Supersonic Starbirth Bubble Glows In Image From Two Telescopes

Stellar birth is visible in this image of HH 46/47 taken with the Spitzer Space Telescope and Atacama Large Millimeter/submillimeter Array (ALMA). Credit: NASA/JPL-Caltech/ALMA

Talk about birth in the fast lane. Fresh observations of HH 46/47 — an area well-known for hosting a baby star — demonstrate material from the star pushing against the surrounding gas at supersonic speeds.

“HH” stands for Herbig-Haro, a type of object created “when jets shot out by newborn stars collide with surrounding material, producing small, bright, nebulous regions,” NASA stated. It’s a little hard to see what’s inside these regions, however, as they’re clouded by debris (specifically, gas and dust).

The Spitzer space telescope (which looks in infrared) and the massive Chilean Atacama Large Millimeter/submillimeter Array (ALMA) are both designed to look through the stuff to see what’s within. Here’s what they’ve spotted:

– ALMA: The telescope is showing that the gas is moving apart faster than ever believed, which could have echoes on how the star cloud is forming generally. “In turn, the extra turbulence could have an impact on whether and how other stars might form in this gaseous, dusty, and thus fertile, ground for star-making,” NASA added.

Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth
Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth

– Spitzer: Two supersonic blobs are emerging from the star in the middle and pushing against the gas, creating the big bubbles you can see here. The right-aiming blob has a lot more material to push through than the left one, “offering a handy compare-and-contrast setup for how the outflows from a developing star interact with their surroundings,” NASA stated.

“Young stars like our sun need to remove some of the gas collapsing in on them to become stable, and HH 46/47 is an excellent laboratory for studying this outflow process,” stated Alberto Noriega-Crespo, a scientist at the Infrared Processing and Analysis Center at the California Institute of Technology.

“Thanks to Spitzer, the HH 46/47 outflow is considered one of the best examples of a jet being present with an expanding bubble-like structure.”

The ALMA observations of HH 46/47 were first revealed in detail this summer, in an Astrophysical Journal publication.

Source: NASA

What Are The Odds Of Spotting A Milky Way Supernova From Earth?

Artist illustration of supernova. Credit: NASA

An exploding star in our home galaxy might be visible to Earth in the next 50 years, astronomers say in a new calculation of the odds of a nearby supernova.

This explosion would be too faint to prove a hazard to Earthlings, and in fact it may not even be visible with the naked eye in the starry sky. Its heat signature, however, would be seen in the right kind of camera as long as we could swing a telescope there fast enough.

“For [researchers], this study suggests that they have a solid chance of doing something that’s never been done before: detect a supernova fast enough to witness what happens at the very beginning of a star’s demise,” wrote Ohio State University in a press release about the research, which was led by university astronomer researcher Scott Adams.

Fishing Boats Meet the Milky Way on the Isle of Wight (south of England) on May 16, 2013. Credit and copyright: Chad Powell.
Fishing Boats Meet the Milky Way on the Isle of Wight (south of England) on May 16, 2013. Credit and copyright: Chad Powell.

The challenge with observing a supernova in our own galaxy is the presence of cosmic dust that can sometimes obscure supernovae and other phenomena from our view. However, infrared light is not as badly affected by this and may be able to see something through the obscurity.

To jump on the supernova as it is happening, the scientists propose having a network in place to send out neutrino alerts when these particles, which would arrive at Earth first after an explosion, are detected on Earth. The key is to figure out the difference between neutrinos from space and neutrinos from other sources, such as nuclear reactors, the sun or even spurious glitches.

A University of Tokyo group led the building of a model of a new kind of neutrino detector, a model that is now operating underground in Japan. Called EGADS (Evaluating Gadolinium’s Action on Detector Systems), the water in the system would be “spiked” with a bit of gadolinium, which would reportedly assist with neutrino detections from outside of Earth.

The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope’s infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star is the bright white dot in the center of the image.
The supernova that produced the Crab Nebula was detected by naked-eye observers around the world in 1054 A.D. This composite image uses data from NASA’s Great Observatories, Chandra, Hubble, and Spitzer, to show that a superdense neutron star is energizing the expanding Nebula by spewing out magnetic fields and a blizzard of extremely high-energy particles.

“When a neutrino from a Milky Way supernova enters the tank, it can collide with the water molecules and release energy, along with some neutrons,” Ohio State added. “Gadolinium has a great affinity for neutrons, and will absorb them and then re-emit energy of its own. The result would be one detection signal followed by another a tiny fraction of a second later—a “heartbeat” signal inside the tank for each detected neutrino.”

But what about a naked-eye supernova? The researchers say the probability of that is just 20% to 50% in the next century, with southern hemisphere residents having a better chance since more of the galaxy is visible there. The last instance of this happening, by the way, was in 1604.

The research paper is available now on prepublishing site Arxiv and will soon be published in the Astrophysical Journal.

Source: Ohio State University

Correction: This article has been changed to remove a reference to Ohio State University in the EGADS collaboration.

Watch the Sun Split Apart

Canyon of Fire on the Sun, Credit: NASA/SDO/AIA)

Here’s your amazing oh-my-gosh-space-is-so-cool video of the day — a “canyon of fire” forming on the Sun after the liftoff and detachment of an enormous filament on September 29-30. A new video, created from images captured by the Solar Dynamics Observatory (SDO) and assembled by NASA’s Goddard Space Flight Center, shows the entire dramatic event unfolding in all its mesmerizing magnetic glory.

Watch it below:

Solarrific! (And I highly suggest full-screening it in HD.) That filament was 200,000 miles long, and the rift that formed afterwards was well over a dozen Earths wide!

Captured in various wavelengths of light by SDO’s Atmospheric Imaging Assembly (AIA) the video shows the solar schism in different layers of the Sun’s corona, which varies greatly in temperature at different altitudes.

According to the description from Karen Fox at GSFC:

“The red images shown in the movie help highlight plasma at temperatures of 90,000° F and are good for observing filaments as they form and erupt. The yellow images, showing temperatures at 1,000,000° F, are useful for observing material coursing along the sun’s magnetic field lines, seen in the movie as an arcade of loops across the area of the eruption. The browner images at the beginning of the movie show material at temperatures of 1,800,000° F, and it is here where the canyon of fire imagery is most obvious.”

Now, there’s not really any “fire” on the Sun — that’s just an illustrative term. What we’re actually seeing here is plasma contained by powerful magnetic fields that constantly twist and churn across the Sun’s surface and well up from its interior. The Sun is boiling with magnetic fields, and when particularly large ones erupt from deep below its surface we get the features we see as sunspots, filaments, and prominences.

When those fields break, the plasma they contained gets blasted out into space as coronal mass ejections… and this is what typically happens when one hits Earth. (But it could be much worse.)

Hey, that’s what it’s like living with a star!

Stay up to date on the latest solar events on the SDO mission page here.

Future Supernova Is Surrounded By Hydrogen Clouds

A "super star cluster", Westerlund 1, which is about 16,000 light-years from Earth. It can be found in the southern constellation of Ara. The picture was taken from the European Southern Observatory's VLT Survey Telescope. Credit: ESO/VPHAS+ Survey/N. Wright

The faint green glow you see in that picture is not an early harbringer of Hallowe’en spooks. It’s hydrogen gas clouds found recently nearby W26, a future supernova in the star cluster Westerlund 1.

The European Southern Observatory’s VLT Survey Telescope in Chile spotted the hydrogen in the cluster, which has hundreds of huge stars that are only believed to be a few million years old. (Our solar system, by comparison, is about 4.5 billion years old.)

“Such glowing clouds around massive stars are very rare, and are even rarer around a red supergiant— this is the first ionised nebula discovered around such a star,” the European Southern Observatory stated.

“W26 itself would be too cool to make the gas glow; the astronomers speculate that the source of the ionizing radiation may be either hot blue stars elsewhere in the cluster, or possibly a fainter, but much hotter, companion star to W26.”

Funny enough, the nebula that surrounds the red supergiant is similar to the one surrounding SN1987A, a star that exploded as a fairly bright supernova in 1987. “Studying objects like this new nebula around W26 will help astronomers to understand the mass loss processes around these massive stars, which eventually lead to their explosive demise,” ESO added.

Source: European Southern Observatory

Is That Planet Habitable? Look To The Star First, New Study Cautions

Artist’s impression of the deep blue planet HD 189733b, based on observations from the Hubble Space Telescope. Credit: NASA/ESA.

Finding Earth 2.0, in the words of noted SETI researcher Jill Tarter, is something a lot of exoplanet searchers are hoping for one day. They’re trying not to narrow down their search to Sun-like stars, but also examine stars that are smaller, like red dwarfs.

A new study, however, cautions that the X-ray environment of these dwarfs may give us false positives. They looked at Earth-mass planets in the neighborhood of four stars, such as GJ 667 (which has three planets that could be habitable), and concluded it’s possible for oxygen to reside in these planets even in the absence of life.

The work builds on a published paper in the Astrophysical Journal that argues that GJ 876, studied by the Hubble Space Telescope, could allow a hypothetical planet to have plenty of oxygen in its atmosphere, even without the presence of life.

This artist's conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA
This artist’s conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA

The researchers themselves, however, caution that the results are preliminary and there is a lot more to study before coming to a definitive conclusion.

For example: “The effects of stellar flares on the atmosphere of the hypothetical Earth-like planet around GJ 876 have not been considered in this work,” stated Kevin France, who is with the University of Colorado at Boulder and also a co-author.

“At this point, we do not have a sufficient understanding of the amplitude and frequency of such flares on older, low-mass exoplanet host stars to make predictions about their impact on the production of biomarker signatures.”

The report was presented at the American Astronomical Society division for planetary sciences meeting in Denver today (Oct. 7). It was not immediately clear from a press release if the newer study has been submitted for peer review.

Source: AAS Division for Planetary Sciences

Double Star Fomalhaut May Actually Be A Triplet!

This false-color composite image, taken with the Hubble Space Telescope, reveals the orbital motion of the planet Fomalhaut b. Credit: NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)

Fomalhaut is a really cool place to study. The naked-eye star (the brightest star in the constellation Piscis Austrinus) has a planet, Fomalhaut b, that once appeared dead but rose again in science circles. It is the site of a comet massacre. Now it’s getting even more interesting: Scientists have believed for years that Fomalhaut is a double star, but a new paper proposes that it is actually a triplet.

“I noticed this third star a couple of years ago when I was plotting the motions of stars in the vicinity of Fomalhaut for another study,” stated Eric Mamajek, associate professor of physics and astronomy at the University of Rochester. The third star is known as LP876-10 or Fomalhaut C.

“However, I needed to collect more data and gather a team of co-authors with different observations to test whether the star’s properties are consistent with being a third member of the Fomalhaut system.”

That opportunity came when Mamajek was in Chile and by chance, talking with Georgia State University’s Todd Henry, who is the director of the Research Consortium on Nearby Stars. A student (who has now graduated), Jennifer Bartlett at the University of Virginia, was working on a study of potential nearby stars for her Ph.D. thesis, which included the star that Mamajek was curious about.

Herschel's far-infrared observations of Fomalhaut and its disk. Credit: ESA
Herschel’s far-infrared observations of Fomalhaut and its disk. Credit: ESA

The team plotted the star’s movements and spectroscopy (to see its temperature and radial velocity) and concluded the speed and distance of the star matched that of the Fomalhaut system.

LP876-10/Fomalhaut C is a red dwarf that appears the distance of 11 full moons apart from Fomalhaut in the night sky. It seems counterintuitive to believe they are close together, but the team reminds us that Fomalhaut is very close to us as stars go: 25 light-years away.

“That they appear so far apart could explain why the connection between LP 876-10 and Fomalhaut had been previously missed,” the team stated.

The paper is available on the preprint website Arxiv and has been accepted for publication in the Astronomical Journal.

Source: University of Rochester

Double Vision: Scientists Spot An Elder ‘Twin’ To the Sun

The life-cycle of a Sun-like star from protostar (left side) to red giant (near the right side) to white dwarf (far right). Credit: ESO/M. Kornmesser

If you want a picture of how you’ll look in 30 years, youngsters are told, look at your parents. The same principle is true of astronomy, where scientists compare similar stars in different age groups to see how they progress.

We have a special interest in learning how the Sun will look in a few billion years because, you know, it’s the main source of energy and life on Earth. Newly discovered HIP 102152 could give us some clues. The star is four billion years older than the sun, but so close in composition that researchers consider it almost like a twin.

Telescopes have only been around for a few centuries, making it hard to project what happens during the billions upon billions of years for a star’s lifetime. We have about 400 years of observations on the sun, for example, which is a minute fraction of its 4.6 billion-year-old lifespan so far.

The Sun in H-Alpha, on 01-07-2013, using a Lunt Solar LS60Scope/LS50 Hydrogen Alpha Solar filter. Credit: John Chumack
Today, we take telescopic observations of the Sun for granted, but the technology only became available about 400 years ago. This picture shows the Sun in H-Alpha, on 01-07-2013, using a Lunt Solar LS60Scope/LS50 Hydrogen Alpha Solar filter. Credit: John Chumack

“It is very hard to study the history and future evolution of our star, but we can do this by hunting for rare stars that are almost exactly like our own, but at different stages of their lives,” stated the European Southern Observatory.

ESO’s Very Large Telescope — guided by a team led by the University of Sao Paulo’s Jorge Melendez — examined HIP 102152 with a spectrograph that broke up the light into various colors, revealing properties such as chemical composition. Around the same time, they scrutinized 18 Scorpii, also considered to be a twin but one that is younger than the sun (2.9 billion years old)

So what can we predict about the Sun’s future? One thing puzzling scientists has been the amount of lithium in our closest stellar companion. Although the Big Bang (the beginning of the universe) created hydrogen, helium and lithium, only the first two elements are abundant in the Sun.

Periodic Table of Elements
Periodic Table of Elements

HIP 102152, it turns out, also has low levels of lithium. Why isn’t clear yet, ESO notes, although “several processes have been proposed to transport lithium from the surface of a star into its deeper layers, where it is then destroyed.” Previous observations of young Sun-like stars also show higher levels of lithium, implying something changes between youth and middle age.

The elder twin to our Sun may host another discovery: there could be Earth-sized planets circling the star. Chemical properties of HIP 102152 show that it has few elements that you see in meteorites and rocky planets, implying the elements are “locked up” in bodies close to the star. “This is a strong hint that HIP 102152 may host terrestrial rocky planets,” ESO stated.

Better yet, separate observations showed that there are no giant planets close to the star — leaving room for Earth-sized planets to flourish.

The research is available in a recent edition of Astrophysical Letters.

Source: European Southern Observatory

Flicker… A Bright New Method of Measuring Stellar Surface Gravity

A simple, yet elegant method of measuring the surface gravity of a star has just been discovered. These computations are important because they reveal stellar physical properties and evolutionary state – and that’s not all. The technique works equally well for estimating the size of hundreds of exoplanets. Developed by a team of astronomers and headed by Vanderbilt Professor of Physics and Astronomy, Keivan Stassun, this new technique measures a star’s “flicker”. Continue reading “Flicker… A Bright New Method of Measuring Stellar Surface Gravity”

The Astronomy of the Dog Days of Summer

Looking east from latitude 30 north on August 3rd, 30 minutes before sunrise. (Created by the author in Stellarium).

Can you feel the heat?

It’s not just your imagination. The northern hemisphere is currently in the midst of the Dog Days of Summer. For many, early August means hot, humid days and stagnant, sultry nights.

The actual dates for the Dog Days of Summer vary depending on the source, but are usually quoted as running from mid-July to mid-August. The Old Farmer’s Almanac lists the Dog Days as running from July 3rd through August 11th.

But there is an ancient astronomical observation that ties in with the Dog Days of Summer, one that you can replicate on these early August mornings.

The sky was important to the ancients. It told them when seasons were approaching, when to plant crops, and when to harvest. Ancient cultures were keen observers of the cycles in the sky.  Cultures that were “astronomically literate” had a distinct edge over those who seldom bothered to note the goings on overhead.

The flooded Temple of Isis on the island of Philae circa 1905. (Credit: Wikimedia Commons under an Attribution-Share Alike 2.5 license. Author H.W. Dunning).
The flooded Temple of Isis on the island of Philae circa 1905. (Credit: Wikimedia Commons under an Attribution-Share Alike 2.5 license. Author H.W. Dunning).

Sirius was a key star for Egyptian astronomers. Identified with the goddess Isis, the Egyptian name for Sirius was Sopdet, the deification of Sothis. There is a line penned by the Greco-Roman scholar Plutarch which states:

“The soul of Isis is called ‘Dog’ by the Greeks.”

Political commentary? A mis-translation by Greek scholars? Whatever the case, the mythological transition from “Isis to Sothis to Dog Star” seems to have been lost in time.

These astronomer-priests noted that Sirius rose with the Sun just prior to the annual flooding of the Nile. The appearance of a celestial object at sunrise is known as a heliacal rising. If you can recover Sirius from behind the glare of the Sun, you know that the “Tears of Isis” are on their way, in the form of life-giving flood waters.

Sopdet as the personification of Sirius (note the star on the forehead)
Sopdet as the personification of Sirius (note the star on the forehead) Wikimedia Commons image under an Attribution Share Alike 3.0 license. Author Jeff Dahl).

In fact, the ancient Egyptians based their calendar on the appearance of Sirius and what is known as the Sothic cycle, which is a span of 1,461 sidereal years (365.25 x 4) in which the heliacal rising once again “syncs up” with the solar calendar.

It’s interesting to note that in 3000 BC, the heliacal rising of Sirius and the flooding of the Nile occurred around June 25th, near the summer solstice. This also marked the Egyptian New Year. Today it occurs within a few weeks of August 15th, owing to precession. (More on that in a bit!)

By the time of the Greeks, we start to see Sirius firmly referred to as the Dog Star. In Homer’s Iliad, King Priam refers to an advancing Achilles as:

“Blazing as the star that cometh forth at Harvest-time, shining forth amid the host of stars in the darkness of the night, the star whose name men call Orion’s Dog”

The Romans further promoted the canine branding for Sirius. You also see references to the “Dog Star” popping up in Virgil’s Aenid.

Over the years, scholars have also attempted to link the dog-headed god Anubis to Sirius. This transition is debated by scholars, and in his Star Names: Their Lore and Meaning, Richard Hinckley Allen casts doubt on the assertion.

Sirius as the shining "nose" of the constellation Canis Major. (Created by the author using Starry Night).
Sirius as the shining “nose” of the constellation Canis Major. (Created by the author using Starry Night).

Ancient cultures also saw the appearance of Sirius as signifying the onset of epidemics. Their fears were well founded, as summer flooding would also hatch a fresh wave of malaria and dengue fever-carrying mosquitoes.

Making a seasonal sighting of Sirius is fun and easy to do. The star is currently low to the southeast in the dawn, and rises successively higher each morning as August rolls on.

The following table can be used to aid your quest in Sirius-spotting.

Latitude north

Theoretical date when Sirius can 1st be spotted

32°

August 3rd

33°

August 4th

34°

August 5th

35°

August 6th

36°

August 7th

37°

August 8th

38°

August 9th

39°

August 10th

40°

August 11th

41°

August 12th

42°

August 13th

43°

August 14th

44°

August 15th

45°

August 16th

46°

August 17th

47°

August 18th

48°

August 19th

49°

August 20th

50°

August 21st

Thanks to “human astronomical computer extraordinaire” Ed Kotapish for the compilation!

Note that the table above is perpetual for years in the first half of the 21st century. Our friend, the Precession of the Equinoxes pivots the equinoctial points to the tune of about one degree every 72 years. The Earth’s axis completes one full “wobble” approximately every 26,000 years. Our rotational pole only happens to be currently pointing at Polaris in our lifetimes. Its closest approach is around 2100 AD, after which the north celestial pole and Polaris will begin to drift apart. Mark your calendars—Vega will be the pole star in 13,727 AD. And to the ancient Egyptians, Thuban in the constellation Draco was the Pole Star!

Near Luxor (Photo by author).
The Colossi of Memnon Near Luxor, just one of the amazing architectural projects carried out by the ancient Egyptians. (Photo by author).

Keep in mind, atmospheric extinction is your enemy in this quest, as it will knock normally brilliant magnitude -1.46 Sirius a whopping 40 times in brightness to around magnitude +2.4.

Note that we have a nice line-up of planets in the dawn sky (see intro chart), which are joined by a waning crescent Moon this weekend. Jupiter and Mars ride high about an hour before sunrise, and if you can pick out Mercury at magnitude -0.5 directly below them, you should have a shot at spotting Sirius far to the south.

And don’t be afraid to “cheat” a little bit and use binoculars in your quest… we’ve even managed on occasion to track Sirius into the broad daylight. Just be sure to physically block the Sun behind a building or hill before attempting this feat!

Sirius as seen via Hubble- can you spy Sirius B? (NASA/ESA Hubble image).
Sirius as seen via Hubble- can you spy Sirius B? (Credit: NASA/ESA Hubble image).

Of course, the heliacal rising of Sirius prior to the flooding of the Nile was a convenient coincidence that the Egyptians used to their advantage. The ancients had little idea as to what they were seeing. At 8.6 light-years distant, Sirius is the brightest star in Earth’s sky during the current epoch. It’s also the second closest star visible to the naked eye from Earth. Only Alpha Centauri, located deep in the southern hemisphere sky is closer. The light you’re seeing from Sirius today left in early 2005, back before most of us had Facebook accounts.

Sirius also has a companion star, Sirius B. This star is the closest example of a white dwarf. Orbiting its primary once every 50 years, Sirius B has also been the center of a strange controversy we’ve explored in past writings concerning Dogon people of Mali.

Sirius B is difficult to nab in a telescope, owing to dazzling nearby Sirius A. This feat will get easier as Sirius B approaches apastron with a max separation of 11.5 arc seconds in  2025.

Some paleoastronomers have also puzzled over ancient records referring to Sirius as “red” in color.  While some have stated that this might overturn current astrophysical models, a far more likely explanation is its position low to the horizon for northern hemisphere observers. Many bright stars can take on a twinkling ruddy hue when seen low in the sky due to atmospheric distortion.

Let the Dog Days of Summer (& astronomy) begin! (Photo by author).
Let the Dog Days of Summer (& astronomy) begin! (Photo by author).

All great facts to ponder during these Dog Days of early August, perhaps as the sky brightens during the dawn and your vigil for the Perseid meteors draws to an end!

Astronomers See Snow … In Space!

Artist's conception of the snow line in TW Hydrae. Credit: Bill Saxton/Alexandra Angelich, NRAO/AUI/NSF

There’s an excellent chance of frost in this corner of the universe: astronomers have spotted a “snow line” in a baby solar system about 175 light-years away from Earth. The find is cool (literally and figuratively) in itself. More importantly, however, it could give us clues about how our own planet formed billions of years ago.

“[This] is extremely exciting because of what it tells us about the very early period in the history of our own solar system,” stated Chunhua Qi, a researcher with the Harvard-Smithsonian Center for Astrophysics who led the research.

“We can now see previously hidden details about the frozen outer reaches of another solar system, one that has much in common with our own when it was less than 10 million years old,” he added.

The real deal enhanced-color picture of TW Hydrae is below, courtesy of a newly completed telescope: the Atacama Large Millimeter/submillimeter Array in Chile. It is designed to look at grains and other debris around forming solar systems. This snow line is huge, stretching far beyond the equivalent orbit of Neptune in our own solar system. See the circle? That’s Neptune’s orbit. The green stuff is the snow line. Look just how far the green goes past the orbit.

The carbon monoxide line as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia
The carbon monoxide line on TW Hydrae as seen by the Atacama Large Millimeter/submillimeter Array (ALMA) telescope. The circle represents the equivalent orbit of Neptune when comparing it to our own solar system. Credit: Karin Oberg, Harvard University/University of Virginia

Young stars are typically surrounded by a cloud of gas and debris that, astronomers believe, can in many cases form into planets given enough time. Snow lines form in young solar systems in areas where the heat of the star isn’t enough to melt the substance. Water is the first substance to freeze around dust grains, followed by carbon dioxide, methane and carbon monoxide.

It’s hard to spot them: “Snow lines form exclusively in the relatively narrow central plane of a protoplanetary disk. Above and below this region, stellar radiation keeps the gases warm, preventing them from forming ice,” the astronomers stated. In areas where dust and gas are more dense, the substances are insulated and can freeze — but it’s difficult to see the snow through the gas.

In this case, astronomers were able to spot the carbon monoxide snow because they looked for diazenylium, a molecule that is broken up in areas of carbon monoxide gas. Spotting it is a “proxy” for spots where the CO froze out, the astronomers said.

Here are some more of the many reasons this is exciting to astronomers:

  • Snow could help dust grains form faster into rocks and eventually, planets because it coats the grain surface into something more stickable;
  • Carbon monoxide is a requirement to create methanol, considered a building block of complex molecules and life;
  • The snow was actually spotted with only a small portion of ALMA’s 66 antennas while it was still under construction. Now that ALMA is complete, scientists are already eager to see what the telescope will turn up the next time it gazes at the system.

Source: National Radio Astronomy Observatory