This is Currently the World’s Largest Iceberg

A gigantic chunk of ice recently broke off from an ice shelf in Antarctica, and is currently the world’s largest iceberg. The iceberg, dubbed A-76, measures around 4,320 square km (1,670 square miles) in size. At 170 km (106 miles) in length and 25 km (15 miles) wide, the iceberg is slightly larger than the Spanish island of Majorca, and bigger than the state of Rhode Island in the US.

A-76 was captured in the above image by ESA’s Copernicus Sentinel-1 satellite. Below is an animation of the iceberg calving off the Ronne Ice Shelf.

Continue reading “This is Currently the World’s Largest Iceberg”

A Solution to Space Junk: Satellites Made of Mushrooms?

According to the latest numbers from the ESA’s Space Debris Office (SDO), there are roughly 6,900 artificial satellites in orbit. The situation is going to become exponentially crowded in the coming years, thanks to the many telecommunications, internet, and small satellites that are expected to be launched. This creates all kinds of worries for collision risks and space debris, not to mention environmental concerns.

For this reason, engineers, designers, and satellite manufacturers are looking for ways to redesign their satellites. Enter Max Justice, a cybersecurity expert, former Marine, and “Cyber Farmer” who spent many years working in the space industry. Currently, he is working towards a new type of satellite that is made out of mycelium fibers. This tough, heat-resistant, and environmentally friendly material could trigger a revolution in the booming satellite industry.

Continue reading “A Solution to Space Junk: Satellites Made of Mushrooms?”

A new Method to Capture High-Resolution Images of Space Debris

“You can’t hit what you can’t see” is a common phrase in sports and was originally derived to describe baseball pitcher Walter Johnson’s fastball.  But the same goes for things with a more serious spin, such as some of the millions of pieces of debris floating in Low Earth Orbit (LEO).  Now, a team of researchers have come up with a new imaging system that will allow agencies and governments to closely track some of the debris that is cluttering LEO and potentially endangering humanity’s future expansion to the stars.

Continue reading “A new Method to Capture High-Resolution Images of Space Debris”

How Long Will Space Junk Take to Burn Up? Here’s a Handy Chart

An artist's illustration of space junk. The problem isn't this bad yet, but it's getting worse year by year. Image: Tohoku University

If the Roman Empire had been able to launch a satellite in a relatively high Low Earth Orbit – say about 1,200 km (750 miles) in altitude – only now would that satellite be close to falling back to Earth. And if the dinosaurs had launched a satellite into the furthest geostationary orbit – 36,000 km (23,000 miles) or higher — it might still be up there today.

Continue reading “How Long Will Space Junk Take to Burn Up? Here’s a Handy Chart”

Virgin Orbit Successfully Launches a Batch of Satellites From an Airplane

On Sunday, January 17th, Virgin Orbit conducted the second launch test of its LauncherOne rocket, which the company will use to deploy small satellites to orbit in the coming years. The mission (Launch Demo 2) went smoothly and validated the company’s delivery system, which consists of the rocket air launching from a repurposed 747-400 (named Cosmic Girl).

It also involved the successful deployment of 10 CubeSats which were selected by NASA’s Launch Services Program (LSP) as part of the agency’s CubeSat Launch Initiative (CSLI). The event began when Cosmic Girl took off from the Mojave Air and Space Port at approximately 10:50 A.M. PST (01:50 P.M. EST) and flew to a location about 80 km (50 mi) south of the Channel Islands in the Pacific Ocean.

Continue reading “Virgin Orbit Successfully Launches a Batch of Satellites From an Airplane”

A New Satellite Is Going to Try to Maintain Low Earth Orbit Without Any Propellant

Staying afloat in space can be deceptively hard.  Just ask the characters from Gravity, or any number of the hundreds of small satellites that fall into the atmosphere in a given year.  Any object placed in low Earth orbit (LEO) must constantly fight against the drag caused by the small number of air molecules that make it up to that height.  

Usually they counteract this force by using small amounts of propellant.  However, smaller satellites don’t have the luxury of enough propellant to keep them afloat for any period of time. But now a team of students from the University of Michigan has launched a prototype satellite that attempts to stay afloat using a novel technique – magnetism.

Continue reading “A New Satellite Is Going to Try to Maintain Low Earth Orbit Without Any Propellant”

These Bizarre Cloud Patterns are von Kármán’s Vortices, Caused by the air Wrapping Around Tall Islands

This is an image of some of the islands that make up the nation of Cape Verde. While most in that group of ten islands are flat, some are very tall: Fogo, Santa Antão, and São Nicolau. Those three stand well above their compatriots, with Fogo reaching an altitude of 2,829 metres (9,281 feet).

The three tall volcanic islands sometimes interact with the wind to create von Kármán vortices, also called von Kármán vortex streets.

Continue reading “These Bizarre Cloud Patterns are von Kármán’s Vortices, Caused by the air Wrapping Around Tall Islands”

A Steampunk Engine to Solve Your Satellite Woes!

In 1999, technicians from the California Polytechnic State University (Cal Poly) and Stanford University developed the specifications for CubeSat technology. In no time at all, academic institutions were launching CubeSats to conduct all manner of scientific research and validate new satellite technologies. Since 2013, the majority of launches have been conducted by commercial and private entities rather than academia.

Unfortunately, CubeSats have been held back until now because of a lack of good propulsion technology. In addition, there are concerns that with the proliferation of small satellites, Low Earth Orbit (LEO) will become overcrowded. Thanks to Howe Industries and a breakthrough engine design (known as the ThermaSat) that utilizes steam to generate propulsion, all of that could change very soon.

Continue reading “A Steampunk Engine to Solve Your Satellite Woes!”