Life-size Wooden Spacecraft Sculptures

"My Voyager" by artist Peter Hennessey

[/caption]

If you think about it, spacecraft are kind of ethereal in that once they are launched into space, we don’t ever see them again. Australian artist Peter Hennessey has created life-size wooden sculptures of several different spacecraft, giving people the chance to see and touch these objects that are immediately recognizable but which we will never actually experience. Hennessey says he wanted to “reverse the virtualization of physical things” by creating life-size reproductions of the spacecraft such as the Voyager space probe, Apollo Lunar Rover, the Hubble Space Telescope, and more. From Hennessey’s website: “By ‘re-enacting’ space traveling, scientific and military objects in plywood, galvanized steel and canvas, the artist creates ‘stand-ins’ that allow the viewer to contemplate their physical, symbolic and historical resonances as well as the political processes that they represent.”

I just think they are really cool, and I’d love to see them – Hubble has to be huge! See below.


'My Hubble (the universe turned in on itself)' by artist Peter Hennessey.

“My Hubble (the universe turned in on itself) is now on display in Sydney Australia as part of “Biennale of sydney 2010.” This life size ‘re-enactment’ of the Hubble Space Telescope was constructed “with the aim of giving the viewer a physical experience of the object.” It is constructed from lasercut plywood and steel and simultaneously enacts the scale and detail
of the original. This is an interactive sculpture: visitors are encouraged to play with, modify and create their own mini universes on the ground, which are then reflected by the telescope into the heavens.

According to the Design Bloom website, when creating his work Hennessey looked at 7 different images of the Hubble, and rather than using 3D software to model individual parts as one might expect, he used adobe illustrator. Building the telescope took about 3 months – in which 6 weeks were dedicated to laser cutting individual parts and building them into sections and the rest of the time was dedicated to assembling it.

'My Lunar Rover' by artist Peter Hennessey.

With ‘My Moon Landing’ Hennessey’s wanted to explore the “physicality, presences and symbolic power of the inaccessible objects that derive from the space race.”

Hennessey has even built a wooden replica of mission control.

Check out all his unique sculptures on his website.

Hat tip to Rachel Hobson!

Japanese Firm Designing Futuristic Space Mega-Projects

The Luna Ring, a belt of solar collecting panels along the Moon's equator. Credit: Shimizu

[/caption]

Space based solar power? How about a Moon-based solar collector that would beam energy back to Earth. This is just one idea proposed by a 200-year-old Japanese construction company, Shimizu that prides itself in forward-thinking technology and structure development. For this “Luna Ring,” an array of solar cells would extend like a belt along the entire 11,000 km lunar equator, and laser power transmission facilities would beam a high-energy-density laser towards receiving stations on Earth.

See more on the Luna Ring, plus plans for orbiting hotels, Moon bases, mega-pyramid cities, and more, below.

Energy gather on the Moon would be beamed back to Earth. Credit: Shimizu.

For this structure to be successful, teams of astronauts would have to support robotic surface operation on site. So, they would need a lunar base. Shimizu has that design in mind, too.

A proposed lunar base made of hexagonal structures. Credit: Shimizu

Lunar bases could be constructed using concrete made from lunar regolith. Using a hexagonal shape would allow for multi-directional future extension of the structure. Unmanned construction systems will be a critical matter in the severe lunar environment. The concept of self-assembling structures using membranes and air-inflation systems could realize light-weight structures and reduce transportation costs. Shimizu is also developing construction robot technologies that could be applied to constructing a lunar base, minimizing the hazards of manned activities.

An interior view of a potential lunar base. Credit: Shimizu

For long-term manned mission, the interior of base should be designed considering 1/6 G gravity environment.

The Shimizu Corporation says they have been accumulating technological skills over 200 years and would welcome the challenge of applying them to the new frontier of the moon, while continuing R&D on structures, materials, construction systems, and design of lunar bases.

A space elevator hotel, 240 km above the Earth. Credit: Shimizu

Shimizu has this concept for a space hotel, which includes a space elevator, approximately 240 km long, for “easy” access from Earth (building a space elevator will not be easy), but visiting spacecraft could dock as well. This large complex structure would be composed of several modules, such as a lobby, restaurants, and an area for recreation.

he Mega-City Pyramid stands 2,000 meters (1.25 miles) high. Credit: Shimizu

Shimizu is also looking at how they could build incredible structures on Earth that would house people and buildings on the oceans. The Mega-City Pyramid is a self-contained city for one million people. The basic structure—an assembly of regular octahedral units composed of shafts made from lightweight materials such as carbon fiber would be a project of unprecedented scale and proportion.

This video provides a look at some of the potential problems and hurdles to overcome for this type of structure:

Floating environmentally green islands with cities in the air. Credit: Shimizu

This “green” floating village would be almost like a giant lily pad floating on the water. Shimizu wants to create these cities that would act just like a lily, absorbing CO2 like a plant, as well as using other environmental technologies to achieve a carbon negative system. Solar power and resources from the ocean, as well as converting waste into energy would be used to give the floating city 100% self-sufficiency.

Visit the Shimizu website for more information about the company, and see their “dream” section for more information about these futuristic mega-projects.

Source: Shimizu, via Pink Tentacle

Astronomy Without A Telescope – Astronomy On Ice

Well, here’s a bit of a first for AWAT, because this is a story about a telescope. But it’s not your average telescope, being composed of a huge chunk of Antarctic ice with a very large cosmic ray muon filter attached to the back of it, which is called the Earth.

Commenced in 2005, the IceCube Neutrino Observatory is now approaching completion with recent installation of a key component DeepCore. With DeepCore, the Antarctic observatory is now able to observe the southern sky, as well as the northern sky.

Neutrinos have no charge and are weakly interactive with other kinds of matter, making them difficult to detect. The method employed by IceCube and by many other neutrino detectors is to look for Cherenkov radiation which, in the context of IceCube, is emitted when a neutrino interacts with an ice atom creating a highly energized charged particle, such as an electron or a muon – which shoots off at a speed greater than the speed of light, at least greater than the speed of light in ice.

The advantage of using Antarctic ice as a neutrino detector is that it is available in large volumes and thousands of years of sedimentary compression has squeezed most impurities out of it, making it a very dense, consistent and transparent medium. So, not only can you see the little flashes of Cherenkov radiation, but you can also make reliable predictions about the trajectory and energy level of the neutrino which caused each little flash.

The structure of IceCube incorporates strings of evenly spaced basketball-sized Cherenkov detectors lowered into the ice through drill holes to depths of nearly 2.5 kilometers. The DeepCore component is a more compact array of detectors, positioned in the clearest ice deep within IceCube, designed to enhance the sensitivity of IceCube for neutrino energies less than 1 TeV.

Prior to DeepCore being finished, it was only feasible to accurately measure the effects of upwardly moving neutrinos – that is, neutrinos that had already passed through the Earth and, if of a cosmic origin, had actually come from the northern sky. Any downwardly moving neutrinos from the southern sky were lost in noise created by cosmic ray muons which are able to penetrate IceCube, creating their own Cherenkov radiation without neutrinos being involved.

However, with the greater sensitivity offered by DeepCore, coupled with IceTop, which is a set of surface level Cherenkov detectors able to differentiate external muons entering from the surface, it is now possible for IceCube to make neutrino observations of the southern sky as well.

 
 
Adapted from Halzen (2009, arXiv:0911.2676)

IceCube’s key scientific goal is to identify neutrino point sources in the sky, which may include supernova and gamma ray bursts. Neutrinos are speculated to account for 99% of the energy release of a Type 2 supernova – suggesting that we may be missing a lot of information when we just focus on the electromagnetic radiation that is emitted.

It is also speculated that IceCube might provide indirect evidence of dark matter. The thinking is that if some dark matter was caught in the centre of the Sun, it would be annihilated by the extreme gravitational compression present there. Such an event should produce a sudden burst of high energy neutrinos, independent of the normal neutrino output resulting from solar fusion reactions. That’s a long chain of suppositions to gain indirect evidence of something, but we’ll see.

Solar-Powered Airplane Makes Maiden Voyage

Solar Impulse durings its maiden voyage. Credit: Solar Impulse.


A solar powered airplane that one day will attempt an around the world non-stop flight took its maiden voyage yesterday in Switzerland. Solar Impulse flew for 87 minutes and climbed to 1,200 meters. “This first flight was for me a very intense moment!” exclaimed test pilot Markus Scherdel immediately after the flight. “The HB-SIA behaved just as the flight simulator told us! Despite its immense size and feather weight, the aircraft’s controllability matches our expectations!”

[/caption]
“We reached all objectives, especially the safe landing, which was our main purpose,” said Claude Nicollier, a former astronaut who is one of the leaders of the project.

The plane has a 61 meter wingspan, and the wings are covered with 12,000 state-of-the-art photovoltaic solar cells that power the plane. Using so-called intelligent light materials and new energy storage, the plane will be able to fly both night and day, completely on solar power. Solar impulse weights 1,600 kg and can fly at speeds up to 70 kmh at a maximum altitude of 8,500 m (27 900 ft)

“We .still have a long way to go until the night flights and an even longer way before flying round the world, but today, thanks to the extraordinary work of an entire team, an essential step towards achieving our vision has been taken,” said Solar Impulse Chairman and initiator Bertrand Piccard. “Our future depends on our ability to convert rapidly to the use of renewable energies. Solar Impulse is intended to demonstrate what can be done already today by using these energies and applying new technologies that can save natural resources.”

For more information on Solar Impulse.

Astronomy Without A Telescope – Say No To Mass Extinction

Artist's impression of a gravity tug - a species and ecosystem saving device we haven't built yet. Credit: Durda/BBC News

[/caption]

You may have heard that there is an 86 per cent chance that in a mere million years or so Gliese 710 will drift close enough to the solar system to perturb the Oort cloud and perhaps send a rain of comets down into the inner solar system. 

Also, you have probably heard that there are hints of a certain periodicity in mass extinction events, perhaps linked to the solar system moving through the denser parts of the galactic disk, increasing the probability of similar close encounters. 

So, the big bad is coming… sometime. It might just be a stray asteroid that’s in the wrong place at the wrong time and have little to do with what’s happening outside the solar system. In any case, we need to stay calm and carry on – and maybe print the following handy survival tips on a fridge magnet.  

Idealised fridge magnet - for us or whoever comes next.

Immediate action: Fund sky surveys.

The Spaceguard Survey is underway aiming to identify near Earth objects down to the size of 140 meters. At present the survey might be finished in ten or fifteen years and it completely missed two small objects which are thought to have hit Earth in 2002 with impact energies approaching half a kiloton. 

Uh, anyone think we could be doing more in this space? 

Medium term action (0 – 10 years): Evacuate the area 

The 2010 National Academy of Science (NAS) report uses the strange term civil defence, but really it just means run for your life (i.e. evacuate the anticipated impact site). City destroyers in the 140 meter plus range may only hit Earth every 30,000 years or so, but it doesn’t hurt to be ready. 

Mass extinction objects in the ten kilometer range may only come every 65 million years or so. If it’s one of these… bummer. 

Long-term action (10 years plus): Call Roger Ramjet   

If we do have around 10 years notice, there’s maybe enough time to launch some of the nifty technology solutions we have at least developed on paper. Gravity tugs and mirror bees and various other deflection devices are recommended to deflect objects threatening to pass through a gravitational keyhole and shift onto a collision course next time around. 

If the object is already on collision course, no-one’s ruling out ‘instantaneous force’ (IF) options, which are either crashing something into it (‘kinetic impact’) or just nuking it – although the NAS report notes a 500% uncertainty about the possible trajectory change resulting from an IF. Ideally, a ‘full deflection campaign’ involves an IF primary deflection followed by subsequent shepherding of one or more fragments onto a safer trajectory via your preferred deflection device.

And look, if it does all goes bad at least the next order of intelligent Earthlings might dig up all these fridge magnets with mysterious symbols printed on them and be able to figure out where we went wrong. My money is on the birds. 

Recommended reading: 

The Association of Space Explorers’ International Panel (chaired by Russell ‘Rusty’ Schweickart) report. Asteroid Threats: A Call For Global Response. 

 National Research Council report. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. Final Report.

New Cloaking Device Hides Objects in Three Dimensions

Blueprint of the nanostructure containing the bump in the gold carpet and tailored invisibility cloaking structure underneath.Image © Science/AAAS

[/caption]
Hiding an object with a cloaking device has been the stuff of science fiction, but over the past few years scientists have successfully brought cloaking technology into reality. There have been limits, however. So far, cloaked objects have been quite small, and researchers have only been able to hide an object in 2 dimensions, meaning the objects would be immediately visible when the observer changes their point of view. But now a team has created a cloak that can obscure objects in three dimensions. While the device only works in a limited range of wavelengths, the team says that this step should help keep the cloaking field moving forward.

The cloaking technology developed so far does not actually make objects invisible. Instead, it plays tricks with light, misdirecting it so that the objects being “covered” cannot be seen, much like putting a piece of carpet over an object. But in this case, the carpet also disappears.

This field is called transformation optics, and uses a new class of materials called metamaterials that are able to guide and control light in new ways.

Researchers from the Karlsruhe Institute of Technology in Germany used photonic crystals, putting them together like a pile of wood to make an invisibility cloak. They used the cloak to conceal a small bump on a gold mirror-like surface. The “cloak” is composed of special lenses that work by partially bending light waves to suppress light scattering from the bump. To the observer, the mirror appears flat, so you can’t tell there is something on the mirror.

“It is composed of photonic polymer that is commercially available,” said Tolga Ergin, who led the research team, speaking on the AAAS Science podcast. “The ratio between polymer and air is changed locally in space, and by choosing the right distribution of the local filing sector, you can achieve the needed cloaking. We were surprised the cloaking effect is that good.”

The wavelengths of “invisibility” are in the infrared spectrum, and the cloaking effect is observed in wavelengths down to 1.3 to 1.4 microns, which is an area currently used for telecommunications.

So, what is the practicability of this device?

“Applications are a tough question,” said Ergin. “Carpet cloaks and general cloaking device are just beautiful and exciting benchmarks to show what transformational optics can do. There have been proposals in the field of transformation optics for different devices such as beam concentrators, beam shifters, or super antennas which concentrate light from all directions and much, much more. So it is really hard to say what the future will bring in applications. The field is large and the possibilities are large.”

“Cloaking structures have been very exciting to mankind for a very long time,” Ergin continued. “I think our team succeeded in pushing the results of transformation optics one step further because we realized the cloaking structure in three dimensions.”

Read the abstract.

Computer simulation of of a microscope image of the “bump” that is to be cloaked. The viewing angle changes with time.

Sources: Science, Science Podcast

Secret Mini Space Shuttle Could Launch April 19

Illustration of the X-37 Advanced Technology Demonstrator during flight. Credit: NASA

[/caption]

It’s cute. It’s little. It’s also top secret. The X-37B orbital test vehicle is at Cape Canaveral in Florida, and the word is that it will be launched on board an Atlas V rocket on Monday April 19, 2010 at around 10 pm EDT. Other than that, the Air Force isn’t saying much about this mini-space shuttle look-alike. The reusable unmanned vehicle is capable of staying in orbit for 270 days, but the mission duration hasn’t been announced. Additionally, the ship has a payload bay for experiments and deployable satellites, but no word if any payloads will be included on the inaugural flight of this mini space plane.

X-37B. Credit: US Air Force

The X-37B is 9 meters long and 4.5 meter wide (29 X 15 ft) and its payload bay is 2.1 by 1.2 meters (7 by 4 feet). The vehicle was built at Boeing Phantom Works, based on an orbital and re-entry demonstrator design initially developed by NASA, then handed over to the Pentagon.

Rumors of an X-37B launch have been circulating since 2008.

Originally the vehicle was scheduled for launch in from the payload bay of the Space Shuttle, but that plan was axed following the Columbia accident.

The X-37A carried by WhiteKnightOne in 2005 (Alan Radecki)

DARPA, the Defense Advanced Research Projects Agency completed a series of approach and landing drop tests in 2007 of an experimental X-37B vehicle using the White Knight airplane from Scaled Composites as a mothership.

It will land like the space shuttle, with the primary landing site at Vandenberg Air Force Base in California. Edwards Air Force Base is the backup landing site.

The project is managed by the Air Force Rapid Capabilities Office.

The X-37B’s mission is to “demonstrate a reliable, reusable, unmanned space test platform for the United States Air Force,” according to a fact sheet put out by the military. “Objectives of the OTV program include space experimentation, risk reduction and concept of operations development for reusable space vehicle technologies.”

It will be interesting to ascertain the capabilities and uses for this vehicle.

Sources: Spaceflightnow, Wiki,

Successful Engine Test Firing for SpaceX Inaugural Falcon 9

Photo of successful static fire of Falcon 9 at Cape Canaveral, FL on March 13. Credit: Chris Thompson/SpaceX

[/caption]

SpaceX announced that today’s (Mar 13) test firing of all 9 Merlin first stage engines was successful at Pad 40 at Cape Canaveral. This is a major milestone towards the planned inaugural first flight of the Falcon 9 rocket which SpaceX is building. This success follows an aborted test firing attempt on Thursday (Mar 11) and several other delays due to poor weather at the Cape this week.

The Falcon 9 will play a crucial role in resupplying cargo for the International Space Station after the scheduled retirement of NASA’s Space Shuttle program set for late this year or early 2011.

Falcon 9 static test at pad 40. Credit:Chris Thompson/SpaceX
The test occurred at 12:30 PM at Launch Complex 40 which is the next pad down the line from Atlas Launch Complex 41.

The first actual Falcon 9 blast-off is set for no earlier than April 12 between 11 AM and 3 PM

Falcon 9 is a two stage, liquid oxygen and rocket grade kerosene (RP-1) powered launch vehicle. It uses the same engines, structural architecture (with a wider diameter), avionics and launch system as the Falcon 1

Here is the official announcement I received from SpaceX this afternoon:

SpaceX Falcon 9 test at Pad 40. Credit: Florida Today
“Today, SpaceX successfully completed a test firing of the inaugural Falcon 9 launch vehicle at Space Launch Complex 40 located at Cape Canaveral. Following a nominal terminal countdown, the launch sequencer commanded ignition of all 9 Merlin first stage engines for a period of 3.5 seconds.”

“Just prior to engine ignition, the pad water deluge system was activated providing acoustic suppression to keep vibration levels within acceptable limits. The test validated the launch pad propellant and pneumatic systems as well as the ground and flight control software that controls pad and launch vehicle configurations. The completion of a successful static fire is the latest milestone on the path to first flight of the Falcon 9 which will carry a Dragon spacecraft qualification unit to orbit.”

Under NASA’s Commercial Orbital Transportation Services (COTS) program, SpaceX plans three launches of the Falcon 9 rocket and Dragon spacecraft this year to demonstrate delivery of cargo to the ISS as well as returning cargo to Earth. The entire schedule moving forward is dependent on a successful inaugural launch.

NASA awarded SpaceX a $1.6 billion contract to conduct a minimum of 12 flights and deliver at least 20,000 kg of cargo to the ISS. An option for additional missions could increase the cumulative total contract value to $3.1 billion.

The 180 ft tall Falcon 9 will be capable of lifting approximately 11 tons to low Earth orbit (LEO) and in excess of 4.5 tons to Geosynchronous Transfer Orbit (GTO).

Update: SpaceX photos added

Falcon 9 erected at Launch Complex 40. Credit: SpaceX
All 9 Merlin 1C engines fired successfully today, March 13. This photo shows the fire generated from the flushing of fuel and LOX, but no engines actually started during this aborted test on March 11. Credit: SpaceX

Astronomy Without A Telescope – Home Made Quark-Gluon Soup

The most powerful operational heavy-ion collider in the world, the Relativistic Heavy Ion Collider (RHIC) recently recorded the highest ever temperature created in an Earth-based laboratory of 4 trillion Kelvin. Achieved at the almost speed of light collision of gold ions, this resulted in the temporary existence of quark-gluon soup – something first seen at about ten to the power of minus twelve of the first second after the big bang.

And sure, the Large Hadron Collider (LHC) may one day soon be the most powerful heavy-ion collider in the world (although it will spend most of its time investigating proton to proton collisions). And sure, maybe it’s going to generate a spectacular 574 TeV when it collides its first lead ions. But you have to win the game before you get the trophy.

To give credit where it’s due, the LHC is already the most powerful particle collider in the world – having achieved proton collision energies of 2.36 TeV in late 2009. And it should eventually achieve proton collision energies of 14 TeV, but that will come well after its scheduled maintenance shutdown in 2012, ahead of achieving its full design capabilities from 2013. It has already circulated a beam of lead ions – but we are yet to see an LHC heavy ion collision take place.

So, for the moment it’s still RHIC putting out all the fun stuff. In early March 2010, it produced the largest ever negatively charged nucleus – which is anti-matter, since you can only build matter nuclei from protons and/or neutrons which will only ever have a positive or a neutral charge.

This antimatter nucleus carried an anti-strange quark – which is crying out for a new name… mundane quark, conventional quark? And since the only matter nuclei containing strange quarks are hypernuclei, RHIC in fact created an antihypernucleus. Wonderful.

Then there’s the whole quark-gluon soup story. Early experiments at RHIC reveal that this superhot plasma behaves like a liquid with a very low viscosity— and may be what the universe was made of in its very early moments.  There was some expectation that melted protons and neutrons would be so hot that surely you would get a gas – but like the early universe, with everything condensed into a tiny volume, you get a super-heated liquid (i.e. soup).

An aerial view of the Relativistic Heavy Ion Collider (RHIC) in Upton, NY. The Alternating Gradient Synchrotron (AGS) built in the 1960s now works as a pre-accelerating injector for the larger RHIC.

The LHC hopes to deliver the Higgs, maybe a dark matter particle and certainly anti-matter and micro black holes by the nano-spoonful. And after that, there’s talk of building the Very Large Hadron Collider, which promises to be bigger, more powerful and more expensive.

But if that project doesn’t fly, we can still ramp up the existing colliders. Ramping up a particle collider is an issue of luminosity, where the desired outcome is a more concentrated and focused particle beam – with an increased energy density achieved by cramming more particles into a cross section of the beam you are sending around the particle accelerator. Both RHIC and the LHC have plans to undertake an upgrade to achieve an increase of their respective luminosities by up to a factor of 10. If successful, we can look forward to RHIC II and the Super Large Hadron Collider coming online sometime after 2020. Fun.