The TRAPPIST-1 system is a science-fiction writer’s dream. Seven Earth-sized worlds orbit a red dwarf star just 40 light-years away. Three of those worlds are within the habitable zone of the star. The system spans a distance less than 25 times that of the distance from the Earth to the Moon. Oh, what epic tales a TRAPPIST civilization would have! That is, if life in such a system is even possible…
Continue reading “Could Life at TRAPPIST-1 Survive the Star's Superflares?”TRAPPIST-1c Isn’t the Exo-Venus We Were Hoping For. But Don’t Blame the Star
A recent study accepted to The Astrophysical Journal uses computer models to investigate why the exoplanet, TRAPPIST-1c, could not possess a thick carbon dioxide (CO2) atmosphere despite it receiving the same amount of solar radiation from its parent star as the planet Venus receives from our Sun, with the latter having a very thick carbon dioxide atmosphere. This study comes after a June 2023 study published in Nature used data from NASA’s James Webb Space Telescope (JWST) to ascertain that TRAPPIST-1c does not possess a carbon dioxide atmosphere. Both studies come as the TRAPPIST-1 system, which is located approximately 41 light-years from Earth and orbits its star in just 2.4 days, has received a lot of attention from the scientific community in the last few years due to the number of confirmed exoplanets within the system and their potential for astrobiology purposes.
Continue reading “TRAPPIST-1c Isn’t the Exo-Venus We Were Hoping For. But Don’t Blame the Star”TRAPPIST-1 Has Flares. What Does This Mean for its Planets?
The TRAPPIST-1 system continues to fascinate astronomers, astrobiologists, and exoplanet hunters alike. In 2017, NASA announced that this red dwarf star (located 39 light-years away) was orbited by no less than seven rocky planets – three of which were within the star’s habitable zone (HZ). Since then, scientists have attempted to learn more about this system of planets to determine whether they could support life. Of particular concern is the way TRAPPIST-1 – like all M-type (red dwarf) stars – is prone to flare-ups, which could have a detrimental effect on planetary atmospheres.
Using the James Webb Space Telescope (JWST), an international team of astrophysicists led by the University of Colorado Boulder (CU Boulder) took a closer look at this volatile star. As they describe in their paper (which recently appeared online), the Webb data was used to perform a detailed spectroscopic investigation of four solar flares bursting around TRAPPIST-1. Their findings could help scientists characterize planetary environments around red dwarf stars and measure how flare activity can affect planetary habitability.
Continue reading “TRAPPIST-1 Has Flares. What Does This Mean for its Planets?”Planetary Interiors in TRAPPIST-1 System Could be Affected by Stellar Flares
In a recent study published in The Astrophysical Journal Letters, an international team of researchers led by the University of Cologne in Germany examined how stellar flares and coronal mass ejections (CMEs) erupted by the TRAPPIST-1 star could affect the interior heating of its orbiting exoplanets. This study holds the potential to help us better understand how solar flares affect planetary evolution. The TRAPPIST-1 system is an exolanetary system located approximately 39 light-years from Earth with at least seven potentially rocky exoplanets in orbit around a star that has 12 times less mass than our own Sun. Since the parent star is much smaller than our own Sun, then the the planetary orbits within the TRAPPIST-1 system are much smaller than our own solar system, as well. So, how can this study help us better understand the potential habitability of planets in the TRAPPIST-1 system?
Continue reading “Planetary Interiors in TRAPPIST-1 System Could be Affected by Stellar Flares”There are Seven Rocky Planets in the TRAPPIST-1 System and They’re Surprisingly Similar
The TRAPPIST-1 system has long be studied by exoplanet hunters due to its unique quantity of planets that happen to also be Earth sized. In a recent paper, a team of scientists led by Eric Agol at the University of Washington, dove into more detail on the density of the seven known planets in the system, and, surprisingly, found that they were all very similar.
Continue reading “There are Seven Rocky Planets in the TRAPPIST-1 System and They’re Surprisingly Similar”Do the TRAPPIST-1 Planets Have Atmospheres?
In February of 2017, the scientific community rejoiced as NASA announced that a nearby star (TRAPPIST-1) had a system of no less than seven rocky planets! Since that time, astronomers have conducted all kinds of follow-up observations and studies in the hopes of learning more about these exoplanets. In particular, they have been attempting to learn if any of the planets located in the stars Habitable Zone (HZ) could actually be habitable.
Many of these studies have been concerned with whether or not the TRAPPIST-1 planets have sufficient water on their surfaces. But just as important is the question of whether or not any have viable atmospheres. In a recent study that provides an overview of all observations to date on TRAPPIST-1 planets, a team found that depending on the planet in question, they are likely to have good atmospheres, if any at all.
Read moreHow Did the TRAPPIST-1 Planets Get Their Water?
In 2017, an international team of astronomers announced a momentous discovery. Based on years of observations, they found that the TRAPPIST-1 system (an M-type red dwarf located 40 light-years from Earth) contained no less than seven rocky planets! Equally exciting was the fact that three of these planets were found within the star’s Habitable Zone (HZ), and that the system itself has had 8 billion years to develop the chemistry for life.
At the same time, the fact that these planets orbit tightly around a red dwarf star has given rise to doubts that these three planets could maintain an atmosphere or liquid water for very long. According to new research by an international team of astronomers, it all comes down to the composition of the debris disk that the planets formed from and whether or not comets were around to distribute water afterward.
Read moreOne of the TRAPPIST-1 Planets Has an Iron Core
In February of 2017, a team of European astronomers announced the discovery of a seven-planet system orbiting the nearby star TRAPPIST-1. Aside from the fact that all seven planets were rocky, there was the added bonus of three of them orbiting within TRAPPIST-1’s habitable zone. Since that time, multiple studies have been conducted to determine whether or not any of these planets could be habitable.
In accordance with this goal, these studies have focused on whether or not these planets have atmospheres, their compositions and their interiors. One of the latest studies was conducted by two researchers from Columbia University’s Cool Worlds Laboratory, who determined that one of the TRAPPIST-1 planets (TRAPPIST-1e) has a large iron core – a finding which could have implications for this planet’s habitability.
Continue reading “One of the TRAPPIST-1 Planets Has an Iron Core”
TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable
In February of 2017, the world was astounded to learn that astronomers – using data from the TRAPPIST telescope in Chile and the Spitzer Space Telescope – had identified a system of seven rocky exoplanets in the TRAPPIST-1 system. As if this wasn’t encouraging enough for exoplanet-enthusiasts, it was also indicated that three of the seven planets orbited within the stars’ circumstellar habitable zone (aka. “Goldilocks Zone”).
Since that time, this system has been the focus of considerable research and follow-up surveys to determine whether or not any of its planets could be habitable. Intrinsic to these studies has been the question whether or not the planets have liquid water on their surfaces. But according to a new study by a team of American astronomers, the TRAPPIST planets may actually have too much water to support life.
Continue reading “TRAPPIST-1 Planets Might Actually Have Too Much Water to be Habitable”
Good News For The Search For Life, The Trappist System Might Be Rich In Water
When we finally find life somewhere out there beyond Earth, it’ll be at the end of a long search. Life probably won’t announce its presence to us, we’ll have to follow a long chain of clues to find it. Like scientists keep telling us, at the start of that chain of clues is water.
The discovery of the TRAPPIST-1 system last year generated a lot of excitement. 7 planets orbiting the star TRAPPIST-1, only 40 light years from Earth. At the time, astronomers thought at least some of them were Earth-like. But now a new study shows that some of the planets could hold more water than Earth. About 250 times more.
Continue reading “Good News For The Search For Life, The Trappist System Might Be Rich In Water”