Next Generation Space Telescopes Could Use Deformable Mirrors to Image Earth-Sized Worlds

The Roman Space Telescope Coronagraph during assembly of the static optics at NASA’s Jet Propulsion Laboratory Credits: Dr. Eduardo Bendek

Observing distant objects is no easy task, thanks to our planet’s thick and fluffy atmosphere. As light passes through the upper reaches of our atmosphere, it is refracted and distorted, making it much harder to discern objects at cosmological distances (billions of light years away) and small objects in adjacent star systems like exoplanets. For astronomers, there are only two ways to overcome this problem: send telescopes to space or equip telescopes with mirrors that can adjust to compensate for atmospheric distortion.

Since 1970, NASA and the ESA have launched more than 90 space telescopes into orbit, and 29 of these are still active, so it’s safe to say we’ve got that covered! But in the coming years, a growing number of ground-based telescopes will incorporate adaptive optics (AOs) that will allow them to perform cutting-edge astronomy. This includes the study of exoplanets, which next-generation telescopes will be able to observe directly using coronographs and self-adjusting mirrors. This will allow astronomers to obtain spectra directly from their atmospheres and characterize them to see if they are habitable.

Continue reading “Next Generation Space Telescopes Could Use Deformable Mirrors to Image Earth-Sized Worlds”

NASA is Getting the Plutonium it Needs for Future Missions

Close-up of NASA’s Perseverance Mars rover as it looks back at its wheel tracks on March 17, 2022, the 381st Martian day, or sol, of the mission. Credit: NASA

Radioisotope Thermoelectric Generators (RTGs) have a long history of service in space exploration. Since the first was tested in space in 1961, RTGs have gone on to be used by 31 NASA missions, including the Apollo Lunar Surface Experiments Packages (ALSEPs) delivered by the Apollo astronauts to the lunar surface. RTGs have also powered the Viking 1 and 2 missions to Mars, the Ulysses mission to the Sun, Galileo mission to Jupiter, and the Pioneer, Voyager, and New Horizons missions to the outer Solar System – which are currently in (or well on their way to) interstellar space.

In recent years, RTGs have allowed the Curiosity and Perseverance rovers to continue the search for evidence of past (and maybe present) life on Mars. In the coming years, these nuclear batteries will power more astrobiology missions, like the Dragonfly mission that will explore Saturn’s largest moon, Titan. In recent years, there has been concern that NASA was running low on Plutonium-238, the key component for RTGs. Luckily, the U.S. Department of Energy (DOE) recently delivered a large shipment of plutonium oxide, putting it on track to realize its goal of regular production of the radioisotopic material.

Continue reading “NASA is Getting the Plutonium it Needs for Future Missions”

Civilizations Could Use Gravitational Lenses to Transmit Power From Star to Star

A new study shows how Solar Gravitational Lenses (SGLs) could be used to beam power from one system to another.. Credit: NASA/ESA

In 1916, famed theoretical physicist Albert Einstein put the finishing touches on his Theory of General Relativity, a geometric theory for how gravity alters the curvature of spacetime. The revolutionary theory remains foundational to our models of how the Universe formed and evolved. One of the many things GR predicted was what is known as gravitational lenses, where objects with massive gravitational fields will distort and magnify light coming from more distant objects. Astronomers have used lenses to conduct deep-field observations and see farther into space.

In recent years, scientists like Claudio Maccone and Slava Turyshev have explored how using our Sun as a Solar Gravity Lens (SGL) could have tremendous applications for astronomy and the Search for Extratterstiral Intelligence (SETI). Two notable examples include studying exoplanets in extreme detail or creating an interstellar communication network (a “galactic internet”). In a recent paper, Turyshev proposes how advanced civilizations could use stellar gravitational lenses to transmit power from star to star – a possibility that could have significant implications in our search for technosignatures.

Continue reading “Civilizations Could Use Gravitational Lenses to Transmit Power From Star to Star”

A New Superconducting Camera can Resolve Single Photons

With planned improvements, NIST’s new 400,000 single-wire superconducting camera, the highest resolution camera of its type, will have the capability to capture astronomical images under extremely low-light-level conditions. Credit: Image incorporates elements from pixaby and S. Kelley/NIST.

Researchers have built a superconducting camera with 400,000 pixels, which is so sensitive it can detect single photons. It comprises a grid of superconducting wires with no resistance until a photon strikes one or more wires. This shuts down the superconductivity in the grid, sending a signal. By combining the locations and intensities of the signals, the camera generates an image.

The researchers who built the camera, from the US National Institute of Standards and Technology (NIST) say the architecture is scalable, and so this current iteration paves the way for even larger-format superconducting cameras that could make detections across a wide range of the electromagnetic spectrum.  This would be ideal for astronomical ventures such as imaging faint galaxies or extrasolar planets, as well as biomedical research using near-infrared light to peer into human tissue.

Continue reading “A New Superconducting Camera can Resolve Single Photons”

NASA Tests a 3D Printed Aluminum Rocket Nozzle

The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. Credit: NASA

When it comes to the current era of space exploration, one of the most important trends is the way new technologies and processes are lowering the cost of sending crews and payloads to space. Beyond the commercial space sector and the development of retrievable and reusable rockets, space agencies are also finding new ways to make space more accessible and affordable. This includes NASA, which recently built and tested an aluminum rocket engine nozzle manufactured using their new Reactive Additive Manufacturing for the Fourth Industrial Revolution (RAMFIRE) process.

Continue reading “NASA Tests a 3D Printed Aluminum Rocket Nozzle”

This Moon Rover Wheel Could be 3D Printed on the Moon

NASA mechanical design engineer Richard Hagen, left, and ORNL researcher Michael Borish inspect a lunar rover wheel prototype that was 3D printed at the Manufacturing Demonstration Facility. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

When you think about sending missions to the Moon, every single gram counts on launch day. Therefore, it makes sense to live off the land when you arrive with in-situ resource utilization. For example, what if you could fly a rover without wheels and 3D print them out of lunar regolith when you get there?

It just might happen.

Researchers used a 3D printer to build the same design for a wheel that will be part of the upcoming NASA VIPER rover. It was done using additive manufacturing (another word for 3D printing), melting metal powder and laying down and bonding a large number of successive thin layers of materials into the designed shape.

Continue reading “This Moon Rover Wheel Could be 3D Printed on the Moon”

Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space

A new study offers a new means of propulsion that could revolutionize space travel - the Magnetic Fusion Plasma Drive (MFPD). Credit: Created with Imagine

Missions to the Moon, missions to Mars, robotic explorers to the outer Solar System, a mission to the nearest star, and maybe even a spacecraft to catch up to interstellar objects passing through our system. If you think this sounds like a description of the coming age of space exploration, then you’d be correct! At this moment, there are multiple plans and proposals for missions that will send astronauts and/or probes to all of these destinations to conduct some of the most lucrative scientific research ever performed. Naturally, these mission profiles raise all kinds of challenges, not the least of which is propulsion.

Simply put, humanity is reaching the limits of what conventional (chemical) propulsion can do. To send missions to Mars and other deep space destinations, advanced propulsion technologies are required that offer high acceleration (delta-v), specific impulse (Isp), and fuel efficiency. In a recent paper, Leiden Professor Florian Neukart proposes how future missions could rely on a novel propulsion concept known as the Magnetic Fusion Plasma Drive (MFPD). This device combines aspects of different propulsion methods to create a system that offers high energy density and fuel efficiency significantly greater than conventional methods.

Continue reading “Magnetic Fusion Plasma Engines Could Carry us Across the Solar System and Into Interstellar Space”

Spacecraft Could be Equipped With Tiny Thrusters That Use Water for Propellant

A micro thruster developed at Imperial College is only 1 mm long. Credit: Imperial College/ESA

Engineers working with the European Space Agency have developed a new thruster design smaller than the tip of your finger. Despite its small size, this mini-thruster designed for CubeSats appears to be highly efficient without the use of toxic chemicals.

Continue reading “Spacecraft Could be Equipped With Tiny Thrusters That Use Water for Propellant”

How Can We Bring Down the Costs of Large Space Telescopes?

Our space telescopes are becoming more and more powerful. But they're also enormously expensive. Can we bring the cost down? Image Credit: STScI/NASA/ESA/CSA

We’re all basking in the success of the James Webb Space Telescope. It’s fulfilling its promise as our most powerful telescope, making all kinds of discoveries that we’ve been anticipating and hoping for. But the JWST’s story is one of broken budgets, repeated requests for more time and money, and near-cancellations.

Can we make space telescopes less expensive?

Continue reading “How Can We Bring Down the Costs of Large Space Telescopes?”

NASA is Helping to Develop a Mach 4 Passenger Jet

Concept illustration of a Boeing high-supersonic commercial passenger aircraft. Credit: Boeing

The concept of supersonic transport (SST) has been a part of the commercial flight and aerospace sector since the 1970s. But as the Concorde demonstrated, the technology’s commercial viability has always been hampered by various challenges. For starters, supersonic planes must limit their speed to about 965 km/h (600 mph) over land to prevent damage caused by their sonic booms. Given the potential for flying from New York City to London in about 3.5 hours, which otherwise takes about 8 hours on average, aerospace engineers hope to overcome this problem.

Since 2006, the NASA Commercial Supersonic Technology Project (CSTP) has been researching SST as part of its QueSST mission and the X-59 quiet supersonic aircraft to reduce sonic booms, thus removing a crucial barrier to commercial development. Recently, NASA investigated whether commercial supersonic jets could theoretically travel from one major city to another at speeds between Mach 2 and 4 – 2,470 to 4,940 km/h (1,535 to 3,045 mph) at sea level. These studies concluded that there are potential passenger markets along 50 established routes, which could revolutionize air travel.

Continue reading “NASA is Helping to Develop a Mach 4 Passenger Jet”