Behold! The Martian Menu, Courtesy of Mars City Design!

Today, there is no shortage of people who want to see humans go to Mars in their lifetime. Moreover, many want to go there themselves, and some even want to stay! It goes without saying that this proposed endeavor presents all kinds of challenges (the word Herculean comes to mind!) This is especially true when it comes to feeding future missions to Mars, not to mention permanent residents.

Regular resupply missions to Mars are simply not feasible, which means astronauts and settlers will have to grow their own food. To inspire ideas for how this could be done, and what the resulting meals would be like, Vera Mulyani and the organization she founded (Mars City Design) created the Martian Feast Gala. This annual event showcases what a Martian Menu could consist of and illustrates how every challenge is an opportunity to get creative!

Continue reading “Behold! The Martian Menu, Courtesy of Mars City Design!”

What Does it Mean to Be a Space Architect?

Here on Earth, the concept of architecture (and those who specialize in it), is pretty clear and straightforward. But in space, human beings have comparatively little experience living and working in habitats. For the past sixty years, multiple space stations have been sent to Low Earth Orbit (LEO), which include the now-defunct Salyut stations, Skylab, and Mir, as well as the present-day International Space Station (ISS).

But in the near the future, we hope to build stations and commercial habitats in LEO, on the surface of the Moon, and Mars. In addition to needing a steady supply of food, water, and other necessities, measures will need to be taken to ensure the psychological well-being of their crews. In a recent article, Stellar Amenities founder and CEO (a space architect herself!) Anastasia Prosina explored how space architecture can meet these needs.

Continue reading “What Does it Mean to Be a Space Architect?”

Practical Ideas for Farming on the Moon and Mars

When the International Space Station (ISS) runs low on basic supplies – like food, water, and other necessities – they can be resupplied from Earth in a matter of hours. But when astronauts go the Moon for extended periods of time in the coming years, resupply missions will take much longer to get there. The same holds true for Mars, which can take months to get there while also being far more expensive.

It’s little wonder then why NASA and other space agencies are looking to develop methods and technologies that will ensure that their astronauts have a degree of self-sufficiency. According to NASA-supported research conducted by Daniel Tompkins of Grow Mars and Anthony Muscatello (formerly of the NASA Kennedy Space Center), ISRU methods will benefit immensely from some input from nature.

Continue reading “Practical Ideas for Farming on the Moon and Mars”

This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts

This week, European engineers hot-fire tested a fully 3D-printed thrust chamber that could one day power the upper stages for rockets. The chamber has just three parts, and was constructed using additive layer manufacturing, another name for 3D printing.  

This hot-fire test lasted 30 seconds and was carried out on May 26, 2020 at the DLR German Aerospace Center’s Lampoldshausen testing facility. The European Space Agency said that additional tests are planned for next week.

Continue reading “This Rocket Engine’s Thrust Chamber was 3D-printed and Only has Three Parts”

Tiny Cardboard Aircraft Could Fly in the Skies of Mars

What would be the best method for exploring planetary atmospheres, such as at Mars, Venus or even Earth? One group of researchers are developing tiny, levitating “nanocardboard” aircraft that could hover in alien skies. They would fly like dust floating in beams of sunlight – but intelligently, and with a purpose.

“It’s exciting because it’s essentially a new mechanism of flight,” said Igor Bargatin from the University of Pennsylvania. “We’re talking about a structure half an inch in size that can fly around without any moving parts.”

Continue reading “Tiny Cardboard Aircraft Could Fly in the Skies of Mars”

Another Reminder that Spaceflight is Difficult. Starship Prototype Explodes and Falls Over

SpaceX’s Starship has been hitting some bumps making its way from the drawing board to space. As the spacecraft element of the Elon Musk’s proposed super-heavy launch system, the Starship will one day become the workhorse of SpaceX, replacing the Falcon 9 and Falcon Heavy launchers. Unfortunately, another Starship prototype recently experienced a structural failure during pressure testing that caused it to explode.

Continue reading “Another Reminder that Spaceflight is Difficult. Starship Prototype Explodes and Falls Over”

A Commercial Satellite Just Docked with Another for the First Time, Opening Up a New Era in Orbital Maintenance

SpaceLogistics LLC has achieved a first: it’s docked it’s maintenance satellite, called MEV-1, with another satellite in order to extend the life of the satellite. The docked pair will perform some check-ups, and if all goes well, MEV-1 will boost the client satellite to a higher orbit, extending its operational life-span by about five years.

Continue reading “A Commercial Satellite Just Docked with Another for the First Time, Opening Up a New Era in Orbital Maintenance”

Future Astronauts Could Enjoy Fresh Vegetables From an Autonomous Orbital Greenhouse

If humanity is going to become a spare-faring and interplanetary species, one of the most important things will be the ability of astronauts to see to their needs independently. Relying on regular shipments of supplies from Earth is not only inelegant; it’s also impractical and very expensive. For this reason, scientists are working to create technologies that would allow astronauts to provide for their own food, water, and breathable air.

To this end, a team of researchers from Tomsk Polytechnic University in central Russia – along with scientists from other universities and research institutes in the region – recently developed a prototype for an orbital greenhouse. Known as the Orbital Biological Automatic Module, this device allows plants to be grown and cultivated in space and could be heading to the International Space Station (ISS) in the coming years.

Continue reading “Future Astronauts Could Enjoy Fresh Vegetables From an Autonomous Orbital Greenhouse”

A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable

In the current era of space exploration, the name of the game is “cost-effective.” By reducing the costs associated with individual launches, space agencies and private aerospace companies (aka. NewSpace) are ensuring that access to space is greater. And when it comes to the cost of launches, the single-greatest expense is that of propellant. To put it simply, breaking free to Earth’s gravity takes a lot of rocket fuel!

To address this, researchers at the University of Washington recently developed a mathematical model that describes the workings of a new launch mechanism: the rotating detonation engine (RDE). This lightweight design offers greater fuel-efficiency and is less complicated to construct. However, it comes with the rather large trade-off of being too unpredictable to be put into service right now.

Continue reading “A New Kind of Rocket that’s Lightweight and Easier to Construct: a Rotating Detonating Engine. Unfortunately, it’s Also Completely Unpredictable”

Anti-Solar Cells Could Generate Electricity at Night

It is a foregone conclusion that if humanity intends to survive the so-called “Anthropocene” we need to make the transition away from fossil fuels and other methods that are unsustainable and amplify our impact on the planet. In this respect, a great deal of research and development is being directed towards “renewable energy.” Of the many methods that are being developed, the biggest contender is and always has been solar power.

Unfortunately, solar power suffers from a number of drawbacks, like the fact that it is only available during the day and favorable weather conditions. However, a new study by researchers from the Institute for Research in Electronics and Applied Physics (IREAP) shows how a special kind of photovoltaic cell could generate power at night. These “anti-solar” cells could revolutionize renewable energy and make it far more proficient.

Continue reading “Anti-Solar Cells Could Generate Electricity at Night”