An Alternative Theory of Inertia will Get Tested in Space

On June 10th, 2023, IVO Ltd. will test the first all-electrical thruster in space. Credit: IVO Ltd.

One of the most exciting aspects of the current era of space exploration (Space Age 2.0) is how time-honored ideas are finally being realized. Some of the more well-known examples include retrievable and reusable rockets, retrieval at sea, mid-air retrieval, single-stage-to-orbit (SSTO) rockets, and kinetic launch systems. In addition, there are also efforts to develop propulsion systems that do not rely on conventional propellants. This technology offers many advantages, including lower mass and improved energy efficiency, ultimately leading to lower costs.

On June 10th, 2023, an all-electrical propulsion system for satellites (the IVO Quantum Drive) will fly to space for the first time. The system was built by North Dakota-based wireless power company IVO, Ltd., and will serve as a testbed for an alternative theory of inertia that could have applications for propulsion. The engine will launch atop a SpaceX Falcon 9 rocket as part of a dedicated rideshare (Transporter 8) hosted by commercial partner Rogue Space Systems. If the technology is validated, the Quantum Drive could trigger a revolution in commercial space and beyond. And if not, then we can relax knowing that the laws of physics are still the laws of physics!

Continue reading “An Alternative Theory of Inertia will Get Tested in Space”

Want Artemis to Succeed? Virtual Reality Can Help

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

Artemis astronauts are returning to the Moon, and they’ll be following in Apollo’s footsteps when they go. But things are different this time. Not only is technology far more advanced, but so is the way we think about technology and how we design it.

A new paper shows how two of modern technology’s offspring— virtual reality (VR) and user-centred design (UCD)—can be brought to bear on the Artemis Program.

Continue reading “Want Artemis to Succeed? Virtual Reality Can Help”

Hubble’s Orbit Has Dropped So Far that Starlink Satellites are Photobombing its Images

This composite shows some of the satellite trails polluting Hubble Space Telescope images. Image Credit: Kruk et al. 2023.

Astronomy is poised for another leap. In the next several years, major ground-based telescopes will come online, including the Extremely Large Telescope (ELT,) the Thirty Meter Telescope (TMT,) the Giant Magellan Telescope (GMT,) and the Vera Rubin Observatory. The combined power of these telescopes will help drive discovery in the next couple of decades.

But something threatens to undermine astronomical observing in the coming years: Starlink and other internet satellite constellations.

Now a group of astronomers have shown that even the Hubble can’t escape the satellite problem.

Continue reading “Hubble’s Orbit Has Dropped So Far that Starlink Satellites are Photobombing its Images”

An Earthworm Robot Could Help Us Explore Other Worlds

This new soft robot is inspired by earthworms and can crawl thanks to soft actuators that elongate or squeeze when air passes through them or is drawn out. Image Credit: IIT-Istituto Italiano di Tecnologia

Evolution is a problem-solver, and one of the problems it solved in many different ways is locomotion. Birds fly. Fish swim. Animals walk.

But earthworms found another way to move around the niche they occupy. Can we copy them to explore other worlds?

Continue reading “An Earthworm Robot Could Help Us Explore Other Worlds”

Can a Venus Lander Survive Longer Than a Few Minutes?

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

Sending a lander to Venus presents several huge engineering problems. Granted, we’d get a break from the nail-biting entry, descent and landing, since Venus’ atmosphere is so thick, a lander would settle gently to the surface like a stone settles in water — no sky cranes or retrorockets required.

But the rest of the endeavor is fraught with challenges. The average temperature at the surface is 455 degrees C (850 F), hot enough to melt lead. The mix of chemicals that make up the atmosphere, such as sulfuric acid, is corrosive to most metals. And the crushing atmospheric pressure is roughly equivalent to being 1,500 meters (5,000 ft) under water. These extreme environmental conditions are where metals and electronics go to die; therefore, the few Venus lander missions that have made it to the surface — like the Soviet Venera missions — only lasted two hours or less. Any future landers or rovers will need to have nearly super-hero-type characteristics to endure on the surface of Earth’s evil twin.

But there’s one additional challenge that might be close to being solved: creating batteries that can operate long enough in Venus’ hellish conditions to make a lander mission worth the effort.

Continue reading “Can a Venus Lander Survive Longer Than a Few Minutes?”

Are We Entering the Era of Quantum Telescopes?

Beyond James Webb and LUVOIR, the future of astronomy could come down to telescopes that rely on quantum mechanics. Credit: Anton Pozdnyakov

For astronomers, one of the greatest challenges is capturing images of objects and phenomena that are difficult to see using optical (or visible light) telescopes. This problem has been largely addressed by interferometry, a technique where multiple telescopes gather signals, which is then combined to create a more complete picture. Examples include the Event Horizon Telescope, which relies on observatories from around the world to capture the first images of the supermassive black hole (SMBH) at the center of the M87 galaxy, and of Sagittarius A* at the center of the Milky Way.

That being said, classic interferometry requires that optical links be maintained between observatories, which imposes limitations and can lead to drastically increased costs. In a recent study, a team of astrophysicists and theoretical physicists proposed how these limitations could be overcome by relying on quantum mechanics. Rather than relying on optical links, they propose how the principle of quantum entanglements could be used to share photons between observatories. This technique is part of a growing field of research that could lead to “quantum telescopes” someday.

Continue reading “Are We Entering the Era of Quantum Telescopes?”

Rolls-Royce Reveals a Nuclear Reactor That Could Provide Power on the Moon

For space agencies and the commercial space industry, the priorities of the next two decades are clear. First, astronauts will be sent to the Moon for the first time since the Apollo Era, followed by the creation of permanent infrastructure that will allow them to say there for extended periods. Then, the first crewed missions will be sent to Mars, with follow-up missions every 26 months, culminating in the creation of surface habitats (and maybe a permanent base). To meet these objectives, space agencies are investigating next-generation propulsion, power, and life support systems.

This includes solar-electric propulsion (SEP), where solar energy is used to power extremely fuel-efficient Hall-Effect thrusters. Similarly, they are looking into nuclear thermal propulsion (NTP) and compact nuclear reactors, allowing for shorter transit times and providing a steady power supply for Lunar and Martian habitats. Beyond NASA, the UK Space Agency (UKSA) has partnered with Rolls-Royce to develop nuclear systems for space exploration. In a recent tweet, the international auto and aerospace giant provided a teaser of what their “micro-reactor” will look like.

Continue reading “Rolls-Royce Reveals a Nuclear Reactor That Could Provide Power on the Moon”

Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape

Graphic depiction of Bend-Forming of Large Electrostatically Actuated Space Structures. Credit: Zachary Cordero

It is an exciting time for astronomers and cosmologists. Since the James Webb Space Telescope (JWST), astronomers have been treated to the most vivid and detailed images of the Universe ever taken. Webb‘s powerful infrared imagers, spectrometers, and coronographs will allow for even more in the near future, including everything from surveys of the early Universe to direct imaging studies of exoplanets. Moreover, several next-generation telescopes will become operational in the coming years with 30-meter (~98.5 feet) primary mirrors, adaptive optics, spectrometers, and coronographs.

Even with these impressive instruments, astronomers and cosmologists look forward to an era when even more sophisticated and powerful telescopes are available. For example, Zachary Cordero 
of the Massachusetts Institute of Technology (MIT) recently proposed a telescope with a 100-meter (328-foot) primary mirror that would be autonomously constructed in space and bent into shape by electrostatic actuators. His proposal was one of several concepts selected this year by the NASA Innovative Advanced Concepts (NIAC) program for Phase I development.

Continue reading “Future Space Telescopes Could be 100 Meters Across, Constructed in Space, and Then Bent Into a Precise Shape”

It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes

Binary stars are common and imaging their planets will be a challenge. How can astronomers block all that light so they can see the planets? This artist's illustration shows the eclipsing binary star Kepler 16, as seen from the surface of an exoplanet in the system. Image Credit: NASA

Detecting exoplanets was frontier science not long ago. But now we’ve found over 5,000 of them, and we expect to find them around almost every star. The next step is to characterize these planets more fully in hopes of finding ones that might support life. Directly imaging them will be part of that effort.

But to do that, astronomers need to block out the light from the planets’ stars. That’s challenging in binary star systems.

Continue reading “It’s Already Hard Enough to Block a Single Star’s Light to See its Planets. But Binary Stars? Yikes”

NASA and DARPA Will be Testing a Nuclear Rocket in Space

Artist concept of Demonstration for Rocket to Agile Cislunar Operations (DRACO) spacecraft, Credits: DARPA

The coming decades of space exploration will see astronauts return to the Moon, the first crewed missions to Mars, and robotic missions to the outer Solar System (among other things). These missions will leverage innovative technologies that allow faster transits, long-duration stays, and sustainable living far from Earth. To this end, NASA and other space agencies are investigating nuclear applications, especially where energy and propulsion are concerned. Many of these proposals have been on the books since the early space age and have been thoroughly validated.

On Tuesday, January 24th, NASA and the Defense Advanced Research Projects Agency (DARPA) announced they were launching an interagency agreement to develop a nuclear-thermal propulsion (NTP) concept. The proposed nuclear rocket is known as the Demonstration Rocket for Agile Cislunar Operations (DRACO), which would enable fast-transit missions to Mars (weeks instead of months). This three-phase program will culminate with a demonstration of the DRACO in orbit, which is expected to occur by early 2027.

Continue reading “NASA and DARPA Will be Testing a Nuclear Rocket in Space”