Movie Review – Alien: Covenant

Promotional poster for Alien: Covenant. Credit: 20th Century Fox

Warning: mild plot spoilers ahead for the upcoming summer film Alien: Covenant, though we plan to focus more on the overall Alien sci-fi franchise and some of the science depicted in the movie.

So, are you excited for the 2017 movie season? U.S. Memorial Day weekend is almost upon us, and that means big ticket, explosion-laden sci-fi flicks and reboots/sequels. Lots of sequels. We recently got a chance to check out Alien: Covenant opening Thursday, May 18th as the second prequel and the seventh film (if you count 2004’s Alien vs. Predator offshoot) in the Alien franchise.

We’ll say right up front that we were both excited and skeptical to see the film… excited, because the early Alien films still stand as some of the best horror sci-fi ever made. But we were skeptical, as 2012’s Prometheus was lackluster at best. Plus, Prometheus hits you with an astronomical doozy in the form of the “alien star chart” right off the bat, not a great first step. Probably the best scene is Noomi Rapace’s terrifying self-surgery to remove the alien parasite. Mark Watney had to do something similar to remove the antenna impaled in his side in The Martian. Apparently, Ridley Scott likes to use this sort of scene to really gross audiences out. The second Aliens film probably stands as the benchmark for the series, and the third film lost fans almost immediately with the death of Newt at the very beginning, the girl Sigourney Weaver and crew fought so hard to save in Aliens.

How well does Alien: Covenant hold up? Well, while it was a better attempt at a prequel than Prometheus, it approaches though doesn’t surpass the iconic first two. Alien: Covenant is very similar to Aliens, right down to the same action beats.

The story opens as the crew of the first Earth interstellar colony ship Covenant heads towards a promised paradise planet Origae-6. En route, the crew receives a distress signal from the world where the ill-fated Prometheus disappeared, and detours to investigate. If you’ve never seen an Alien film before, we can tell you that investigating a mysterious transmission is always a very bad idea, as blood and gore via face-hugging parasites is bound to ensue. As with every Alien film, the crew of the Covenant is an entirely new cast, with Katherine Waterston as the new chief protagonist similar to Sigourney Weaver in the original films. And like any sci-fi horror film, expect few survivors.

Alien: Covenant is a worthy addition to the Alien franchise for fans who know what to expect, hearkening back to the original films. As a summer blockbuster, it has a bit of an uphill battle, with a slower opening before the real drama begins.

So how does the science of Alien: Covenant hold up?

The Good: Well, as with the earlier films, we always liked how the aliens in the franchise were truly, well, alien, not just human actors with cosmetic flourishes such as antennae or pointed ears. Humans are the result of evolutionary fortuity, assuring that an alien life form will trend more towards the heptapods in Arrival than Star Trek’s Mr. Spock. Still more is revealed about the parasitic aliens in Alien: Covenant, though the whole idea of a inter-genetic human alien hybrid advanced in the later films seems like a tall order… what if their DNA helix curled the wrong way? Or was triple or single, instead of double stranded?

Spaceships spin for gravity in the Alien universe, and I always liked Scott’s industrial-looking, gray steel and rough edges world in the Alien films, very 2001: A Space Odyssey.

Now, for a very few pedantic nit picks. You knew they were coming, right? In the opening scenes, the Covenant gets hit with a “neutrino burst” dramatically disabling the deployed solar array and killing a portion of the hibernating crew. Through neutrinos are real, they, for the most part, pass right through solid matter, with nary a hit. Millions are passing through you and me, right now. The burst is later described as due to a “stellar ignition event” (a flare? Maybe a nova?) Though the crew states there’s no way to predict these beforehand… but even today there is, as missions such as the Solar Dynamics Observatory and SOHO monitor Sol around the clock. And we do know which nearby stars such as Betelgeuse and Spica are likely to go supernova, and that red dwarfs are tempestuous flare stars. An interstellar colonization mission would (or at least should) know to monitor nearby stars (if any) for activity. True, a similar sort of maguffin in the form of the overblown Mars sandstorm was used in The Martian to get things rolling plot-wise, but we think maybe something like equally unpredictable bursts high-energy cosmic rays would be a bigger threat to an interstellar mission.

The crew also decides to detour while moving at presumably relativistic speeds to investigate the strange signal. This actually happens lots in sci-fi, as it seems as easy as running errands around town to simply hop from one world to the next. In reality, mass and change of momentum are costly affairs in terms of energy. In space, you want to get there quickly, but any interstellar mission would involve long stretches of slow acceleration followed by deceleration to enter orbit at your destination… changing this flight plan would be out of the question, even for the futuristic crew of the Covenant.

Expect a high body count: the crew of the Covenant. Credit: 20th Century Fox

Another tiny quibble: the Covenant’s computer pinpoints the source of the mysterious signal, and gives its coordinates in right ascension and declination. OK, this is good: RA and declination are part of a real coordinate system astronomers use to find things in the sky… here on Earth. It’s an equatorial system, though, hardly handy when you get out into space. Maybe a reference system using the plane of the Milky Way galaxy would be more useful.

But of course, had the crew of the Covenant uneventfully made it to Origae-6 and lived happily ever after stomach-exploding parasite free, there would be no film. Alien: Covenant is a worthy addition to the franchise and a better prequel attempt than Prometheus… though it doesn’t quite live up to the thrill ride of the first two, a tough act to follow in the realm of horror sci-fi.

New NASA-themed TV Pilot by ‘The Martian’ Author Andy Weir

Author Andy Weir, who wrote the bestselling novel “The Martian” on which the successful 2015 movie of the same name was based, announced CBS is picking up his idea for a new pilot for a television show called “Mission Control.”

“For the past several months, I’ve been working on a TV show pilot, and I’m happy to announce that CBS is going to make it!” Weir posted on Facebook. “Of course, I’m all about scientific accuracy and this show will be no exception.”

Weir added (in what I assume was his best Tom Hanks), “Should be a hell of a show.”

Author Andy Weir in NASA’s Mission Control Center in Houston during a tour. Credit: NASA/James Blair and Lauren Hartnett.

The show will be a drama, with the main characters working as flight controllers at the Mission Control Center in Houston, and how they “juggle their personal and professional lives during a critical mission with no margin for error,” reported Deadline Hollywood.

Weir said casting for the actors is about to begin, but there is already “an impressive group of behind-the-camera people already involved,” he said. “Notably: [producer] Aditya Sood, whom I worked with before on “The Martian”.

Additionally, Simon Kinberg, another producer for the “The Martian,” will be the executive producer of the new series.

Andy Weir on Universe Today’s “Weekly Space Hangout” in January 2015:

Weir was first hired as a programmer for a national laboratory at age fifteen then worked as a software engineer. But as a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight, he wrote “The Martian” in his spare time. Weir originally self-published the novel in 2011, but it was so successful, the rights to it were purchased by Crown Publishing and it was re-released it in 2014. A film adaptation directed by Ridley Scott and starring Matt Damon, was released in October 2015.

“The Martian” is the story of astronaut Mark Watney, who becomes stranded alone on Mars in the year 2035, and does everything he can to survive.

Weir didn’t provide a timeline of when the show would air, but Keith Cowing at NASAWatch reported that NASA Public Affairs “has been approached by the show’s producers and they are waiting on a script for final consideration. At this point NASA has not committed to assist the producers, allow use of its logo, facilities, staff etc.”

What is the Death Ray?

Death Ray

Scientists, futurists, and science fiction writers have been talking about it for over a century, and fans of science fiction and futurists have fantasized about it for just as long. The portable directed-energy weapon that zaps your enemies, rendering them incapacitated or reducing them to a pile of ashes!

The concept has gone through many iterations over the decades, ranging from laser pistols and cannons to phasers. And yet, this staple of science fiction is largely based in science fact. Since the early 20th century, scientists have sought to develop a working directed-energy weapon, based on ideas put forward by many inventors and scientists.

Definition:

A”death ray” is a theoretical particle beam or electromagnetic weapon that was originally proposed independently during the 1920s and 30s by multiple scientists. From these initial proposals, research into energy-based weapons has been ongoing. While most examples come predominantly from science fiction, several applications and proposals have been produced during the latter half of the 20th century.

The Death Star firing its superlaser. Image Credit: Wookieepedia / Lucasfilm
Directed-energy weapons, like the Death Star’s superlaser, are a common feature in science fiction. Credit: Wookieepedia / Lucasfilm

History:

During the early 20th century, many scientists claimed that they had created a working death ray. For instance, in September of 1924, British inventor Harry Grindell-Matthews attempted to sell what he reported to be a death ray that could destroy human life and bring down planes at a distance to the British Air Ministry.

While he was never able to produce a functioning model or demonstrate it to the military, news of this prompted American inventor Edwin R. Scott to claim that he was the first to develop a death ray. According to Scott, he had done so in 1923, which was the result of the nine years he spent as a student and protege of Charles P. Steinmetz – a German-American professor at Union College, New York.

In 1934, Spanish inventor Antonion Longoria claimed to have invented a death ray machine which he had tested on pigeons at a distance of about 6.5 km (4 miles). He also claimed to have killed mice that were enclosed in a thick-walled metal chamber.

However, it was famed inventor and electrical engineer Nikola Tesla who provided the most detailed framework for such a device. In a 1934 interview with Time Magazine, Tesla explained the concept of a “teleforce” (or directed energy) weapon which would be capable of destroying entire squadrons of airplanes or an entire army at a distance of 400 km (250 miles).

 Century Magazine photographer Dickenson Alley) of Tesla sitting in his Colorado Springs laboratory with his "magnifying transmitter" generating millions of volts. The 7-metre (23 ft) long arcs were not part of the normal operation, but only produced for effect by rapidly cycling the power switch.[117]
Photograph of Tesla sitting in his Colorado Springs laboratory with his “magnifying transmitter” generating millions of volts. Credit: Wikipedia Commons/Century Magazine/Dickenson V. Alley
Tesla tried to interest the US War Department and several European countries in the device at the time, though none contracted with Tesla to build it. As Tesla described his invention in an article titled “A Machine to End War“, which appeared in Liberty Magazine in 1935:

“this invention of mine does not contemplate the use of any so-called ‘death rays’. Rays are not applicable because they cannot be produced in requisite quantities and diminish rapidly in intensity with distance. All the energy of New York City (approximately two million horsepower) transformed into rays and projected twenty miles, could not kill a human being, because, according to a well known law of physics, it would disperse to such an extent as to be ineffectual. My apparatus projects particles which may be relatively large or of microscopic dimensions, enabling us to convey to a small area at a great distance trillions of times more energy than is possible with rays of any kind. Many thousands of horsepower can thus be transmitted by a stream thinner than a hair, so that nothing can resist.”

Based on his descriptions, the device would constitute a large tower that could be mounted on top of a building, positioned either next to shores or near crucial infrastructure. This weapon, he claimed, would be defensive in nature, in that it would make any nation employing it impregnable to attack from air, land or sea, and up to a distance of 322 km (200 miles).

During World War II, multiple efforts were mounted by the Axis powers to create so-called “death rays”. For instance, Imperial Japan developed a concept they called “Ku-Go”, which sought to use microwaves created in a large magnetron as a weapon.

Dresden, 1945, view from the city hall (Rathaus) over the destroyed city Deutsche Fotothek?
Dresden, 1945, view from the city hall (Rathaus) over the destroyed city. Credit: Wikipedia Commons/ Deutsche Fotothek?

Meanwhile, the Nazis mounted two projects, one which was led by the researcher known as Schiebold that involved a particle accelerator and beryllium rods. The second, led by Dr. Rolf Wideroe, was developed at the Dresden Plasma Physics Laboratory until it was bombed in Feb. 1945. In April of that year, as the war was coming to close, the device was taken into custody by the US Army.

On January 7th, 1943, engineer and inventor Nikola Tesla died in his room at the Hotel New Yorker in Manhattan. A story quickly developed that within his room, Tesla had scientific paper in his possession that provided the most detailed description yet for a death ray. These documents, it was claimed, had been seized by the US military, who wanted them for the sake of the war effort.

Examples in Science Fiction:

Ray guns, and other examples of directed-energy weapons have been a common feature in science fiction for over a century. One of the first known examples comes from H.G. Wells seminal book, War of the Worlds, which featured Martian war machines that used “heat rays”. However, the first use of the term was in The Messiah of the Cylinder (1917), by Victor Rousseau Emanuel.

Ray guns were also a regular feature in comic books like Buck Rogers (first published in 1928) and Flash Gordon, published in 1934. In Alfred Noyes’ 1940 novel The Last Man (released as No Other Man in the US), a death ray developed by a German scientist named Mardok is unleashed in a global war and almost wipes out the human race.

War of the Worlds
H.G. Wells’ 1898 novel about a Martian invasion, War of the Worlds, featured alien machines using heat rays to spread havoc. Credit: Henrique Alvim Correa (1906)

The concept of the blaster was introduced by Isaac Asimov’s The Foundation Series, which were described as nuclear-powered handheld weapons that fired energetic particles. In Frank Herbert’s Dune series, energy weapons take the form of continuous-wave laser projectors (lasguns), which are rendered obsolete by the invention of “Holtzman shields”.

According to Herbert, the interaction of a lasgun blast and this force field results in a nuclear explosion which typically kills both the gunner and the target. Further examples of death rays can be found in just about any science fiction franchise, ranging from phasers (Star Trek) and laser blasters (Star Wars) to spaceship-mounted beam cannons.

Modern Development:

In terms of real-world applications, many attempts have been made to create directed-energy weapons for offensive and defensive purposes. For instance, the development of radar before World War II was the result of attempts to find applications for directed electromagnetic energy (in this case, radio waves).

In the 1980s, U.S. President Ronald Reagan proposed the Strategic Defense Initiative (SDI) program (nicknamed “Star Wars”). It suggested that lasers, perhaps space-based X-ray lasers, could destroy ICBMs in flight. During the Iraq War, electromagnetic weapons, including high power microwaves were used by the U.S. military to disrupt and destroy the Iraqi electronic systems.

An artist's concept of a Space Laser Satellite Defense System. Credit: USAF
An artist’s concept of a Space Laser Satellite Defense System. Credit: USAF

On March 18th, 2009 Northrop Grumman announced that its engineers in Redondo Beach had successfully built and tested an electric laser capable of producing a 100-kilowatt ray of light, powerful enough to destroy cruise missiles, artillery, rockets and mortar rounds. And on July 19th, 2010, an anti-aircraft laser was unveiled at the Farnborough Airshow, described as the “Laser Close-In Weapon System”.

In 2014, the US Navy made headlines when they unveiled their AN/SEQ-3 Laser Weapon System (or XN-1 LaWS), a directed-energy weapon designed for use on military vessels. Ostensibly, the purpose of the weapon is defensive, designed to either blind enemy sensors (when set to low-intensity) or shoot down unmanned aerial vehicles (UAVs) when set to high-intensity.

Then is what is known as “Active Denial Systems”, which use a microwave source to heat up the water in the target’s skin, thus causing physical pain. Currently, this concept is being developed by the US Air Force Research Laboratory and Raytheon – a US defense contractor – as a means of riot-control.

A Dazzler is another type of directed-energy weapon, one which uses infrared or visible light to temporarily blind an enemy. Targets can include human beings, or their sensors (particularly in the infrared band). The emitters are usually lasers (hence the term “laser dazzler”) and can be portable or mounted on the outside of vehicles (as with the Russian T-80 and T-90 tank).

The personnel halting and stimulation response rifle (PHASR) is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory's Directed Energy Directorate, U.S. Department of Defense. Credit: USAF
The personnel halting and stimulation response rifle (PHASR) is a prototype non-lethal laser dazzler developed by the Air Force Research Laboratory’s Directed Energy Directorate, U.S. Department of Defense. Credit: USAF

An example of the former is the Personnel Halting And Stimulation Response rifle (PHASR), a prototype non-lethal laser dazzler being developed by the US Air Force Research Laboratory’s Directed Energy Directorate. Its purpose is give infantry or other military personnel the ability to temporarily disorient and blind a target without causing permanent damage.

Blinding laser weapons were banned by treated under the UN Protocol on Blinding Laser Weapons, which was passed in 1995. However, the terms of this protocol do not apply to directed-energy weapons that inflict only temporary blindness.

We’ve come a long way since the term “raygun” became a household name. At this rate, who knows what the future will hold? Will Tesla’s dream of a Death Ray ever come true? Will we see directed-energy satellites put in orbit, or handheld lasers becoming the mainstay of armed forces and space explorers? Hard to say. All we can be sure of is that the truth will likely be stranger than the fiction!

We have written many articles about the directed-energy and lasers for Universe Today. Here’s Telescope’s Laser Pointer Clarifies Blurry Skies, The Challenges of Lasers in Space, Don’t Want Aliens Dropping By? Engage Laser-Cloaking Device, Could a “Death Star” Really Destroy a Planet?, and Finding Aliens May be even Easier than Previously Thought.

If you’d like more info on the Death Ray, check out this article from Rense.com.

We’ve also recorded an entire episode of Astronomy Cast all about the Death Ray. Listen here, Episode 36: Gamma Ray Bursts.

Source:

Book Review: The Caloris Network

Thinking of taking a vacation this summer? Maybe you want to distract yourself with a bit of light science fiction fun. How about a deadly alien life form harbored within our solar system? That’s what Nick Kanas presents in his scientific novel “The Caloris Network.” Being placed not too far into the future, this novel lets the reader enjoy a believable taste of first contact that’s hopefully just as good as the contact from their first summer kiss.

caloris network
A pleasant novel has an intriguing plot that’s embellished with the interaction of fun characters. Sometimes it will also carry a somber undertone ringing in the background. So unravels the novel “Caloris Network.” The main character, Sam, is an astrobiologist fresh from looking at multicellular life on Europa. At home, her family suffers serious health concerns but she’s continuing with her efforts. Her research takes her to Mercury where something is raising the concern of the spacefaring military. Her fellow crew members involve a possible Martian secessionist, a cranky commander and a love triangle. All this is pretty typical fare.

Next up you may think there’d be the traditional English speaking alien biped threatening the very existence of the human race. But not this time. Instead Kanas identifies the protagonist as a silicate based lifeform on Mercury. No legs for walking and no lips for speaking. Further, this is the proverbial first contact between the human race and a living, thinking organism from another world. Will it be confrontational? As usual. Will it involve death rays? Kind of. Will it force the reader to ponder how to interact for the first time with an alien? Certainly! This is the best part of the book in that it places the reader not so far into the future so as to make the story readily believable. Being barely over a hundred years away, the reader can connect with the technological advances for an expedition on Mercury, for living on Mars and for the poor environmental state of Earth. With the simple lives of the expedition’s crew, the constrained space travel and the understated alien, Kanas has written a novel that would be fun for that long car ride or a day on the beach.

As a bonus, the author includes a chapter at the end of the book that discusses some of the science presented. It has details on what we’ve discovered of Mercury, particularly with regard to what a human visitor might encounter if standing on its surface; the temperature from searing heat to mind numbing cold, a Sun that changes direction in the sky and effects of a molten interior.

For even more fun when you’re at the beach, there’s an inclusion of how to define life. For instance, “Does it need to move?” “What do we mean by reproduction?” “How do we test for the ability to think?” and most entertaining of all, “How do we communicate with it when we can’t even communicate with dolphins yet?” These and other ideas in the novel may keep you up late discussing our very existence while watching the embers of the cottage campfire settle to a deep dark red.

Certainly something on Europa, Titan and Venus awaits people. Maybe it’s alien life. Maybe the life prefers to exist without humans coming to explore. Maybe they will be exactly as what Nick Kanas writes in his scientific novel “The Caloris Network”. With your imagination, take this novel’s plot as believable and see where it takes you. And maybe by reading this on your vacation, you may think that you’ve waited long enough and it’s time to go find out.

This book is available through Springer.
About the author, Dr. Nick Kanas.

Finding “The Lost Science” of 2001: A Space Odyssey

The film 2001: A Space Odyssey brought space science to the general masses. Today we may consider it as common place, but in 1968 when the film was released, humankind had yet to walk on the Moon. We certainly didn’t have any experience with Jupiter. Yet somehow the producer, Stanley Kubrick, successfully peered into the future and created a believable story. One of his methods was to employ Frederick I. Ordway III as his science consultant. While Ordway has since passed, he left behind a veritable treasure trove of documents detailing his work for Kubrick. Science author and engineer Adam K. Johnson got access to this trove which resulted in the book “2001: The Lost Science – The Scientist, Influences & Designs from the Frederick I. Ordway III Estate Volume 2“. It’s a wonderful summary of Ordway’s contributions and the film’s successes.

What makes a movie? A plethora of ingredients must come together. But most of all, the audience must accept it for what it proclaims to be. For instance, a science fiction show must wander about in space and/or time. And the audience has to believe the wandering. In the 1960s, the general audience had little knowledge of space and could conceivably believe in anything.

Many films used expediency over truth, such as using a gun to shoot a capsule to the Moon. However, to validate his film, Kubrick enlisted Ordway from the Future Projects Office of the Marshall Space Flight Centre. Presumably this alone would have added large amounts of veracity, but Ordway took on the challenge as we see in Johnson’s book and pushed further.

9781926837352

Ordway interviewed many scientists and engineers. Many of these came to the set to provide advice. Ordway acquired drawings as well as made his own schematics. He went to industry, academia and governments. Johnson skillfully brings this all to light. How did the results mesh with this effort? That is the value of Johnson’s book. It gives credit to the breadth and depth of Ordway’s research.

The book’s first section identifies the knowledge sources; people like Willy Ley, books such as Beyond Tomorrow The Next 50 Years in Space, and organizations such as Boeing and its PARSEC project. It identifies the individuals who came to the filming sets to give advice and has many images of the sets as well.

The second section gives credit to preceding films, though it’s not certain from Johnson’s book as to how or if Ordway drew inspiration from them.

Its third and final section is probably the most fun as it provides many figures of the mock-ups, drawings and schematics. It includes a great full page image of Space Station V and a four page pullout section of Discovery X-Ray Delta One. There’s also an interesting note therein that indicates that the sets and props had to be thoroughly believable from every perspective, as they didn’t know where Kubrick may place the camera. Thus, the book gives the reader a taste of the fine detail for some graphics such as for the Moon Bus. With Johnson presenting all this from Ordway’s collection then it’s easy for the reader to understand why there’s a high sense of believability to the film.

Yes, Johnson’s book shows the amount of knowledge that was available in the early 1960s and that Ordway gained access to much of this information. The very large size of this book, about 11in by 14.5in helps show off many great images throughout. However, its size also suggests the style of the book; that is, it is a scrapbook. The book is a wonderful compendium of information relevant to the film 2001: A Space Odyssey. But it doesn’t add to the knowledge base. It’s an excellent repackaging of existing material with only a little suggestive comments on cinematic technique that might be original. And, as with most scrapbooks, the value of this book is the images. While the text is informative, it’s also somewhat dry, so the reader will probably feel much greater reward from feasting on the many print reproductions, drawings and photographs within Johnson’s book.

Perhaps the greatest value of this book is what goes unstated. That is, with enough effort and research people can construct a likely overview of humankind’s progress into the near future.  A future than can be thrilling. The book “2001: The Lost Science – The Scientists, Influences & Designs from the Frederick I. Ordway III Estate Volume 2” by Adam K. Johnson captures some of the excitement and thrill as humankind lay poised upon the edges of travelling into space. Reading it will give you pause at just how far we’ve progressed in the last 50 years. And perhaps get you thinking about what the films of today might be telling us about the next 50 years.

Book Review: Hollyweird Science

Gravity movie poster

Do you remember science classes from way back when? All those laws and rules made it seem like everything was logical and well behaved. Then perhaps with television and movies being a big part of your life you began to wonder whether what you saw was real and unreal. Those things on the big and small screens didn’t seem nearly as well behaved. For instance, can people hear sounds in space? Or, can travelers quickly and easily go from one star to another? If you want to get yourself back on solid footing, get a hold of the book “Hollyweird Science – From Quantum Quirks to the Multiverse” by Kevin Grazier and Stephen Cass. With it, you can sift through a lot of tropes and conceits and glean some wonderful insights of both modern science and modern cinema.

Yes, tropes and conceits are terms from the world of cinema and not of physics. Think of these terms as ‘untruths’ for entertainment that writers use to capture and hold the attention of the audience. As this book describes, writers conjure up these exigencies to meet their demands. Their main demand is to prepare a story that fits into a very limited timeframe and into a very limited budget.

HollyweirdAnd much of the first part of this book takes the reader on a journey of past and present cinema that involves detailed science. This part of the book substantiates the claim that science in the Hollywood world of cinema is weird, whether it is Superman’s kryptonite, Star Trek’s dilithium crystals or Godzilla’s shear bulk. So how does this book go about proving that the science is weird?

Ah, this is the part that you may either love or hate. The authors include science boxes at regular intervals throughout. These science boxes have the equations you may remember from your early science classes. And the equations include numbers or ratios that show how a trope or conceit is particularly untrue. That is, the authors return to all those laws and rules of science, such as the law of gravity, the formula for acceleration, and the standard chemical composition of ecosystems.

Nevertheless, most of these weird issues are ones that the audience has already accepted and even a science box won’t affect the shear enjoyment. For example, think of Torch, a human that can instantly become a flame even though there’s no fuel. While the authors do raise a general lament on the failure of cinema to faithfully follow science, they do provide some rationalization that the untruth or trope was necessary, whether to fit a timeframe or a budget. Perhaps most promising from this section of the book is that the authors indicate that the typical audience member has become much smarter. In consequence, writers put a lot more reality into their science and even the depiction of alien worlds.

Who knew that learning physics could be so much fun?

Overall, the first third of the book is a fairly light, simple read with not so many science boxes. At about a third of the way in, however, the book transitions from being a discussion of cinema entertainment, with particular attention to its science, and becomes a discussion of science with reference to cinema. Here the science boxes are more detailed and numerous. They assess the possibility of using material from the Earth to kick-start a failing Sun, as done in a movie. Or, the likelihood of the Earth’s Moon being kicked out of the solar system, also done. And there’s much detail on the holy grail of science cinema, the faster than light transportation, as happens in most science fiction cinema.

Reading through this part of the book may bring you right back to your science classes of yore and their laws and rules. That is, it will if your science classes included quantum mechanics, parallel universes and wormholes. Here in the book things get really weird as today’s science has yet to faithfully prescribe the laws. Thus, the authors introduce a whole field of science, add current investigations and then associate the science with somewhat related relevant films. Perhaps, when the science gets this challenging, then it’s a good thing that entertaining cinema can come along and at least introduce the ideas to the general public.

With all the attention that the authors give to the science in this book, the reader will quickly appreciate that the book is not just a simple list of cinema bloopers. Rather, the book’s details provide enough depth of knowledge to allow the reader to hold their own at lunch time conversations when the topic swings around to the science in the latest show or movie. Perhaps it may induce the reader to do a bit more exploring and learning, especially as many current films feature a website that defines the science, the tropes and the conceits. However, cinema is for entertainment and the authors must realize the same holds for their book. So as much as this book has lots of hard science, the authors still keep the book entertaining.

And entertainment is mostly what we want, whether from cinema or books. So even if explosions in space come with a loud bang on the sound track or people fly without space suits up and around the Moon, we the audience are content if we are entertained and we haven’t hit the ‘Oh please!’ moment. If you want to know more about this moment, take a look at the book “Hollyweird Science – From Quantum Quirks to the Multiverse” by Kevin Grazier and Stephen Cass. From it, you can make up your own mind on just what you’re ready to accept as entertaining and what is just too much expectation by the storyteller.

The book is available through Springer at this link.

Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech

Remember that time an X-Wing fighter flew past the International Space Station? Or when R2D2 saved the ISS crew?

OK, yeah, those things didn’t really happen, but since the first Star Wars movie came out in 1977, there has been a lot of technology developed that mimics the science and tech from the sci-fi blockbuster films. Of course, we now have real robots in space (Robonaut), drones are now everyday items, there are actual holograms (Voxiebox and Fairy Lights) and DARPA has been developing prosthetic limbs that Luke Skywalker would totally use, called the Reliable Neural-Interface Technology (RE-NET). Plus, Boeing is building blaster guns that will use “pew-pew” sound effects from Star Wars. Seriously. The lasers are silent, and so they need to add sound to know for sure they’ve been fired.

Since we all certainly have Star Wars on the brain today (The Force Awakens opens tonight), let’s take a look at a few recent space-related developments that hint of inspiration from the movies:
Continue reading “Moisture Vaporators, Death Star Construction and Other Real Star Wars Tech”

Radio waves absent from the reputed megastructure-encompassed Kepler star?

Astronomers at the SETI institute (search for extraterrestrial intelligence) have reported their findings after monitoring the reputed megastructure-encompassed star KIC 8462852.  No significant radio signals were detected in observations carried out from the Allen Telescope Array between October 15-30th (nearly 12 hours each day).  However, there are caveats, namely that the sensitivity and frequency range were limited, and gaps existed in the coverage (e.g., between 6-7 Ghz).

Lead author Gerald Harp and the SETI team discussed the various ideas proposed to explain the anomalous Kepler brightness measurements of KIC 8462852, “The unusual star KIC 8462852 studied by the Kepler space telescope appears to have a large quantity of matter orbiting quickly about it. In transit, this material can obscure more than 20% of the light from that star. However, the dimming does not exhibit the periodicity expected of an accompanying exoplanet.”  The team went on to add that, “Although natural explanations should be favored; e.g., a constellation of comets disrupted by a passing star (Boyajian et al. 2015), or gravitational darkening of an oblate star (Galasyn 2015), it is interesting to speculate that the occluding matter might signal the presence of massive astroengineering projects constructed in the vicinity of KIC 8462582 (Wright, Cartier et al. 2015).”

One such megastructure was discussed in a famous paper by Freeman Dyson (1960), and subsequently designated a ‘Dyson Sphere‘.  In order to accommodate an advanced civilisation’s increasing energy demands, Dyson remarked that, “pressures will ultimately drive an intelligent species to adopt some such efficient exploitation of its available resources. One should expect that, within a few thousand years of its entering the stage of industrial development, any intelligent species should be found occupying an artificial biosphere which completely surrounds its parent star.”  Dyson further proposed that a search be potentially conducted for artificial radio emissions stemming from the vicinity of a target star.



An episode of Star Trek TNG featured a memorable discussion regarding a ‘Dyson Sphere‘.

The SETI team summarized Dyson’s idea by noting that Solar panels could serve to capture starlight as a source of sustainable energy, and likewise highlighted that other, “large-scale structures might be built to serve as possible habitats (e.g., “ring worlds”), or as long-lived beacons to signal the existence of such civilizations to technologically advanced life in other star systems by occluding starlight in a manner not characteristic of natural orbiting bodies (Arnold 2013).”  Indeed, bright variable stars such as the famed Cepheid stars have been cited as potential beacons.



The Universe Today’s Fraser Cain discusses a ‘Dyson Sphere‘.

If a Dyson Sphere encompassed the Kepler catalogued star, the SETI team were seeking in part to identify spacecraft that may service a large structure and could be revealed by a powerful wide bandwidth signal.  The team concluded that their radio observations did not reveal any significant signal stemming from the star (e.g., Fig 1 below).  Yet as noted above, the sensitivity was limited to above 100 Jy and the frequency range was restricted to 1-10 Ghz, and gaps existed in that coverage.

Fig 1 from Harp et al. 2015 (http://arxiv.org/abs/1511.01606) indicating the lack of signal detected for the Kepler star (black symbols).
Fig 1 from Harp et al. (2015) conveys the lack of radio waves emerging from the star KIC 8462852 (black symbols), however there were sensitivity and coverage limitations (see text).  The signal emerging from the quasar 3c84 is shown via blue symbols.

What is causing the odd brightness variations seen in the Kepler star KIC 8462852?   Were those anomalous variations a result of an unknown spurious artefact from the telescope itself, a swath of comets temporarily blocking the star’s light, or perhaps something more extravagant.  The latter should not be hailed as the de facto source simply because an explanation is not readily available.  However, the intellectual exercise of contemplating the technology advanced civilisations could construct to address certain needs (e.g., energy) is certainly a worthy venture.

First Looks at The Martian Revealed

Alert: mild spoilers lie ahead, as we’ll be discussing minor plot points of the book The Martian. What, you haven’t read it yet? Have you been stranded on Mars? Don’t make us pull your geek card…

Never mind The Avengers or the seventh installment of the Star Wars franchise… some early stills from the big screen adaptation of Andy Weir’s The Martian have been circulating around ye ole web as of late, and we like what we see.

Image credit:
Mars population: 1.  Image credit: 20th Century Fox/Empire

Self-published in 2012 and lauded for its scientific accuracy, The Martian follows the exploits of astronaut Marc Watney (played by Matt Damon in the upcoming film) as he struggles to stay alive on Mars. Watney must rally every bit of scientific expertise at his command to accomplish everything from growing food to establishing communications to surviving the disco music and bad 70s TV left behind by fellow crew members.

The 20 Century Fox film adaptation is directed by Ridley Scott (of Alien and Blackhawk Down fame) and promises to have a ‘successful failure’ vibe in the tradition of Ron Howard’s Apollo 13. Heck, reading The Martian, we simply love how it breaks the convention advocated at innumerable writing workshops that exposition is somehow always bad. Engineering and science geeks want to peek under the hood, and see what makes that warp drive tick. The Martian breaks very few rules when it comes to getting the science right, and there’s high hopes that this will translate well on the big screen.

Image credit:
Stranded on the Red Planet… Image credit: 20th Century Fox/Empire 

From the design of Watney’s Mars excursion suit to the expedition rover he uses to cross the Martian terrain, we’re seeing lots of actual NASA designs being incorporated into the production.

“NASA was very involved in consulting for the film,” author Andy Weir told Universe Today. “The production got numerous people in both NASA and JPL involved and listened very closely to what they had to say.”

One of our favorite bits from the book is where Watney must use the rising and setting of the twin Martian moons Phobos and Deimos for a rough dead reckoning while travelling over the open Martian terrain. It’s a terrific scene with some possibilities for some great panoramic vistas, and we hope it survives into the film adaptation.

We also hope that the first NASA rover to roll across the soils of Mars (hint: it wasn’t Curiosity, Spirit or Opportunity) makes an appearance in the movie, as it did in the book.

Image credit:
Matt Damon on the set of The Martian. Image credit: 20th Century Fox/Empire

The current release date set by 20th Century Fox is November 27, 2015 and Mr. Weir noted that we may be seeing the very first trailers for The Martian very soon, possibly in the June time frame.

And did you know? The cover for the script for The Martian—complete with early conceptual sketches by director Ridley Scott—actually flew aboard last year’s EFT-1 mission to test the Orion capsule in space.

Image credit: 20th Century Fox
The cover of the draft of the script for The Martian that flew on EFT-1. Click here for the full image (warning for rough language) Image credit: 20th Century Fox

Unlike trendy dystopian futures that are all the rage these days, The Martian depicts an optimistic future, a time where budgetary woes have been overcome and humans are living and working on Mars. This may well have been the true reason that the novel resonated so well throughout the science and space community: it conveys a message of a future that we all hope will be a reality in our lifetimes.

We even see a direct sci-fi lineage between The Martian and the classic 1954 science fiction tale The Cold Equations by Tom Godwin. The universe is indeed out to kill us, and only science can save the day.

Image credit:
The cast of The Martian. Image credit: 20th Century Fox/People

It’ll be interesting to see if The Martian becomes the breakout hit of 2015. Also starring Michael Pena, Mackenzie David, Sean Bean, Donald Glover, Kate Mara, Sebastian Stan, Jeff Daniels, Chiwetel Ejiofor, and Jessica Chastain, The Martian features an all-star cast. We’re also curious to know if the film will have a disco soundtrack, but the author isn’t telling.

Much of the Mars-scapes for The Martian are being filmed in the deserts of Wadi Rum in southern Jordan. We traversed this region during our global backpacking trek in early 2007 and can attest that it is suitably Martian in appearance, though of course, we’ve yet to journey to the Red Planet… Weir’s book and the upcoming film will have to suffice for now.

Image credit:
A NASA spokesperson played by Kristin Wiig. Image credit: 20th Century Fox/People 

Wadi Rum also simulated Mars in the films Red Planet and The Last Days on Mars.

We’ll definitely be waiting in line come opening day!

Check out this exclusive interview with The Martian author Andy Weir in the recent Weekly Spacehangout:

 

See more images from The Martian courtesy of Empire, Entertainment Weekly and People magazine.

Sci-Fi Book Review: “Elsewhen”

Elsewhen is a story about star-crossed young lovers, a love story for science fiction fans. Conceived when author/actor Gary Bullock was working at a radio astronomy site, Elsewhen follows the path of Elijah (‘Lije’) and Laura Bess, two child prodigies who fall head-over-heels in love before tragedy strikes and tears them apart. But for Lije and Laura, it seems that True Love might be able to thwart even fate…

Concepts from the more poetic end of theoretical physics are liberally peppered among the pages—musings on the directionality of time, for example—but this is by no means ‘hard’ science fiction. Scientific complexity level is about equivalent to the first Thor movie, so if you don’t know your bosons from your fermions, don’t despair.

Blending physics with a love story might seem like a difficult line to walk, but Bullock does a respectable job with his 118-page novella. Bullock’s career appears to have wended from screen writing to writing novels, and indeed, Elsewhen reads kind of like a screenplay—which I mean as both praise and as a critique.

On the side of praise, there is a good kind of inertia to the book. The plotline barrels along at a cracking pace, and given the length of the novella, it’s quite possible that you might read this cover to cover in a single night. But on the flip side, I wanted this novel to be longer. Several concepts and (particularly) characters were only loosely sketched out before the plotline whisked away to the next development.

The brevity led to my two main problems with the book. First of all, some key characters are bald rehashes of literary tropes. Some character development earlier in the novel could have, for example, fleshed out the villains in the story to make them more human and relatable.

Second, I craved more depth from the story. The many fantastical elements of the storyline open up the main characters in discussion of various concepts of philosophy and metaphysics, and I felt that more exposition here would have led to a more interesting read (and probably would have also helped with the character development problem). However, this may be less a critique of Elsewhen, and more a problem of my expectations going into this novel.

These issues aside, Elsewhen is a fun book with a clever premise. For the price of a cup of coffee, it’s easy enough to recommend for a light read.

Elsewhen is available on Amazon, Itunes and Audible.

Here’s a “trailer” for the book: