Scientists at the Department of Energy’s Argonne National Laboratory have created the largest astrophysical simulation of the Universe ever. They used what was until recently the world’s most powerful supercomputer to simulate the Universe at an unprecedented scale. The simulation’s size corresponds to the largest surveys conducted by powerful telescopes and observatories.
Continue reading “A Superfast Supercomputer Creates the Biggest Simulation of the Universe Yet”Stem Cells Grown in Space Could Revolutionize Medicine Here on Earth
Extended periods spent in microgravity can take a serious toll on the human body, leading to muscular atrophy, bone density loss, vision problems, and changes to the cardiovascular, endocrine, and nervous systems. At the same time, however, scientists have found that microgravity may play a key role in the future of medicine. This includes bioprinting in space, where cultured cells are printed out to form organic tissues and organs without the need for grafts. Printing in microgravity also ensures that fragile cell structures do not collapse due to pressures caused by Earth’s gravity.
However, space medicine may also have applications for stem cell research, which also benefit from a microgravity environment. Stem cells have countless applications in medicine because of their ability to quickly replicate and differentiate into many different types of cells. Based on experiments carried out aboard the International Space Station (ISS), researchers from the Mayo Clinic in Florida determined that these abilities are enhanced when grown in space. These findings could have significant benefits in the study of disease prevention and treatment on Earth, as well as medical treatments delivered in space.
Continue reading “Stem Cells Grown in Space Could Revolutionize Medicine Here on Earth”A Space Walking Robot Could Build a Giant Telescope in Space
The Hubble Space Telescope was carried to space inside the space shuttle Discovery and then released into low-Earth orbit. The James Webb Space Telescope was squeezed inside the nose cone of an Ariane 5 rocket and then launched. It deployed its mirror and shade on its way to its home at the Sun-Earth L2 Lagrange point.
However, the ISS was assembled in space with components launched at different times. Could it be a model for building future space telescopes and other space facilities?
Continue reading “A Space Walking Robot Could Build a Giant Telescope in Space”Multimode Propulsion Could Revolutionize How We Launch Things to Space
In a few years, as part of the Artemis Program, NASA will send the “first woman and first person of color” to the lunar surface. This will be the first time astronauts have set foot on the Moon since the Apollo 17 mission in 1972. This will be followed by the creation of permanent infrastructure that will allow for regular missions to the surface (once a year) and a “sustained program of lunar exploration and development.” This will require spacecraft making regular trips between the Earth and Moon to deliver crews, vehicles, and payloads.
In a recent NASA-supported study, a team of researchers at the University of Illinois Urbana-Champaign investigated a new method of sending spacecraft to the Moon. It is known as “multimode propulsion,” a method that integrates a high-thrust chemical mode and a low-thrust electric mode – while using the same propellant. This system has several advantages over other forms of propulsion, not the least of which include being lighter and more cost-effective. With a little luck, NASA could rely on multimode propulsion-equipped spacecraft to achieve many of its Artemis objectives.
Continue reading “Multimode Propulsion Could Revolutionize How We Launch Things to Space”The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada
The Artemis program involves impressive technological advancements in robotics, communications, spacecraft, and advanced habitats, all of which are clearly necessary for such an ambitious endeavour. But the mission also requires updated spacesuits. Those spacesuits are critical to mission success, and the Italian luxury fashion house Prada is adding their knowledge and experience to the design.
Continue reading “The Artemis Astronauts are Getting New Spacesuits With Some Help From Prada”Metal Part 3D Printed in Space for the First Time
Additive manufacturing, also known as 3D printing, has had a profound impact on the way we do business. There is scarcely any industry that has not been affected by the adoption of this technology, and that includes spaceflight. Companies like SpaceX, Rocket Lab, Aerojet Rocketdyne, and Relativity Space have all turned to 3D printing to manufacture engines, components, and entire rockets. NASA has also 3D-printed an aluminum thrust chamber for a rocket engine and an aluminum rocket nozzle, while the ESA fashioned a 3D-printed steel floor prototype for a future Lunar Habitat.
Similarly, the ESA and NASA have been experimenting with 3D printing in space, known as in-space manufacturing (ISM). Recently, the ESA achieved a major milestone when their Metal 3D Printer aboard the International Space Station (ISS) produced the first metal part ever created in space. This technology is poised to revolutionize operations in Low-Earth Orbit (LEO) by ensuring that replacement parts can be manufactured in situ rather than relying on resupply missions. This process will reduce operational costs and enable long-duration missions to the Moon, Mars, and beyond!
Continue reading “Metal Part 3D Printed in Space for the First Time”There are Plenty of Uses for Powerful Lasers in Space. But Where Should We Put Them?
Is it time for space lasers yet? Almost.
As time passes, ideas that were once confined to the realm of science fiction become more realistic. It’s true of things like using robots to explore other worlds. Space lasers are a well-used element in science fiction, and we’re approaching the time when they could become a reality.
Where would we put them, and what could we use them for?
Continue reading “There are Plenty of Uses for Powerful Lasers in Space. But Where Should We Put Them?”Astronomers Have Tools That Can Help Detect Deepfake Images
There’s a burgeoning arms race between Artificial Intelligence (AI) deepfake images and the methods used to detect them. The latest advancement on the detection side comes from astronomy. The intricate methods used to dissect and understand light in astronomical images can be brought to bear on deepfakes.
Continue reading “Astronomers Have Tools That Can Help Detect Deepfake Images”The Space Station Now Has Blisteringly Fast Internet
NASA’s Space Communications and Navigation programme (SCaN) has demonstrated the first two way end-to-end laser relay system, deployed through an innovative network. To test SCaN, they sent data to the International Space Station at the impressive speed of 1.2 gigabits per second. Using bandwidth that would normally be reserved for more important communications, the chosen message for the test was a set of adorable images and videos featuring the pets of NASA astronauts and staffers.
Continue reading “The Space Station Now Has Blisteringly Fast Internet”Making Rocket Fuel Out of Lunar Regolith
In the coming years, NASA and other space agencies plan to extend the reach of human exploration. This will include creating infrastructure on the Moon that will allow for crewed missions on a regular basis. This infrastructure will allow NASA and its international partners to make the next great leap by sending crewed missions to Mars (by 2039 at the earliest). Having missions operate this far from Earth for extended periods means that opportunities for resupply will be few and far between. As a result, crews will need to rely on In-Situ Resource Utilization (ISRU), where local resources are leveraged to provide for basic needs.
In addition to air, water, and building materials, the ability to create propellant from local resources is essential. According to current mission architectures, this would consist of harvesting water ice in the polar regions and breaking it down to create liquid oxygen (LOX) and liquid hydrogen (LH2). However, according to a new study led by engineers from McGill University, rocket propellant could be fashioned from lunar regolith as well. Their findings could present new opportunities for future missions to the Moon, which would no longer be restricted to the polar regions.
Continue reading “Making Rocket Fuel Out of Lunar Regolith”