The Hubble and FU Orionis: a New Look at an Old Mystery

This is an artist's concept of the early stages of the young star FU Orionis (FU Ori) outburst, surrounded by a disk of material. A team of astronomers has used the Hubble Space Telescope's ultraviolet capabilities to learn more about the interaction between FU Ori's stellar surface and the accretion disk that has been dumping gas onto the growing star for nearly 90 years. NASA-JPL, Caltech

In 1936 astronomers watched as FU Orionis, a dim star in the Orion constellation, brightened dramatically. The star’s brightness increased by a factor of 100 in a matter of months. When it peaked, it was 100 times more luminous than our Sun.

Astronomers had never observed a young star brightening like this.

Continue reading “The Hubble and FU Orionis: a New Look at an Old Mystery”

The First Close-Up Picture of Star Outside the Milky Way

WOH G64 is a massive red supergiant star in the Large Magellanic Cloud. Thanks to the ESO's Very Large Telescope Interferometer, this is the first close-up picture of a star in another galaxy. Image Credit: ESO/K. Ohnaka et al.

Like a performer preparing for their big finale, a distant star is shedding its outer layers and preparing to explode as a supernova.

Astronomers have been observing the huge star, named WOH G64, since its discovery in the 1970s. It’s one of the largest known stars, and also one of the most luminous and massive red supergiants (RSGs). The star is surrounded by an envelope of expelled star-stuff, which could indicate it’s getting ready to explode.

Continue reading “The First Close-Up Picture of Star Outside the Milky Way”

Main Sequence and White Dwarf Binaries are Hiding in Plain Sight

This ALMA image shows the binary HD101584. The pair of stars share a common envelope, and are surrounded by complex clouds of gas. Image Credit: By ALMA, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=86644758

Some binary stars are unusual. They contain a main sequence star like our Sun, while the other is a “dead” white dwarf star that left fusion behind and emanates only residual heat. When the main sequence star ages into a red giant, the two stars share a common envelope.

This common envelope phase is a big mystery in astrophysics, and to understand what’s happening, astronomers are building a catalogue of main sequence-white dwarf binaries.

Continue reading “Main Sequence and White Dwarf Binaries are Hiding in Plain Sight”

Up to a Third of Stars Ate Some of their Planets

Ultra-short period planets can be engulfed by their stars. They may be responsible for differences in metallicity between sibling stars. Image Credit: NASA, ESA and A. Schaller

In recent years, astronomers have developed techniques to measure the metal content of stars with extreme accuracy. With that capability, astronomers have examined sibling stars to see how their metallicity differs. Some of these co-natal stars have pronounced differences in their metallicity.

New research shows that stars engulfing rocky planets are responsible.

Continue reading “Up to a Third of Stars Ate Some of their Planets”

Habitable Worlds are Found in Safe Places

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

When we think of exoplanets that may be able to support life, we hone in on the habitable zone. A habitable zone is a region around a star where planets receive enough stellar energy to have liquid surface water. It’s a somewhat crude but helpful first step when examining thousands of exoplanets.

However, there’s a lot more to habitability than that.

Continue reading “Habitable Worlds are Found in Safe Places”

TESS Finds a Triple Star System that Could Fit within Mercury’s Orbit

This artist’s concept illustrates how tightly the three stars in the system called TIC 290061484 orbit each other. If they were placed at the center of our solar system, all the stars’ orbits would be contained a space smaller than Mercury’s orbit around the Sun. The sizes of the triplet stars and the Sun are also to scale. NASA’s Goddard Space Flight Center

TESS, the Transiting Exoplanet Survey Satellite has been on the lookout for alien worlds since 2018. It has just hit the news again having identified an extreme triple star system where two stars orbit each other every 1.8 days. The third component circles them both in 25 days – this puts the entire system within the orbit of Mercury with a little wriggle room to spare! To visual observers, it looks like a single star but the power of TESS revealed a flicker as the stars line up and pass one another along our line of sight. Eventually, the two inner stars will merge, triggering a supernova event!

Continue reading “TESS Finds a Triple Star System that Could Fit within Mercury’s Orbit”

Plants Would Still Grow Well Under Alien Skies

This is an artist's illustration of the rocky super Earth HD 219134. It orbits a K-type star, a long-lived stable type of main sequence star. The light from K-type stars is different than the Sun's. Can Earth plants photosynthesize effectively near these stars? Image Credit: By NASA/JPL-Caltech - http://photojournal.jpl.nasa.gov/jpeg/PIA19833.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=41995148

Photosynthesis changed Earth in powerful ways. When photosynthetic organisms appeared, it led to the Great Oxygenation Event. That allowed multicellular life to evolve and resulted in the ozone layer. Life could venture onto land, protected from the Sun’s intense ultraviolet radiation.

But Earth’s photosynthetic organisms evolved under the Sun’s specific illumination. How would plants do under other stars?

Continue reading “Plants Would Still Grow Well Under Alien Skies”

A Star Was Kicked Out of a Globular Cluster by an Intermediate-Mass Black Hole

The M15 Globular Cluster (aka. Great Hercules Cluster). Astronomers suspect the existence of one or more intermediate-mass black holes at its heart. Credit: NASA/ESA/HST
The M15 Globular Cluster (aka. Great Hercules Cluster). Astronomers suspect the existence of one or more intermediate-mass black holes at its heart. Credit: NASA/ESA/HST

Astronomers have solid evidence for the existence of stellar-mass black holes and supermassive black holes. However, evidence for Intermediate Black Holes (IMBHs) is more elusive. Their existence remains hypothetical.

However, study by study, evidence is accumulating for IMBHs. The latest comes from the globular cluster M15, where a fast-moving star suggests the presence of something massive. Could it be an elusive IMBH?

Continue reading “A Star Was Kicked Out of a Globular Cluster by an Intermediate-Mass Black Hole”

High Resolution Images Show Bubbling Gas on the Surface of Another Star

Astronomers have captured a sequence of images of a star other than the Sun in enough detail to track the motion of bubbling gas on its surface. The images of the star, R Doradus, were obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). This panel shows three of these real images, taken with ALMA on 18 July, 27 July and 2 August 2023. The giant bubbles — 75 times the size of the Sun — seen on the star’s surface are the result of convection motions inside the star. The size of the Earth’s orbit is shown for scale. Credit: ALMA (ESO/NAOJ/NRAO)/W. Vlemmings et al.

Although stars are enormous, they’re extremely far away, and appear as point sources in telescopes. Usually, you never get to see more than a pixel. Now astronomers have used the Atacama Large Millimeter/submillimeter Array (ALMA) to resolve details on the surface of the star R Doradus and track its activity for 30 days. The images revealed giant, hot bubbles of gas 75 times larger than the entire Sun. R Doradus is 350 times larger than our Sun, but only 180 light-years away.

“This is the first time the bubbling surface of a real star can be shown in such a way,“ said Wouter Vlemmings, a professor at Chalmers University of Technology in Sweden, and lead author of the study, in a press release from the European Southern Observatory (ESO). “We had never expected the data to be of such high quality that we could see so many details of the convection on the stellar surface.”

Continue reading “High Resolution Images Show Bubbling Gas on the Surface of Another Star”

Polaris, Earth’s North Star, Has A Surprisingly Spotted Surface

An artist's conception shows Polaris A with a close companion, known as Polaris Ab. Yet another companion star, Polaris B, can be seen as a speck in the background at right. Credit: STScI

Humanity’s been fortunate to have a star situated over Earth’s north pole. The star, known as Polaris, or the North Star, has guided many sailors safely to port. But Polaris is a fascinating star in its own right, not just because of its serendipitous position.

Continue reading “Polaris, Earth’s North Star, Has A Surprisingly Spotted Surface”