  • Very Elderly Men Just Snooze Under Newspapers
  • My Very Efficient Memory Just Summed Up Nine
  • My Very Easy Method Just Speeds Up Names
  • My Very Expensive Malamute Jumped Ship Up North

    Sun and Planets
    The Sun and planets to scale. Credit: Illustration by Judy Schmidt, texture maps by Björn Jónsson

    If you want to remember the planets in order of size, (Jupiter, Saturn, Uranus, Neptune, Earth, Venus Mars, Mercury) you can create a different sentence:

  • Just Sit Up Now Each Monday Morning
  • Jack Sailed Under Neath Every Metal Mooring 

    Rhymes are also a popular technique, albeit they require memorizing more words. But if you’re a poet (and don’t know it) try this:

    Amazing Mercury is closest to the Sun,
    Hot, hot Venus is the second one,
    Earth comes third: it’s not too hot,
    Freezing Mars awaits an astronaut,
    Jupiter is bigger than all the rest,
    Sixth comes Saturn, its rings look best,
    Uranus sideways falls and along with Neptune, they are big gas balls.

    Or songs can work too. Here are a couple of videos that use songs to remember the planets:

    If sentences, rhymes or songs don’t work for you, perhaps you are more of a visual learner, as some people remember visual cues better than words. Try drawing a picture of the planets in order. You don’t have to be an accomplished artist to do this; you can simply draw different circles for each planet and label each one. Sometimes color-coding can help aid your memory. For example, use red for Mars and blue for Neptune. Whatever you decide, try to pick colors that are radically different to avoid confusing them.

    Or try using Solar System flash cards or just pictures of the planets printed on a page (here are some great pictures of the planets). This works well because not only are you recalling the names of the planets but also what they look like. Memory experts say the more senses you involve in learning or storing something, the better you will be at recalling it.

    Planets made from paper lanterns. Credit:
    Planets made from paper lanterns. Credit:

    Maybe you are a hands-on learner. If so, try building a three-dimensional model of the Solar System. Kids, ask your parents or guardians to help you with this, or parents/guardians, this is a fun project to do with your children. You can buy inexpensive Styrofoam balls at your local craft store to create your model, or use paper lanterns and decorate them. Here are several ideas from Pinterest on building a 3-D Solar System Model.

    If you are looking for a group project to help a class of children learn the planets, have a contest to see who comes up with the silliest sentence to remember the planets. Additionally, you can have eight children act as the planets while the rest of the class tries to line them up in order. You can find more ideas on NASA’s resources for Educators. You can use these tricks as a starting point and find more ways of remembering the planets that work for you.

    If you are looking for more information on the planets check out Universe Today’s Guide to the Planets section, or our article about the Order of the Planets, or this information from NASA on the planets and a tour of the planets.

    Universe Today has numerous articles on the planets including the planets and list of the planets.

    Astronomy Cast has an entire series of episodes on the planets. You can get started with Mercury.

Moonspotting-A Guide to Observing the Moons of the Solar System

Like splitting double stars, hunting for the faint lesser known moons of the solar system offers a supreme challenge for the visual observer.

Sure, you’ve seen the Jovian moons do their dance, and Titan is old friend for many a star party patron as they check out the rings of Saturn… but have you ever spotted Triton or Amalthea?

Welcome to the challenging world of moon-spotting. Discovering these moons for yourself can be an unforgettable thrill.

One of the key challenges in spotting many of the fainter moons is the fact that they lie so close inside the glare of their respective host planet. For example, +11th magnitude Phobos wouldn’t be all that tough on its own, were it not for the fact that it always lies close to dazzling Mars. 10 magnitudes equals a 10,000-fold change in brightness, and the fact that most of these moons are swapped out is what makes them so tough to see. This is also why many of them weren’t discovered until later on.

But don’t despair. One thing you can use that’s relatively easy to construct is an occulting bar eyepiece.   This will allow you to hide the dazzle of the planet behind the bar while scanning the suspect area to the side for the faint moon. Large aperture, steady skies, and well collimated optics are a must as well, and don’t be afraid to crank up the magnification in your quest. We mentioned using such a technique previously as a method to tease out the white dwarf star Sirius b in the years to come.

Image credit
A homemade occulting bar eyepiece with the barrel removed. One bar is a strip of foil, and the other is a E-string from a guitar. Image credit: Dave Dickinson

What follows is a comprehensive list of the well known ‘easy ones,’ along with some challenges.

We included a handy drill down of magnitudes, orbital periods and maximum separations for the moons of each planet right around opposition. For the more difficult moons, we also noted the circumstances of their discovery, just to give the reader some idea what it takes to see these fleeting worlds.  Remember though, many of those old scopes used speculum metal mirrors which were vastly inferior to commercial optics available today. You may have a large Dobsonian scope available that rivals these scopes of yore!

Image credit:
The orbits of the Martian moons. Image credit: Starry Night Education Software

Mars- The two tiny moons of Mars are a challenge, as it’s only possible to nab them visually near opposition, which occurs about once every 26 months.   Mars next reaches opposition on May 22nd, 2016.


Magnitude:  +11.3

Orbital period:  7 hours 39 minutes

Maximum separation: 16”


Magnitude:  +12.3

Orbital period: 1 day 6 hours and 20 minutes

Maximum separation: 54”

The moons of Mars were discovered by American astronomer Asaph Hall during the favorable 1877 opposition of Mars using the 26-inch refracting telescope at the U.S. Naval Observatory.

Jupiter- Though the largest planet in our solar system also has the largest number of moons at 67, only the four bright Galilean moons are easily observable, although owners of large light buckets might just be able to tease out another two.  Jupiter next reaches opposition March 8th, 2016.


Magnitude: +4.6

Orbital period: 7.2 days

Maximum separation: 5’


Magnitude: +5.7

Orbital period: 16.7 days

Maximum separation: 9’


Magnitude: +5.0

Orbital period: 1.8 days

Maximum separation: 1’ 50”


Magnitude: +5.3

Orbital period: 3.6 days

Maximum separation: 3’


Magnitude:  +14.3

Orbital period: 11 hours 57 minutes

Maximum separation: 33”


Magnitude: +15

Orbital period: 250.2 days

Maximum separation: 52’

Note that Amalthea was the first of Jupiter’s moons discovered after the four Galilean moons. Amalthea was first spotted in 1892 by E. E. Barnard using the 36” refractor at the Lick Observatory. Himalia was also discovered at Lick by Charles Dillon Perrine in 1904.

Titan and Rhea imaged via Iphone and a Celestron NexStar 8SE telescope. Image credit: Andrew Symes (@failedprotostar)
Titan and Rhea imaged via Iphone and a Celestron NexStar 8SE telescope. Image credit: Andrew Symes (@failedprotostar)

Saturn- With a total number of moons at 62, six moons of Saturn are easily observable with a backyard telescope, though keen-eyed observers might just be able to tease out another two:

(Note: the listed separation from the moons of Saturn is from the limb of the disk, not the rings).


Magnitude: +8.5

Orbital period: 16 days

Maximum separation: 3’


Magnitude: +10.0

Orbital period: 4.5 days

Maximum separation: 1’ 12”


Magnitude: (variable) +10.2 to +11.9

Orbital period: 79 days

Maximum separation: 9’


Magnitude: +12

Orbital period: 1.4 days

Maximum separation: 27″


Magnitude: +10.4

Orbital period: 2.7 days

Maximum separation: 46”


Magnitude: +10.2

Orbital period: 1.9 days

Maximum separation: 35”


Magnitude: +12.9

Orbital period: 0.9 days

Maximum separation: 18”


Magnitude: +14.1

Orbital period: 21.3 days

Maximum separation: 3’ 30”


Magnitude: +16.6

Orbital period: 541 days

Maximum separation: 27’

Hyperion was discovered by William Bond using the Harvard observatory’s 15” refractor in 1848, and Phoebe was the first moon discovered photographically by William Pickering in 1899.

Image credit:
The orbits of the moons of Uranus. Image credit: Starry Night Education software

Uranus- All of the moons of the ice giants are tough. Though Uranus has a total of 27 moons, only five of them might be spied using a backyard scope. Uranus next reaches opposition on October 12th, 2015.


Magnitude: +13.9

Orbital period:

Maximum separation: 28”


Magnitude: +14.1

Orbital period: 8.7 days

Maximum separation: 40”


Magnitude: +15

Orbital period: 4.1 days

Maximum separation: 15”


Magnitude: +14.3

Orbital period: 2.5 days

Maximum separation: 13”


Magnitude: +16.5

Orbital period: 1.4 days

Maximum separation: 9”

The first two moons of Uranus, Titania and Oberon, were discovered by William Herschel in 1787 using his 49.5” telescope, the largest of its day.

Triton in orbit around Neptune near opposition in 2011. Image credit: Efrain Morales
Triton in orbit around Neptune near opposition in 2011. Image credit: Efrain Morales

Neptune- With a total number of moons numbering 14, two are within reach of the skilled amateur observer. Opposition for Neptune is coming right up on September 1st, 2015.


Magnitude: +13.5

Orbital period: 5.9 days

Maximum separation: 15”


Magnitude: +18.7

Orbital period: 0.3 days

Maximum separation: 6’40”

Triton was discovered by William Lassell using a 24” reflector in 1846, just 17 days after the discovery of Neptune itself. Nereid wasn’t found until 1949 by Gerard Kuiper.

Pluto-Yes… it is possible to spy Charon from Earth… as amateur astronomers proved in 2008.


Magnitude: +16

Orbital period: 6.4 days

Maximum separation: 0.8”

Image credit
Pluto! Click here for a (possible) capture of Charon as well. Image credit: Wendy Clark

In order to cross off some of the more difficult targets on the list, you’ll need to know exactly when these moons are at their greatest elongation. Sky and Telescope has some great apps in the case of Jupiter and Saturn… the PDS Rings node can also generate corkscrew charts of lesser known moons, and Starry Night has ‘em as well. In addition, we tend to publish cork screw charts for moons right around respective oppositions, and our ephemeris for Charon elongations though July 2015 is still active.

Good luck in crossing off some of these faint moons from your astronomical life list!

How Many Moons Does Uranus Have?

Uranus and Moons

In the outer Solar System, there are many worlds that are so large and impressive to behold that they will probably take your breath away. Not only are these gas/ice giants magnificent to look at, they are also staggering in size, have their own system a rings, and many, many moons. Typically, when one speaks of gas (and/or ice) giants and their moons, one tends to think about Jupiter (which has the most, at 67 and counting!).

But have you ever wondered how many moons Uranus has? Like all of the giant planets, it’s got rather a lot! In fact, astronomers can now account for 27 moons that are described as “Uranian”. Just like the other gas and ice giants, these moons are motley bunch that tell us much about the history of the Solar System. And, just like Jupiter and Saturn, the process of discovering these moons has been long and involved on multiple astronomers.

Continue reading “How Many Moons Does Uranus Have?”

Uranus’s Moon Oberon

In 1610, Galileo’s observed four satellites orbiting the distant gas giant of Jupiter. This discovery would ignite a revolution in astronomy, and encouraged further examinations of the outer Solar System to see what other mysteries it held. In the centuries that followed, astronomers not only discovered that other gas giants had similar systems of moons, but that these systems were rather extensive.

For example, Uranus has a system of 27 confirmed satellites. Of these, Oberon is the outermost satellite, as well as the second largest and second most-massive. Named in honor of a mythical king of fairies, it is also the ninth most massive moon in the Solar System.

Discovery and Naming:

Discovered in 1787 by Sir William Herschel, Oberon was one of two major satellites discovered in a single day (the other being Uranus’ moon of Titania). At the time, he reported observing four other moons; however, the Royal Astronomical Society would later determine that these were spurious. It would be almost five decades after the moons were discovered that an astronomer other than Herschel observed them.

Initially, Oberon was referred to as “the second satellite of Uranus”, and in 1848, was given the designation Uranus II by William Lassell. In 1851, Lassell discovered Uranus’ other two moons – later named Ariel and Miranda – and began numbering them based on their distance from the planet . Oberon was thus given the designation of Uranus IV.

Size comparison between the Earth, the Moon, and Saturn's moon of Oberon. Credit: Tom.Reding/Public Domain
Size comparison between the Earth, the Moon, and Uranus’ moon of Oberon. Credit: Tom.Reding/Public Domain

By 1852, Herschel’s son John suggested naming the moon’s his father observed Oberon and Titania, at the request of Lassell himself. All of these names were taken from the works of William Shakespeare and Alexander Pope, with the name Oberon being derived from the King of the Fairies in A Midsummer Night’s Dream.

Size, Mass and Orbit:

With a diameter of approx. 1,523 kilometers, a surface area of 7,285,000 km², and a mass of 3.014 ± 0.075 x 10²¹ kilograms, Oberon is the second largest, and second most massive of Uranus’ moons. It is also the ninth most massive moon in the solar system.

At a distance of 584,000 km from Uranus, it is the farthest of the five major moons from Uranus. However, this distance is subject to change, as Oberon has a small orbital eccentricity and inclination relative to Uranus’ equator. It has an orbital period of about 13.5 days, coincident with its rotational period. This means that Oberon is a tidally-locked, synchronous satellite with one face always pointing toward the planet.

Since (like all of Uranus’ moons) Oberon orbits the planet around its equatorial plane, and Uranus orbits the Sun almost on its side, the moon experiences a rather extreme seasonal cycle. Essentially, both the northern and southern poles spend a period of 42 years in complete darkness or complete sunlight – with the sun rising close to the zenith over one of the poles at each solstice.

Voyager 2:

So far, the only close-up images of Oberon have been provided by the Voyager 2 probe, which photographed the moon during its flyby of Uranus in January 1986.  The images cover about 40% of the surface, but only 25% of the surface was imaged with a resolution that allows geological mapping.

In addition, the time of the flyby coincided with the southern hemisphere’s summer solstice, when nearly the entire northern hemisphere was in darkness. This prevented the northern hemisphere from being studied in any detail. No other spacecraft has visited the Uranian system before or since, and no missions to the planet are currently being planned.


Oberon’s density is higher than the typical density of Uranus’ satellites, at 1.63 g/cm³. This would indicate that the moon consists of roughly equal proportions of water ice and a dense non-ice component. The latter could be made of rock and carbonaceous material including heavy organic compounds.

Spectroscopic observations have confirmed the presence of crystalline water ice in the surface of the moon. It is believed that Oberon, much like the other Uranian moons, consists of an icy mantle surrounding a rocky core. If this is true, then the radius of the core (480 km) would be equal to approx. 63% of the radius of the moon, and its mass would be around 54% of the moon’s mass.

A computer-projected false-color image of Oberon. The white region has not yet been photographed by a spacecraft. The large crater with the dark floor (right of center) is Hamlet; the crater Othello is to its lower left, and the 'canyon' Mommur Chasma is at upper left. Credit: USGS Astrogeology Research Program
False-color image of Oberon, showing the Hamlet and Othello craters (right of center and lower left) and the Mommur Chasma (upper left). Credit: USGS Astrogeology Research Program

Currently, the full composition of the icy mantle is unknown. However, it it were to contain enough ammonia or other antifreeze compounds, the moon may possess a liquid ocean layer at the core–mantle boundary. The thickness of this ocean, if it exists, would be up to 40 km and its temperature would be around 180 K.

It is unlikely that at these temperatures, such an ocean could support life. But assuming that hydrothermal vents exist in the interior, it is possible life could exist in small patches near the core. However, the internal structure of Oberon depends heavily on its thermal history, which is poorly known at present.

Interesting Facts:

Oberon is the second-darkest large moon of Uranus (after Umbriel), with a surface that appears to be generally red in color – except where fresh impact deposits have left neutral or slightly blue colors. In fact, Oberon is the reddest moon amongst its peers, with a trailing hemisphere that is significantly redder than its leading hemisphere.

The reddening of the surfaces is often a result of space weathering caused by bombardment of the surface by charged particles and micrometeorites over many millions of years. However, the color asymmetry of Oberon is more likely caused by accretion of a reddish material spiraling in from outer parts of the Uranian system.

Oberon’s surface is the most heavily cratered of all the Uranian moons, which would indicate that Oberon has the most ancient surface among them. Consistent with the planet’s name, these surface features are named after characters in Shakespearean plays. The largest known crater, Hamlet, measures 206 kilometers in diameter, while the Macbeth, Romeo, and Othello craters measure 203, 159, and 114 km respectively.

Uranus and its five major moons
Uranus and its five major moons. Credit:

Other prominent surface features are what is known as chasmata – steep-sided depressions that are comparable to rift valleys or escarpments here on Earth. The largest known chasmata on Oberon is the Mommur Chasma, which measures 537 km in diameter and takes its name from the enchanted forest in French folklore that was ruled by Oberon.

As you can plainly see, there is much that remains unknown about this satellite. Much like its peers, how they came to be, and what secrets may lurk beneath their surfaces, is still open to speculation. One can only hope that future generations will choose to mount another Voyager-like expedition to the Outer Solar System for the sake of studying the Uranian satellites.

We have written many interesting articles on the moons of Uranus here at Universe Today. Here’s How Many Moons Does Uranus Have? and Interesting Facts About Uranus.

For more information, check out NASA’s Solar System Exploration page on Oberon and Nine Planet’s page on Oberon.

Astronomy Cast also has a good episode on the subject. Here’s Episode 62: Uranus.


Slender Moonspotting, Occultations, Daytime Planets and More

One of nature’s grandest ‘occultations’ of all is coming right up this Friday, as the Moon passes in front of the Sun for viewers in the high Arctic for a total solar eclipse. And although 99.999+% percent of humanity will miss totality, everyone can trace the fascinating path of the Moon as it moves back into the evening sky this weekend.

As of this writing, it looks like the fickle March weather is going to keep us guessing right up to eclipse day. Fear not, as the good folks over at the Virtual Telescope Project promise to bring us views of the eclipse live.  Not only does this eclipse fall on the same day as the start of astronomical spring in the northern hemisphere known as the vernal (northward) equinox, but it also marks the start of lunation 1141.

Ever try hunting for the slender crescent Moon in the dawn or dusk sky? The sport of thin Moon-spotting on the days surrounding the New Moon can push visual skills to the very limit. Binoculars are your friend in this endeavor, as you sweep back and forth attempting to see the slim fingernail of a Moon against the low contrast background sky.  Thursday morning March 19th provides a great chance for North American observers to spy an extremely thin Moon about 24 hours prior to Friday’s eclipse.

Projected locales for the first sightings of the slim crescent Moon on the evening of March 20th. Credit: Created by author.

Unfortunately, most of North America misses the eclipse, though folks on the extreme east coast of Newfoundland might see a partially eclipsed sunrise if the day dawns clear.

The Moon will first be picked up in the evening sky post-eclipse this weekend. On Friday evening, folks in the southern United States might just be able to spy a 15 hour old Moon with optical assistance if skies are clear.

As the Moon fattens, expect to see it at its most photogenic as Ashen light or Earthshine illuminates its nighttime side. What you’re seeing is sunlight from the Earth being reflected back in a reverse (waning gibbous) phase as seen from the earthward side of the Moon. The prominence of Earthshine can vary depending on the amount of cloud and snow cover currently turned moonward, though of course, if it’s cloudy from your location, you won’t see a thing…

The universe smiles back: A skewed emoticon grouping of Venus, Mars and the Moon plus Earthshine on February 20th. Photo by author.

Watch that Moon over the coming weeks, as it has a date with destiny.

The Moon occults (passes in front of) two planets and one bright star in the coming week. First up is an occultation of Uranus on March 21st at around 11:00 UT/7:00 AM EDT. Sure, this one is for the most part purely academic and unobservable, as it occurs over central Africa in the daytime and is only 15 degrees east of the Sun. Still, if you can pick up the Moon on the evenings of March 20th or March 21st, you might just be able to spy nearby Uranus shining at +6th magnitude nearby before it heads towards solar conjunction on April 6th.

The visibility footprint of the March 21st occultation of Mars by the Moon. Credit: Occult 4.1.

Next, the Moon occults Mars on March 21st at 22:00 UT/6:00 PM EDT for the southern Pacific coast of South America. North America will see an extremely close photogenic pairing of Luna and the Red Planet. This is one of seven occultations of a naked eye planet by the Moon for 2015, and the first of two for Mars for the year, the next falling on December 6th.

The Moon pairs with Venus on the evening of March 22nd. Credit: Stellarium.

Next up, the Moon has a tryst with brilliant Venus, passing 2.8 degrees from the Cytherean world on March 22nd. Can you spy -4th magnitude Venus near the two day old Moon before sunset? This is the stuff that has inspired astronomically-themed flags and skewed emoticon ‘smiley face conjunctions’ of yore, including the close pairing of Mars, Venus and the Moon seen worldwide last month.

The occultation of Aldebaran by the Moon on March 25th. Credit: Occult 4.1.

Next up, the 30% illuminated Moon occults the bright star Aldebaran for Alaskan viewers at dusk on March 25th. This is the third occultation of the star by the Moon in the ongoing cycle, and to date, no one has, to our knowledge, successfully caught an occultation of Aldebaran in 2015… could this streak be broken next week?

The daytime Moon paired with Jupiter on March 30th. Credit: Starry Night Education software.

And speaking of daytime planet-spotting, Jupiter will sit only five degrees south of the waxing gibbous Moon on the evening of March 30th. Can you spy the giant planet near the daytime Moon in the afternoon sky using binocs? And finally, watch that Moon, as it heads for the third total lunar eclipse of the last 12 months visible from the Americas and the Pacific region on the morning of April 4th

More to come!

Half-Moon Makes Dramatic Pass at Uranus Tonight

Sunlight. Moonlight. Starlight. I saw all three for the first time in weeks yesterday. Filled with photons, I feel lighter today, less burdened. Have you been under the clouds too? Let’s hope it’s clear tonight because there’s a nice event you’ll want to see if only because it’s so effortless.

The half-moon will pass very close to the planet Uranus for skywatchers across North America this evening Sunday, Dec. 28th. Pop the rubber lens caps off those binoculars and point them at the Moon. If you look a short distance to the left you’ll notice a star-like object. That’s the planet!

Seattle, two time zones west of the Midwest, will see the two closest around 9:30 p.m. local time. Source: Stellarium
Seattle, two time zones west of the Midwest, will see the two closest around 9:30 p.m. local time. Source: Stellarium

You can do this anytime it’s dark, but the later you look the better because the Moon moves eastward and closer to the planet as the hours tick by. Early in the evening, the two will be separated by a couple degrees, but around 11:30 p.m. CST (9:30 p.m. PST) when the Moon reclines in the western sky, the planet will dangle like an solitary diamond less than a third of a lunar diameter away. When closest to the Moon, Uranus may prove tricky to see in its glare. If you hide the Moon behind a chimney, roofline or power pole, you’ll find it easier to see the planet.

The farther north you live, the closer the twain will be. Skywatchers in Japan, the northeastern portion of Russia, northern Canada and Alaska will see the Moon completely hide Uranus for a time. The farther west you are, the higher the Moon will be when they conjoin. West Coast states see the pair highest when they’re closest, but everyone will get a good view.

Binocular view from the desert city of Tucson around 10:45 p.m. local time tonight. Source: Stellarium
Binocular view from the desert city of Tucson around 10:45 p.m. local time tonight. You can see that the Moon is a little farther north of the planet compared to the view from Seattle. The 1,500 miles between the two cities is enough to cause our satellite, which is relatively close to the Earth, to shift position against the background stars. Source: Stellarium

When closest, the radically different character of each world can best be appreciated in a telescope. Pump the magnification up to 150x and slide both planet and Moon into the same field of view. Uranus, a pale blue dot, wears a permanent cover of methane-laced clouds where temperatures hover around -350°F (-212°C).

Though the moon will be lower in the sky, observers in the eastern U.S. and Canada will still see planet and moon only about 1/2 degree apart before moonset. Source: Stellarium
Though the Moon will be lower in the sky in the eastern U.S. and Canada when it’s closest to Uranus, observers there will still see planet and Moon only 1/2 degree apart shortly before moonset. Source: Stellarium

The fantastically large-appearing Moon in contrast has precious little atmosphere and its sunny terrain bakes at 250°F (121°C). And just look at those craters! First-quarter phase is one of the best times for Moon viewing. The terminator or shadow-line that divides lunar day from night slices right across the middle of the lunar landscape.

Shadows cast by mountain peaks and crater rims are longest and most dramatic around this time because we look squarely down upon them. At crescent and gibbous phases, the terminator is off to one side and craters and their shadows appear scrunched and foreshortened.

The day-night line or terminator cuts across a magnificent landscape rich with craters and mountain ranges emerging from the lunar night. Several prominent lunar "seas" or maria and prominent craters are shown. Credit: Christian Legrand and Patrick Chevalley / Virtual Moon Atlas
The day-night line or terminator cuts across a magnificent landscape rich with craters and mountain ranges emerging from the lunar night. Several prominent lunar “seas” or maria and prominent craters are shown. Credit: Christian Legrand and Patrick Chevalley / Virtual Moon Atlas

Enjoy the tonight’s conjunction and consider the depth of space your view encompasses. Uranus is 1.85 billion miles (2.9 billion km) from Earth today, some 7,700 times farther away than the half-moon.

The Top 101 Astronomical Events to Watch for in 2015

Phew! It’s here.

Now in its seventh year of compilation and the second year running on Universe Today, we’re proud to feature our list of astronomical happenings for the coming year. Print it, bookmark it, hang it on your fridge or observatory wall. Not only is this the yearly article that we jokingly refer to as the “blog post it takes us six months to write,” but we like to think of it as unique, a mix of the mandatory, the predictable and the bizarre. It’s not a 10 ten listicle, and not a full-fledged almanac, but something in between.     

A rundown of astronomy for 2015: There’s lots of astronomical action to look forward to in the coming year. 2015 features the minimum number of eclipses that can occur, two lunars and two solars. The Moon also reaches its minimum standstill this coming year, as its orbit runs shallow relative to the celestial equator. The Moon will also occult all naked eye planets except Saturn in 2015, and will occult the bright star Aldebaran 13 times — once during every lunation in 2015. And speaking of Saturn, the rings of the distant planet are tilted an average of 24 degrees and opening to our line of sight in 2015 as they head towards their widest in 2018.

Finally, solar activity is trending downwards in 2015 after passing the sputtering 2014 maximum for solar cycle #24 as we now head towards a solar minimum around 2020.

Our best bets: Don’t miss these fine celestial spectacles coming to a sky near YOU next year:

– The two final total lunar eclipses in the ongoing tetrad, one on April 4th and September 28th.

– The only total solar eclipse of 2015 on March 20th, crossing the high Arctic.

– A fine dusk pairing of the bright planets Jupiter and Venus on July 1st.

– Possible wildcard outbursts from the Alpha Monocerotid and Taurid meteors, and a favorable New Moon near the peak of the August Perseids.

– Possible naked eye appearances by comet Q2 Lovejoy opening 2015 and comet US10 Catalina later in the year.

– The occultation of a naked eye star for Miami by an asteroid on September 3rd.

– A series of fine occultations by the Moon of bright star Aldebaran worldwide.

The rules: The comprehensive list that follows has been lovingly distilled down to the top 101 astronomical events for 2015 worldwide. Some, such as lunar eclipses, are visible to a wide swath of humanity, while others, such as many of the asteroid occultations or the sole total solar eclipse of 2015 happen over remote locales. We whittled the list down to a “Top 101” using the following criterion:

Meteor showers: Must have a predicted ZHR  greater than 10.

Conjunctions: Must be closer than one degree.

Asteroid occultations: Must have a probability ranking better than 90 and occult a star brighter than magnitude +8.

Comets: Must reach a predicted brightness greater than magnitude +10. But remember: comets don’t always read prognostications such as this, and may over or under perform at whim… and the next big one could come by at any time!

Times quoted are geocentric unless otherwise noted, and are quoted in Universal Time in a 24- hour clock format.

These events are meant to merely whet the appetite. Expect ‘em to be expounded on fully by Universe Today as they approach. We linked to the events listed where possible, and provided a handy list of resources that we routinely consult at the end of the article.

Got it? Good… then without further fanfare, here’s the top 101 astronomical events for 2015 in chronological order:

The path of Comet Q2 Lovejoy From January 1st to January 31st.
The path of Comet Q2 Lovejoy from January 1st to January 31st. Created using Starry Night Education software.


01- Comet C/2012 Q2 Lovejoy may reach naked eye visibility.

04- The Quadrantid meteors peak at 02:00 UT, favoring northern Europe with an expected ZHR of 120.

04- The Earth reaches perihelion at ~8:00 UT.

14- Mercury reaches greatest evening elongation 18.9 degrees east of the Sun at ~16:00 UT.

17- The moons Io and Europa cast a double shadow on Jupiter from 3:53 to 4:58 UT.

20- Mars passes 0.2 degrees from Neptune at ~20:00 UT.

24- A triple shadow transit of Jupiter’s moons occurs from 6:26 to 6:54 UT.

29- The Moon occults Aldebaran at ~17:31 UT for the Arctic, marking the first of 13 occultations of the star by the Moon in 2015.

The view at 6:40 UT.
The view at 6:40 UT on January 24th, as 3 of Jupiter’s moons cast shadows on to the Jovian cloud tops simultaneously. Created using Starry Night Education software.


01- Venus passes 0.8 degrees south of Neptune at ~17:00 UT.

05- Earth crosses through Jupiter’s equatorial plane, marking the middle of occultation and eclipse season for the Galilean moons.

06- Jupiter reaches opposition at ~18:00 UT.

18- A “Black Moon” occurs, in the sense of the third New Moon in a season with four.

22- Venus passes 0.4 degrees south of Mars at 5:00 UT.

24- Mercury reaches greatest morning elongation at 26.7 degrees west of the Sun at 19:00 UT.

25- The Moon occults Aldebaran for northern Europe at 23:26 UT.

Credit: Eclipse-Maps
The path of the only total solar eclipse of 2015, occurring on March 20th. Credit: Michael Zeiler/Eclipse-Maps.


01- Geostationary satellite & Solar Dynamics Observatory eclipse season begins on the weeks leading up to the March Equinox.

04- Venus passes 0.1 degrees north of Uranus at ~18:00 UT. This is the closest planet-planet conjunction of 2015.

05- A Minimoon occurs, marking the most distant Full Moon of 2015 at 18:07 UT, just 10 hours from apogee.

11- Mars passes 0.3 degrees north of Uranus at ~16:00 UT.

20- A total solar eclipse occurs over the Arctic centered on 9:47 UT.

20- The March northward equinox occurs at 22:45 UT.

21- The Moon occults Mars for South America at ~22:14 UT.

25- The Moon occults Aldebaran for northwestern North America at ~7:17 UT.

Neith lives… the close passage of Uranus near Venus on March 4th. Credit: Stellarium.


04- A total lunar eclipse occurs, centered on 12:01 UT and visible from eastern Asia, the Pacific and the Americas.

08- Mercury passes 0.5 degrees from Uranus at ~11:00 UT.

21- The Moon occults Aldebaran for northern Asia at ~16:57 UT.

22- The Lyrid meteors peak at 24:00 UT, favoring northern Europe with a ZHR of 18.


05- The Eta Aquarid meteors peak (time variable), with an estimated ZHR of 55.

07- Mercury reaches greatest evening elongation at 21.2 degrees east of the Sun at 4:00 UT.

19- The Moon occults Aldebaran for northern North America at ~2:53 UT .

20- Comet C/2014 Q1 PanSTARRS may reach binocular visibility.

21- Io and Ganymede both cast shadows on Jupiter from 00:04 to 00:33 UT.

21- Callisto and Europa both cast shadows on Jupiter from 13:26 to 13:59 UT.

23- Saturn reaches opposition at ~1:00 UT.

24- Asteroid 1669 Dagmar occults the +1st magnitude star Regulus at ~16:47 UT for the Arabian peninsula,

the brightest star occulted by an asteroid for 2015. 

28- Ganymede and Io both cast shadows on Jupiter from 02:01 to 04:18 UT.

30- Comet 19P/Borrelly may reach binocular visibility.


01- The International Space Station reaches full illumination as the June solstice nears, resulting in multiple nightly passes favoring  northern hemisphere observers.

04- Io and Ganymede both cast shadows on Jupiter from 4:54 to 6:13 UT.

05- Venus reaches greatest eastern (dusk) elongation for 2015, 45 degrees from the Sun at 16:00 UT.

10- Asteroid 424 Gratia occults a +6.1 magnitude star at ~15:10 UT for northwestern Australia.

15- The Moon occults Mercury for the South Indian Ocean at ~2:26 UT.

15- Moon occults Aldebaran in the daytime for the high Arctic at ~11:33 UT.

16- Comet C/2014 Q1 PanSTARRS may reach naked eye visibility.

21- The June northward solstice occurs at 16:38 UT.

24- Mercury reaches greatest (morning) elongation at 22.5 degrees west of the Sun at 17:00 UT.

Venus and Jupiter pair together low in the west on July 1st. Credit: Stellarium.


01- Venus passes 0.4 degrees from Jupiter at 9:00 UT, marking the closest conjunction of two naked eye planets for 2015.

02- Comet C/2013 US10 Catalina may reach binocular visibility.

06- Earth reaches aphelion at 13:00 UT.

06- Pluto reaches opposition at 15:00 UT, just a week prior to New Horizons’ historic flyby of the distant world.

12- The Moon occults Aldebaran for northeastern Asia ~18:17 UT.

19- The Moon occults Venus for the South Pacific at ~1:07 UT.

25- Asteroid 49 Pales occults a +6.6 magnitude star at 10:55 UT for Mexico.

28- The Delta Aquarids peak (time variable) with a predicted ZHR of 16.

31- A “Blue Moon” occurs, in the sense of the second Full Moon in a given month.

The light curve of comet C/2013 US10 Catalina through its peak in 2015. Credit: Seiichi Yoshida’s Weekly Information About Bright Comets.


07- Mercury, Jupiter and Regulus pass within a degree of each other over the next few evenings.

08- The Moon occults Aldebaran for central Asia at ~23:45 UT.

13- The Perseid meteors peak from 06:30 to 09:00 UT, with a maximum predicted ZHR of 100 favoring North America.

19- Mars crosses the Beehive Cluster M44.

28- Asteroid 16 Psyche occults a +6.4 magnitude star at ~9:49 UT for Bolivia and Peru.

29- Supermoon 1 of 3 for 2015: The Moon reaches Full at 18:38 UT, 20 hours from perigee.

Lunar eclipse
The path of the Moon through the Earth’s shadow on September 28th. Credit: Fred Espenak/NASA/GSFC


01- Neptune reaches opposition at ~3:00 UT.

03- Asteroid 112 Iphigenia occults a +3rd magnitude star for Mexico and Miami at ~9:20 UT. This is the brightest star occulted by an asteroid in 2015 for North America.

02- Geostationary satellite and SDO eclipse season begins as we approach the September equinox.

04- Mercury reaches its greatest elongation for 2015, at 27 degrees east of the Sun at 8:00 UT in the dusk skies.

05- The Moon occults Aldebaran for northeastern North America at ~5:38 UT.

13- “Shallow point” (also known as the minor lunar standstill) occurs over the next lunation, as the Moon’s orbit reaches a shallow minimum of 18.1 degrees inclination with respect to the celestial equator… the path of the Moon now begins to widen towards 2025.

13- A partial solar eclipse occurs, centered on 6:55 UT crossing Africa and the Indian Ocean.

23- The September southward equinox occurs at 8:20 UT.

25- Mars passes 0.8 degrees from Regulus at ~4:00 UT.

28- A total lunar eclipse occurs centered on 2:48 UT, visible from the Pacific, the Americas and eastern Europe.

28- Supermoon 2 of 3 for 2015: The Moon reaches Full at 2:52 UT, approximately an hour from perigee. This marks the closest Full Moon of the year.

The path of the September 3rd occultation of a +3rd magnitude star by an asteroid over central Mexico and the Florida Keys. Credit: IOTA/Steve Preston.


01- Comet C/2013 US10 Catalina may reach naked eye visibility.

02- The Moon occults Aldebaran for the northern Pacific at 13:14 UT.

02- Io and Callisto both cast shadows on Jupiter from 12:26 to 13:35 UT.

08- The Moon occults Venus for Australia at ~20:32 UT.

11- The Moon occults Mercury for Chile at ~12:00 UT.

12- Uranus reaches opposition at ~3:00 UT.

16- Mercury reaches greatest elongation (morning) 18.1 degrees west of the Sun at 10:00 UT.

17- Mars passes 0.4 degrees from Jupiter at 22:00 UT.

18- Io and Ganymede both cast shadows on Jupiter from 10:45 to 12:10 UT.

21- The Orionid meteors peak (time variable) with a projected ZHR of 15.

25- Venus passes 1 degree from Jupiter ~19:00 UT.

25- Io and Ganymede both cast shadows on Jupiter from 12:37 to 14:51 UT.

27- Supermoon 3 of 3 for 2015: The Moon reaches Full at 12:06 UT, 23 hours from perigee.

29- The Moon occults Aldebaran for Europe at ~23:07 UT.

The Moon occults Aldebaran: the visibility footprint for North America. The dashed line denotes the area in which the event occurs during the daytime. Credit: Occult


01- Io and Ganymede both cast shadows on Jupiter from 17:36 to 17:47 UT.

02- Venus passes 0.7 degrees south of Mars at 00:30 UT.

12- Will the 7 year “Taurid fireball meteor shower” produce?

18- The Leonid meteor shower peaks at 04:00 UT, with an estimated ZHR of 15 favoring Europe.

22- Are we in for a once per decade Alpha Monocerotids outburst? The 2015 peak arrives at 4:25 UT, favoring Europe… with a max ZHR = 400+ possible.

26- The Moon occults Aldebaran for North America at ~9:56 UT.

29- Comet C/2013 X1 PanSTARRS may reach binocular visibility.

The daytime occultation of Venus by the Moon over North America on December 7th. Credit: Occult


01- The International Space Station reaches full illumination as the December solstice nears, resulting in multiple nightly passes favoring the  southern hemisphere.

04- Mercury occults the +3.3 magnitude star Theta Ophiuchi for South Africa at 16:16 UT prior to dusk.

06- The Moon occults Mars for central Africa at ~2:42 UT.

07- The Moon occults Venus in the daytime for North America at ~16:55 UT.

14- The Geminid meteor shower peaks at 18:00 UT, with a ZHR=120 favoring NE Asia.

22- The December southward solstice occurs at 4:48 UT.

23- The Ursid meteor shower peaks at 2:30 UT with a ZHR variable from 10-50 favoring Europe and the Middle East.

23- The Moon occults Aldebaran for Europe and central Asia at ~19:32 UT.

29- Mercury reaches greatest evening elongation at 19.7 degrees east of the Sun at 00:01 UT.


Didn’t see your favorite event on the list? Let us know, and be sure to send in any images of these fine events to Universe Today’s Flickr forum.

Enjoy another exciting year of space and astronomy… we’ll be expounding on these events and more as 2015 unfolds.


Occult 4.0

-Kevin McGill’s outstanding astronomical simulations.

-Greatest Elongations of Mercury and Venus.


Starry Night Pro


-Steve Preston’s asteroid occultation predictions for 2015.

-The USNO forecast of phenomena for 2015.

-Seiichi Yoshida’s Weekly Information About Bright Comets.

-Fred Espenak’s NASA Eclipse web page.

-The American Meteor Society’s 2015 predictions.

-The International Meteor Organization’s 2015 page.

-Fourmilab’s lunar perigee and apogee calculator.


Uranus Bland? Nope, It’s A Stormy Planet With Interesting Insides

Sometimes first impressions are poor ones. When the Voyager 2 spacecraft whizzed by Uranus in 1986, the close-up view of the gas giant revealed what appeared to a be a relatively featureless ball. By that point, scientists were used to seeing bright colors and bands on Jupiter and Saturn. Uranus wasn’t quite deemed uninteresting, but the lack of activity was something that was usually remarked upon when describing the planet.

Fast-forward 28 years and we are learning that Uranus is a more complex world than imagined at the time. Two new studies, discussed at an American Astronomical Society meeting today, show that Uranus is a stormy place and also that the images from Voyager 2 had more interesting information than previously believed.

Showing the value of going over old data, University of Arizona astronomer Erich Karkoschka reprocessed old images of Voyager 2 data — including stacking 1,600 pictures on top of each other.

He found elements of Uranus’ atmosphere that reveals the southern hemisphere moves differently than other regions in fellow gas giants. Since only the top 1% of the atmosphere is easily observable from orbit, scientists try to make inferences about the 99% that lie underneath by looking at how the upper atmosphere behaves.

“Some of these features probably are convective clouds caused by updraft and condensation. Some of the brighter features look like clouds that extend over hundreds of kilometers,” he stated in a press release.

Voyager 2. Credit: NASA
Voyager 2. Credit: NASA

“The unusual rotation of high southern latitudes of Uranus is probably due to an unusual feature in the interior of Uranus,” he added. “While the nature of the feature and its interaction with the atmosphere are not yet known, the fact that I found this unusual rotation offers new possibilities to learn about the interior of a giant planet.”

It’s difficult to get more information about the inner atmosphere without sending down a probe, but other methods of getting a bit of information include using radio (which shows magnetic field rotation) or gravitational fields. The university stated that Karkoschka’s work could help improve models of Uranus’ interior.

So that was Uranus three decades ago. What about today? Turns out that storms are popping up on Uranus that are so large that for the first time, amateur astronomers can track them from Earth. A separate study on Uranus shows the planet is “incredibly active”, and what’s more, it took place at an unexpected time.

Summer happened in 2007 when the Sun shone on its equator, which should have produced more heat and stormy weather at the time. (Uranus has no internal heat source, so the Sun is believed to be the primary driver of energy on the planet.) However, a team led by Imke de Pater, chair of astronomy at the University of California, Berkeley, spotted eight big storms in the northern hemisphere while looking at the planet with the Keck Telescope on Aug. 5 and 6.

Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.
Infrared images of Uranus showing storms at 1.6 and 2.2 microns obtained Aug. 6, 2014 by the 10-meter Keck telescope. Credit: Imke de Pater (UC Berkeley) & Keck Observatory images.

Keck’s eye revealed a big, bright storm that represented 30% of light reflected by the planet at a wavelength of 2.2 microns, which provides information about clouds below the tropopause. Amateurs, meanwhile, spotted a storm of a different sort. Between September and October, several observations were reported of a storm at 1.6 microns, deeper in the atmosphere.

“The colors and morphology of this [latter] cloud complex suggests that the storm may be tied to a vortex in the deeper atmosphere similar to two large cloud complexes seen during the equinox,” stated Larry Sromovsky, a planetary scientist at the University of Wisconsin, Madison.

What is causing the storms now is still unknown, but the team continues to watch the Uranian weather to see what will happen next. Results from both studies were presented at the Division for Planetary Sciences meeting of the American Astronomical Society in Tucson, Arizona today. Plans for publication and whether the research was peer-reviewed were not disclosed in press releases concerning the findings.

‘Frankenstein’ Moon: Tidal Forces From Uranus May Have Contributed to Miranda’s Bizarre Appearance

Uranus' Five Largest Moons

Miranda, the innermost of Uranus’ five moons, has a “Frankenstein”-like appearance: it looks as though it was pieced together from parts that didn’t quite fit together properly. Plus, it has incredibly diverse surface features including canyons up to 12 times deeper than Earth’s Grand Canyon, impact craters, cliffs, and parallel grooves called sulci.

Over the years, various hypotheses have been presented in an attempt to account for Miranda’s enigmatic appearance. First thought to be the result of a catastrophic impact, disintegration, and subsequent reassembly, scientists now believe that some of Miranda’s features might have been influenced by Uranus itself, and are the result of convection: thermally-induced resurfacing from tidal forces from the planet.

Miranda's Three Coronae
Three large, geometric-shaped features called coronae are visible on Miranda. To date, Venus and Miranda are the only bodies in our solar system on which coronae have been observed. Image Credit: NASA/JPL-Caltech

Miranda was discovered in 1948 by Gerard Kuiper. Although it is only 293 miles (471 kilometers) in diameter (approximately one-seventh that of Earth’s moon,) it has one of the strangest and most varied landscapes in our Solar System.

Central to the new research was analysis of three very large, geometric shaped features known as coronae, which are only found on one other planetary body. Coronae were first identified on Venus in 1983 by Venera 15/16 radar imaging equipment.

A leading theory about their formation has been that they form when warm, sub-surface fluids rise to the surface and form a dome. As the edges of the dome cool, the center collapses and warm fluid leak out its sides, forming a crown-like structure, or corona. Based on this premise, the question is then raised as to what mechanism/processes in Miranda’s past warmed its interior sufficiently to produce warm, sub-surface fluids that resulted in coronae formation. Scientists believe that tidal warming played an important role in the formation of the coronae, but the process by which this internal heating led to these features has remained unclear.

Extensive 3D computer simulations conducted by Brown University’s Noah P. Hammond and Amy C. Barr have produced results that are consistent with the three coronae seen on Miranda. In their paper titled, “Global Resurfacing of Uranus’s Moon Miranda by Convection,” Hammond and Barr summarize their results as follows:

“We find that convection in Miranda’s ice shell powered by tidal heating can generate the global distribution of coronae, the concentric orientation of sub-parallel ridges and troughs, and the thermal gradient implied by flexure. Models that account for the possible distribution of tidal heat ing can even match the precise locations of the coronae, after a reorientation of 60°.”

Using Saturn’s moon Enceladus as a baseline due to its similarity in size, composition, and orbital frequency to Miranda, original calculations estimate that as much as 5 GW of tidal dissipation power could be generated. Hammond and Barr’s simulation results indicate almost twice that amount of power would have been created:

“Simulations that match the thermal gradient from flexure have total power outputs of close to 10 GW , somewhat larger than the total power we predict could be generated during orbital resonance.”

Results from Hammond and Barr’s simulations provide a preliminary set of answers that strive to unlock the mysteries of Miranda’s bizarre appearance. Future simulations and studies into the complex nature of tidal heating will build upon these results to provide further insight into the enigmatic moon we call Miranda.

“Global Resurfacing of Uranus’s Moon Miranda by Convection,” was published online on 15 September 2014 in GEOLOGY, a journal of The Geological Society of America. You can read the abstract here.

Stalking Uranus: A Complete Guide to the 2014 Opposition Season

It’s no joke… now is the time to begin searching the much-maligned (and mispronounced) planet Uranus as it reaches opposition in early October leading up to a very special celestial event.

Last month, we looked at the challenges of spying the solar system’s outermost ice giant world, Neptune. Currently located in the adjacent constellation Aquarius, Neptune is now 39 degrees from Uranus and widening. The two worlds had a close conjunction of just over one degree of separation in late 1993, and only long time observers of the distant worlds remember a time waaaay back in the early-1970s where the two worlds appeared farther apart than 2014 as seen from our Earthly vantage point.

Uranus rising to the east the evening of October 7th, just prior to the start of the October 8th lunar eclipse later the same evening. Created  using Stellarium.

In 2014, opposition occurs at 21:00 Universal Time (UT)/5:00 PM EDT on October 7th. If this date sounds familiar, it’s because Full Moon and the second total lunar eclipse of 2014 and the ongoing lunar tetrad of eclipses occurs less than 24 hours afterwards. This puts Uranus extremely close to the eclipsed Moon, and a remote slice of the high Arctic will actually see the Moon occult (pass in front of) Uranus during totality. Such a coincidence is extremely rare: the last time the Moon occulted a naked eye planet during totality occurred back during Shakespearian times in 1591, when Saturn was covered by the eclipsed Moon. This close conjunction as seen from English soil possibly by the bard himself was mentioned in David Levy’s book and doctoral thesis The Sky in Early Modern English Literature, and a similar event involving Saturn occurs in 2344 AD.

The footprint of the October 8th occultation of Uranus. Credit: Occult 4.1.

We’re also in a cycle of occultations of Uranus in 2014, as the speedy Moon slides in front of the slow moving world every lunation until December 2015. Oppositions of Uranus — actually pronounced “YOOR-un-us” so as not to rhyme with a bodily orifice — currently occur in the month of September and move forward across our calendar by about 4 days a year.

Uranus (lower left) near the limb of the gibbous Moon of September 11th, 2014. Credit: Roger Hutchinson.

This year sees Uranus in the astronomical constellation Pisces just south of the March equinoctial point. Uranus is moving towards and will pass within a degree of the +5.7 magnitude star 96 Piscium in late October through early November. Shining at magnitude +5.7 through the opposition season, Uranus presents a disk 3.7” in size at the telescope. You can get a positive ID on the planet by patiently sweeping the field of view: Uranus is the tiny blue-green “dot” that, unlike a star, refuses to come into a pinpoint focus.

The apparent path of Uranus from September 2014 through January 2015 across the constellation Pisces. The inset shows the tilt and orbit of its major moons across a 2′ field of view. Created by the author using Starry Night Education software.

Uranus also presents us with one of the key mysteries of the solar system. Namely, what’s up with its 97.8 degree rotational tilt? Clearly, the world sustained a major blow sometime in the solar system’s early history. In 2014, we’re viewing the world at about a 28 degree tilt and widening. This will continue until we’re looking straight at the south pole of Uranus in early 2030s. Of course, “south” and “north” are pretty arbitrary when you’re knocked back over 90 degrees on your axis! And while we enjoy the September Equinox next week on September 23rd, the last equinox for any would-be “Uranians” occurred on December 16th, 2007. This put the orbit of its moons edge-on from our point of view from 2006-2009 for only the third time since discovery of the planet in 1781. This won’t occur again until around 2049. Uranus also passed aphelion in 2009, which means it’s still at the farther end of its 19.1 to 17.3 astronomical unit (A.U.) range from the Sun in its 84 year orbit.

The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.
The moons of Uranus and Neptune as imaged during the 2011 opposition season. Credit: Rolf Wahl Olsen, used with permission.

And as often as Uranus ends up as the butt (bad pun) of many a scatological punch line, we can at least be glad that the world didn’t get named Georgium Sidus (Latin for “George’s Star”) after William Herschel’s benefactor, King George the III. Yes, this was a serious proposal (!). Herschel initially thought he’d found a comet upon spying Uranus, until he realized its slow motion implied a large object orbiting far out in the solar system.

A replica... Credit:
A replica of the reflecting telescope that Herschel used to discover Uranus. Credit: Alun Salt/Wikimedia Commons image under a Creative Commons Attribution Share-Alike 2.0 license.

Spurious sightings of Uranus actually crop up on star maps prior to Herschel’s time, and in theory, it hovers juuusst above naked eye visibility near opposition as seen from a dark sky site… can you pick out Uranus without optical assistance during totality next month? Hershel and Lassell also made claims of spotting early ring systems around both Uranus and Neptune, though the true discovery of a tenuous ring system of Uranus was made by the Kuiper Airborne Observatory (a forerunner of SOFIA) during an occultation of a background star in 1977.

Credit: Ed Kotapish
A corkscrew chart for the moons of Uranus through October. Credit: Ed Kotapish/Rings PDS node.

Looking for something more? Owners of large light buckets can capture and even image (see above) 5 of the 27 known moons of Uranus. We charted the orbital elongations for favorable apparitions through October 2014 (to the left). Check out last year’s chart for magnitudes, periods, and maximum separations for each respective moon. An occulting bar eyepiece may help you in your quest to cut down the ‘glare’ of nearby Uranus.

When will we return to Uranus? Thus far, humanity has explored the world up close exactly once, when Voyager 2 passed by in 1986. A possible “Uranus Probe” (perhaps, Uranus Orbiter is a better term) similar to Cassini has been an on- and off- proposal over the years, though it’d be a tough sell in the current era of ever dwindling budgets. Plutonium, a mandatory power source for deep space missions, is also in short supply. Such a mission might take up to a decade to enter orbit around Uranus, and would represent the farthest orbital reconnaissance of a world in our solar system. Speedy New Horizons is just whizzing by Pluto next July.

All great thoughts to ponder as you scour the skies for Uranus in the coming weeks!