Solar Flares and Solar Magnetic Reconnection Get New Spotlight in Two Blazing Studies

Image of a solar flare (bright flash) obtained by NASA’s Solar Dynamics Observatory on Oct. 2, 2014, with a burst of solar material erupting being observed just to the right of the solar flare. (Credit: NASA/SDO)

Two recent studies published in The Astrophysical Journal discuss findings regarding solar flare properties and a new classification index and the Sun’s magnetic field, specifically what’s called solar magnetic reconnection. These studies hold the potential to help researchers better understand the internal processes of the Sun, specifically pertaining to solar flare activity and space weather. Here, Universe Today discusses these two studies with both lead authors regarding the motivation behind the studies, significant results, and implications on our understanding regarding solar flares and space weather.

Continue reading “Solar Flares and Solar Magnetic Reconnection Get New Spotlight in Two Blazing Studies”

The Sun’s Magnetic Field Might Only Be Skin Deep

A new study suggests sunspots and solar flares could be generated my a magnetic field within the Sun's outermost layers. This shows the Sun's magnetic fields overlaying an image from the Solar Dynamics Observatory. NASA/SDO/AIA/LMSAL

It’s coming back! Sunspot AR3664 gave us an amazing display of northern lights in mid-May and it’s now rotating back into view. That means another great display if this sunspot continues to flare out. It’s all part of solar maximum—the peak of an 11-year cycle of solar active and quiet times. This cycle is the result of something inside the Sun—the solar dynamo. A team of scientists suggests that this big generator lies not far beneath the solar surface. It creates a magnetic field and spurs flares and sunspots.

Continue reading “The Sun’s Magnetic Field Might Only Be Skin Deep”

Solar Orbiter Takes a Mind-Boggling Video of the Sun

The 'fuzzy' Sun. Credit: ESA & NASA/Solar Orbiter/EUI Team

You’ve seen the Sun, but you’ve never seen the Sun like this. This single frame from a video captured by ESA’s Solar Orbiter mission shows the Sun looking very …. fluffy!  You can see feathery, hair-like structures made of plasma following magnetic field lines in the Sun’s lower atmosphere as it transitions into the much hotter outer corona. The video was taken from about a third of the distance between the Earth and the Sun.

See the full video below, which shows unusual features on the Sun, including coronal moss, spicules, and coronal rain.  

Continue reading “Solar Orbiter Takes a Mind-Boggling Video of the Sun”

The Sun Gets Feisty, Throwing Off Three X-Class Flares Within 24 Hours

Sunspot region 3590 which is located at a fairly high latitude produced two impulsive X-class events. The first solar flare peaked yesterday at 23:07 UTC with a maximum X-ray flux of X1.9 and the second solar flare peaked today at 06:32 with a maximum observed X-ray flux of X1.7. Both events caused a brief strong R3 radio blackout at the day-side of our planet.

The Sun is heading toward solar maximum (which is likely to be about a year away) and as it does, there will be more sunspots, solar flares and coronal mass ejections. Over the last 24 hours there has been three, yes three X-class flares, the first peaking at X1.9, the second 1.7 and the final one a mighty 6.3. Flares of this magnitude caused radio blackouts, disruption to mobile phones and radio transmissions.  

Continue reading “The Sun Gets Feisty, Throwing Off Three X-Class Flares Within 24 Hours”

Solar Physics: Why study it? What can it teach us about finding life beyond Earth?

Image of a coronal mass ejection being discharged from the Sun. (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?

Continue reading “Solar Physics: Why study it? What can it teach us about finding life beyond Earth?”

We Just had the Strongest Solar Flare in the Current Solar Cycle

A solar flare erupts on the Sun. Credit: NASA/GSFC/SDO
A solar flare erupts on the Sun. Credit: NASA/GSFC/SDO

On December 14th, at 12:02 PM Eastern (09:02 AM Pacific), the Sun unleashed a massive solar flare. According to the Space Weather Prediction Center, part of the National Oceanic Atmospheric Administration (NOAA), this was the strongest flare of Solar Cycle 25, which began in 2019 and will continue until 2030. What’s more, scientists at the SWPC estimate that this may be one of the most powerful solar flares recorded since 1755 when extensive recording of solar sunspot activity began.

Continue reading “We Just had the Strongest Solar Flare in the Current Solar Cycle”

The Solar Radius Might Be Slightly Smaller Than We Thought

SDO Sol
NASA SDO's view, of our tempestuous host star. NASA/SDO

A pioneering method suggests that the size of our Sun and the solar radius may be due revision.

Our host star is full of surprises. Studying our Sun is the most essential facet of modern astronomy: not only does Sol provide us with the only example of a star we can study up close, but the energy it provides fuels life on Earth, and the space weather it produces impacts our modern technological civilization.

Now, a new study, titled The Acoustic Size of the Sun suggests that a key parameter in modern astronomy and heliophysics—the diameter of the Sun—may need a slight tweak.

Continue reading “The Solar Radius Might Be Slightly Smaller Than We Thought”

Parker Makes its Closest and Fastest Solar Flyby

An artist's illustration of the Parker Solar Probe approaching the Sun. Image: NASA
An artist's illustration of the Parker Solar Probe approaching the Sun. Image: NASA

The Parker Solar Probe is the little engine that just keeps going and going by the Sun. On September 27th, it made its 17th close approach and skimmed just 7.26 million kilometers (4.51 million miles) above the sun’s “surface” layer (called the photosphere).

Continue reading “Parker Makes its Closest and Fastest Solar Flyby”

Is the Solar Wind Coming From These Tiny Jets on the Sun?

The Solar Orbiter mission is studying the Sun in great detail. It is helping scientists track down the source of the solar wind. Courtesy: ESA.
The Solar Orbiter mission is studying the Sun in great detail. It is helping scientists track down the source of the solar wind. Courtesy: ESA.

Ever since the first direct observations of the solar wind in 1959, astronomers have worked to figure out what powers this plasma flow. Now, scientists using the ESA/NASA Solar Orbiter spacecraft think they have an answer: tiny little outbursts called “picoflares” They flash out from the corona at 100 kilometers per second.

Continue reading “Is the Solar Wind Coming From These Tiny Jets on the Sun?”

A Massive Solar Storm was Detected on Earth, Mars, and the Moon

Giant solar eruption felt on Earth, Moon and Mars. Credit: ESA

A coronal mass ejection erupted from the Sun on October 28th, 2021, spreading solar energetic particles (SEPs) across a volume of space measuring more than 250 million km (155.34 million mi) wide. This means that the event was felt on Earth, Mars, and the Moon, which was on the opposite side of the Sun at the time. It was also the first time that a solar event was measured simultaneously by robotic probes on Earth, Mars, and the Moon, which included ESA’s ExoMars Trace Gas Orbiter (TGO) and Eu:CROPIS orbiter, NASA’s Curiosity rover and Lunar Reconnaissance Orbiter (LRO), and China’s Chang’e-4 lander.

The ESA’s Solar Orbiter, Solar and Heliospheric Observatory (SOHO), and BepiColombo missions were also caught by the outburst and provided additional measurements of this solar event. The study of Solar Particle Events (SPE) – aka. solar flares – and “space weather” phenomena are vital to missions operating in Low Earth Orbit (LEO) – for example, crews living and working on the International Space Station (ISS). But it is especially vital for missions destined for locations beyond LEO and cislunar space, including Project Artemis and the many proposals for sending astronauts to the Moon and Mars in the coming years.

Continue reading “A Massive Solar Storm was Detected on Earth, Mars, and the Moon”