Supermassive Black Holes Keep Galaxies From Getting Bigger

Radio telescope image of the galaxy 4C12.50, nearly 1.5 billion light-years from Earth. Inset shows detail of location at end of superfast jet of particles, where a massive gas cloud (yellow-orange) is being pushed by the jet. (Credit: Morganti et al., NRAO/AUI/NSF)

It’s long been a mystery for astronomers: why aren’t galaxies bigger? What regulates their rates of star formation and keeps them from just becoming even more chock-full-of-stars than they already are? Now, using a worldwide network of radio telescopes, researchers have observed one of the processes that was on the short list of suspects: one supermassive black hole’s jets are plowing huge amounts of potential star-stuff clear out of its galaxy.

Astronomers have theorized that many galaxies should be more massive and have more stars than is actually the case. Scientists proposed two major mechanisms that would slow or halt the process of mass growth and star formation — violent stellar winds from bursts of star formation and pushback from the jets powered by the galaxy’s central, supermassive black hole.

Read more: Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

“With the finely-detailed images provided by an intercontinental combination of radio telescopes, we have been able to see massive clumps of cold gas being pushed away from the galaxy’s center by the black-hole-powered jets,” said Raffaella Morganti, of the Netherlands Institute for Radio Astronomy and the University of Groningen.

The scientists studied a galaxy called 4C12.50, nearly 1.5 billion light-years from Earth. They chose this galaxy because it is at a stage where the black-hole “engine” that produces the jets is just turning on. As the black hole, a concentration of mass so dense that not even light can escape, pulls material toward it, the material forms a swirling disk surrounding the black hole. Processes in the disk tap the tremendous gravitational energy of the black hole to propel material outward from the poles of the disk.

NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)
NGC 253, aka the Sculptor Galaxy, is also blowing out gas but as the result of star formation (Image: T.A. Rector/University of Alaska Anchorage, T. Abbott and NOAO/AURA/NSF)

At the ends of both jets, the researchers found clumps of hydrogen gas moving outward from the galaxy at 1,000 kilometers per second. One of the clouds has much as 16,000 times the mass of the Sun, while the other contains 140,000 times the mass of the Sun.

The larger cloud, the scientists said, is roughly 160 by 190 light-years in size.

“This is the most definitive evidence yet for an interaction between the swift-moving jet of such a galaxy and a dense interstellar gas cloud,” Morganti said. “We believe we are seeing in action the process by which an active, central engine can remove gas — the raw material for star formation — from a young galaxy,” she added.

The researchers published their findings in the September 6 issue of the journal Science.

Source: NRAO press release

Newly Discovered Fast Radio Bursts May be Colliding Neutron Stars

An artist's conception of two neutron stars, moments before they collide. Image Credit: NASA

The Universe is sizzling with undiscovered phenomena. Only last month astronomers heard four unexpected bumps in the night. These Fast Radio Bursts released torrents of energy, each occurred only once, and lasted a few thousandths of a second. Their origin has since mystified astronomers.

Dismissing my first guess, which includes a feverish Jodie Foster verifying the existence of extraterrestrial life, astronomers have found a more likely answer. Two neutron stars collide, but before doing so produce a quick burst of radio emission, which we later observe as a Fast Radio Burst.

Our first hint? These Fast Radio Bursts are extra-galactic in origin.  The exact distance is quantifiable from a “dispersion measure – the frequency dependent time delay of the radio signal,” Dr. Tomonori Totani, lead author on the paper, told Universe Today. “This is proportional to the number of electrons along the line of sight.”

For all bursts, the short-wavelength component arrived at the telescope a fraction of a second before the longer wavelengths.  This is due to an effect known as interstellar dispersion: through any medium, longer-wavelength light moves slightly slower than short-wavelength light.

Light from extra-galactic objects will have to travel through intergalactic space, which is teeming with electrons in clouds of cold plasma. The farther the light travels, the more electrons it will have to travel through, and the greater the time delay between arriving wavelength components. By the time light reaches the Earth, it has been dispersed, and the amount of dispersion is directly correlated with distance.

These Fast Radio Bursts are likely to have originated anywhere from 5 to 10 billion light years away.

While the exact source of these Fast Radio Bursts has been highly debated, a recent hypothesis concludes that they are the result of merging neutron stars in the distant Universe.

In the final milliseconds before merging, the rotation periods of the two neutron stars synchronize – they become tidally locked to one another as the Moon is tidally locked to the Earth. At this point their magnetic fields also synchronize. Energetic charged particles spiral along the strong magnetic field lines and emit a beam of radio synchrotron emission.

Known neutron star magnetic field strengths are consistent with the radio flux observed in these Fast Radio Bursts.  The emission then ceases in a few milliseconds when the two neutron stars have collided, which explains the short duration of these Fast Radio Bursts.

Not only does this mechanism describe both the high energy and the time duration of these bursts, but they’re inferred occurrence rate as well. It’s likely that 100,000 Fast Radio Bursts occur each day. This matches the likely neutron star merger rate.

Merging neutrons stars will also create gravitational waves – ripples in the curvature of spacetime that propagate away from the event. Dr. Totani emphasized that the next step will be to perform a correlated search of gravitational waves and Fast Radio Bursts. Such a fast rate estimate is certainly good news for scientists hoping to detect gravitational waves in the nearby future.

The Universe is bursting with energy – literally – every 10 seconds, and until recently we simply had no idea. This recently discovered phenomenon is likely to be the center of a new active area of research. And I have no doubt that it will lead to exciting discoveries that just may break trends and burst into new territories.

The discovery paper may be found here, while the paper analyzing neutron stars as a likely source may be found here.

Astronomers Spy Early Galaxies Caught In A Cosmic Spiderweb

The Spiderweb, imaged by the Hubble Space Telescope – a central galaxy (MRC 1138-262) surrounded by hundreds of other star-forming 'clumps'. Credit: NASA, ESA, George Miley and Roderik Overzier (Leiden Observatory)

Once upon a time, when the Universe was just about three billion years old, galaxies started to form. Now astronomers using a CSIRO radio telescope have captured evidence of the raw materials these galaxies used to fashion their first stars… cold molecular hydrogen gas, H2. Even though we can’t see it directly, we know it is there by using another gas that reveals its presence – carbon monoxide (CO) – a radio wave emitter.

The telescope is CSIRO’s Australia Telescope Compact Array telescope near Narrabri, NSW. “It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths,” says CSIRO astronomer Professor Ron Ekers.

One of the studies of these “raw” galaxies was performed by astronomer Dr. Bjorn Emonts of CSIRO Astronomy and Space Science. He and fellow researchers employed the Compact Array to observe and record a gigantic and distant amalgamation of “star forming clumps or proto-galaxies” which are congealing together to create a single massive galaxy. This framework is known as the “Spiderweb” and is theorized to be at least ten thousand million light years distant. The Compact Array radio telescope is capable of picking up the signature of star formation, giving astronomers vital clues about how early galaxies began star formation.

In blue, the carbon monoxide gas detected in and around the Spiderweb. Credit: B. Emonts et al (CSIRO/ATCA)
In blue, the carbon monoxide gas detected in and around the Spiderweb. Credit: B. Emonts et al (CSIRO/ATCA)
The “Spiderweb” was loaded. Here Dr. Emont and his colleagues found the molecular hydrogen gas fuel they were seeking. It covered an area of space almost a quarter of a million light-years across and contained at least sixty thousand million times the mass of the Sun! Surely this had to be the material responsible for the new stars seen sprinkled across the region. “Indeed, it is enough to keep stars forming for at least another 40 million years,” says Emonts.

In another research project headed by Dr. Manuel Aravena of the European Southern Observatory, the scientists measured the CO – the indicator of H2 – in two very distant galaxies. The signal of the faint radio waves was amped up by the gravitational fields of the additional galaxies – the “line of sight” members – which created gravitational lensing. Says Dr. Aravena, “This acts like a magnifying lens and allows us to see even more distant objects than the Spiderweb.”

Dr. Aravena’s team went to work measuring the amount of H2 in both of their study galaxies. One of these, SPT-S 053816-5030.8, produced enough radio emissions to allow them to infer how quickly it was forming stars – “an estimate independent of the other ways astronomers measure this rate.”

The Compact Array was tuned in. Thanks to an upgrade which increased its bandwidth – the amount of the radio spectrum which can be observed at any particular time – it is now sixteen times stronger and capable of reaching a range from 256 MHz to 4 GHz. That makes it a very sensitive ear!

“The Compact Array complements the new ALMA telescope in Chile, which looks for the higher-frequency transitions of CO,” says Ron Ekers.

Original Story Source: CSIRO News Release

Earth-Passing Asteroid is “An Entirely New Beast”

Radar images of asteroid 1998 QE2 and its satellite on June 7. Each frame in the animation is a sum of 4 images, spaced apart by about 10 minutes. (Arecibo Observatory/NASA/Ellen Howell)

On the last day of May 2013 asteroid 1998 QE2 passed relatively closely by our planet, coming within 6 million kilometers… about 15 times the distance to the Moon. While there was never any chance of an impact by the 3 km-wide asteroid and its surprise 750 meter satellite, astronomers didn’t miss out on the chance to observe the visiting duo as they soared past as it was a prime opportunity to learn more about two unfamiliar members of the Solar System.

By bouncing radar waves off 1998 QE2 from the giant dish at the Arecibo Observatory in Puerto Rico, researchers were able to construct visible images of the asteroid and its ocean-liner-sized moon, as well as obtain spectrum data from NASA’s infrared telescope in Hawaii. What they discovered was quite surprising: QE2 is nothing like any asteroid ever seen near Earth.

The Arecibo radar observatory in Puerto Rico (Image courtesy of the NAIC - Arecibo Observatory, a facility of the NSF)
The 305-meter dish at Arecibo Observatory in Puerto Rico (Image courtesy of the NAIC – Arecibo Observatory, a facility of the NSF)

Both Arecibo Observatory and NASA’s Goldstone Deep Space Communications Complex in California are unique among telescopes on Earth for their ability to resolve features on asteroids when optical telescopes on the ground merely see them as simple points of light. Sensitive radio receivers collect radio signals reflected from the asteroids, and computers turn the radio echoes into images that show features such as craters and, in 1998 QE2’s case, a small orbiting moon.

QE2’s moon appears brighter than the asteroid as it is rotating more slowly; thus its Doppler echoes compress along the Doppler axis of the image and appear stronger.

Of the asteroids that come close to Earth approximately one out of six have moons. Dr. Patrick Taylor, a USRA research astronomer at Arecibo, remarked that “QE2’s moon is roughly one-quarter the size of the main asteroid,” which itself is a lumpy, battered world.

Dr. Taylor also noted that our own Moon is a quarter the size of Earth.

QE2’s moon will help scientists determine the mass of the main asteroid and what minerals make up the asteroid-moon system. “Being able to determine its mass from the moon helps us understand better the asteroid’s material,” said Dr. Ellen Howell, a USRA research astronomer at Arecibo Observatory who took both radar images of the asteroid at Arecibo and optical and infrared images using the Infrared Telescope Facility in Hawaii. While the optical images do not show detail of the asteroid’s surface, like the radar images do, instead they allow for measurements of what it is made of.

“What makes this asteroid so interesting, aside from being an excellent target for radar imaging,” Howell said, “is the color and small moon.”

Radar images of asteroid 1998 QE2 (bottom) and its satellite (top) on June 6.
Radar images of asteroid 1998 QE2 and its satellite (top) on June 6. (Arecibo Observatory/NASA/Ellen Howell)

“Asteroid QE2 is dark, red, and primitive – that is, it hasn’t been heated or melted as much as other asteroids,” continued Howell. “QE2 is nothing like any asteroid we’ve visited with a spacecraft, or plan to, or that we have meteorites from. It’s an entirely new beast in the menagerie of asteroids near Earth.”

Spectrum of 1998 QE2 taken May 30 at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea was “red sloped and linear,” indicating a primitive composition not matching any meteorites currently in their collection.

For more radar images of 1998 QE2, visit the Arecibo planetary radar page here.

Source: Universities Space Research Association press release.

Stacking Galactic Signals Reveals A Clearer Universe

Jacinta studies distant galaxies like those shown in this image from the Hubble Space Telescope, using the new 'stacking' technique to gather information only available through radio telescope observations. Credit: NASA, STScI, and ESA.

Very similar to stacking astronomy images to achieve a better picture, researchers from the International Centre for Radio Astronomy Research (ICRAR) are employing new methods which will give us a clearer look at the history of the Universe. Through data taken with the next generation of radio telescopes like the Square Kilometer Array (SKA), scientists like Jacinta Delhaize can “stack” galactic signals en masse to study one of their most important properties… how much hydrogen gas is present.

Probing the cosmos with a telescope is virtually using a time machine. Astronomers are able to look back at the Universe as it appeared billions of years ago. By comparing the present with the past, they are able to chart its history. We can see how things have changed over the ages and speculate about the origin and future of the vastness of space and all its many wonders.

“Distant, younger, galaxies look very different to nearby galaxies, which means that they’ve changed, or evolved, over time,” said Delhaize. “The challenge is to try and figure out what physical properties within the galaxy have changed, and how and why this has happened.”

According to Delhaize a vital clue to solving the riddle lay in hydrogen gas. By understanding how much of it that galaxies contained will help us map their history.

“Hydrogen is the building block of the Universe, it’s what stars form from and what keeps a galaxy ‘alive’,” said Delhaize.

“Galaxies in the past formed stars at a much faster rate than galaxies now. We think that past galaxies had more hydrogen, and that might be why their star formation rate is higher.”

Jacinta Delhaize with CSIRO's Parkes Radio Telescope during one of her data collecting trips. Credit: Anita Redfern Photography.
Jacinta Delhaize with CSIRO’s Parkes Radio Telescope during one of her data collecting trips. Credit: Anita Redfern Photography.
When it comes to distant galaxies, they don’t give up their information easily. Even so, it was a task that Delhaize and her supervisors were determined to observe. The faint radio signals of hydrogen gas were nearly impossible to detect, but the new stacking method allowed the team to collect enough data for her research. By combining the weak signals of thousands of galaxies, Delhaize then “stacked” them to create a stronger, averaged signal,

“What we are trying to achieve with stacking is sort of like detecting a faint whisper in a room full of people shouting,” said Delhaize. “When you combine together thousands of whispers, you get a shout that you can hear above a noisy room, just like combining the radio light from thousands of galaxies to detect them above the background.”

However, it wasn’t a slow process. The researchers engaged CSIRO’s Parkes Radio Telescope for 87 hours and surveyed a large region of galactic landscape. Their work collected signals from hydrogen over a vast amount of space and stretched back over two billion years in time.

“The Parkes telescope views a big section of the sky at once, so it was quick to survey the large field we chose for our study,” said ICRAR Deputy Director and Jacinta’s supervisor, Professor Lister Staveley-Smith.

Stacking up a clearer picture of the Universe from ICRAR on Vimeo.

As Delhaize explains, observing such a massive volume of space means more accurate calculations of the average amount of hydrogen gas present in particular galaxies at a certain distance from Earth. These readings correspond to a given period in the history of the Universe. With this data, simulations can be created to depict the Universe’s evolution and give us a better understanding of how galaxies formed and evolved with time. What’s even more spectacular is that next generation telescopes like the international Square Kilometre Array (SKA) and CSIRO’s Australian SKA Pathfinder (ASKAP) will be able to observe even larger volumes of the Universe with higher resolution.

“That makes them fast, accurate and perfect for studying the distant Universe. We can use the stacking technique to get every last piece of valuable information out of their observations,” said Delhaize. “Bring on ASKAP and the SKA!”.

Original Story Source: International Centre for Radio Astronomy Research.

ALMA and the Comet Factory

This artist’s impression shows the dust trap in the system Oph-IRS 48. The dust trap provides a safe haven for the tiny rocks in the disc, allowing them to clump together and grow to sizes that allow them to survive on their own. Credit: ESO/L. Calçada

“Ooompah, loompah, roopity rust… ALMA finds comets hiding in dust.” According to many studies over recent years, astronomers are aware planets seem to be everywhere around stars. However, just how these rocky bodies, including comets, are created is something of an enigma. Now, thanks to one sweet telescope, the Atacama Large Millimeter/submillimeter Array (ALMA), science has taken a big step forward in understanding how minuscule dust grains in a protoplanetary disk can one day evolve into a larger format.

A little less than 400 light years from Earth is a youthful solar system cataloged as Oph IRS 48. In images taken of its outer perimeters, astronomers have picked up a vital clue in its swirling masses of dust – a crescent-shaped region dubbed a “dust trap”. Researchers feel this area may be a protective cocoon which allows rocky formations to take shape. Why is such a region important? It’s the smash-factor. When astronomers try to model dust to rocky formations, they have found the particles self-destruct… either by crashing into each other, or being drawn into the central star. In order for them to progress past a certain size, they simply must have an area of protection to allow them to grow.

“There is a major hurdle in the long chain of events that leads from tiny dust grains to planet-sized objects,” said Til Birnstiel, a researcher at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and co-author on the paper published in the journal Science. “In computer models of planet formation, dust grains must grow from submicron sizes to objects up to ten times the mass of the Earth in just a few million years. But once particles grow larger enough, they begin to pick up speed and either collide, sending them back to square one, or slowly drift inward, thwarting further growth.”

So where can a newborn planet, comet or asteroid hide? Nienke van der Marel, a PhD student at Leiden Observatory in the Netherlands, and lead author of the article, was using ALMA along with her co-workers, to take a close look at Oph IRS 48 and discovered a torus of gas with a central hole. This absence of dust particles was very different from earlier results picked up on ESO’s Very Large Telescope.

“At first the shape of the dust in the image came as a complete surprise to us,” says van der Marel. “Instead of the ring we had expected to see, we found a very clear cashew-nut shape! We had to convince ourselves that this feature was real, but the strong signal and sharpness of the ALMA observations left no doubt about the structure. Then we realised what we had found.”

A surprise? You bet. What the team uncovered was a region where large dust grains remained captive and could continue to gain mass as more and more grains collided and melded together. Here was the “dust trap” which theorists predicted.

Loading player…

So what makes it up? To keep the dust grains together and forming requires a vortex – an area of high pressure to protect them. To form this vortex, there needs to be a large object present, either a companion star or a gas-giant. Like a boat sluicing through algae-filled waters, the secondary object in the planetary disk would clear a path in its wake, producing the critical eddies and vortices needed to fashion the dust trap. While previous studies of Oph IRS 48 uncovered a rigid ring of carbon monoxide gas combined with dust, there was no observed “trap”. However, that doesn’t mean the observation was negative. Astronomers also uncovered a gap between the inner and outer portions of the solar system – a clue to the presence of the necessary large body.

The conditions were right for a possible dust trap. Enter ALMA. Now the researchers were able to see both the gas and larger dust grains at the same time. These new observations led to a discovery no other telescope had yet revealed… a lopsided bulge in the outer portion of the disk.

As van der Marel explains: “It’s likely that we are looking at a kind of comet factory as the conditions are right for the particles to grow from millimetre to comet size. The dust is not likely to form full-sized planets at this distance from the star. But in the near future ALMA will be able to observe dust traps closer to their parent stars, where the same mechanisms are at work. Such dust traps really would be the cradles for new-born planets.”

As larger particles migrate towards the areas of higher pressure, the dust trap takes shape. To validate their findings the researchers employed computer modeling to show that a high pressure region could arise from the motion of the gas at the opening edges. It matches with the observation of the Oph IRS 48 disc.

“The combination of modelling work and high quality observations of ALMA makes this a unique project”, says Cornelis Dullemond from the Institute for Theoretical Astrophysics in Heidelberg, Germany, who is an expert on dust evolution and disc modelling, and a member of the team. “Around the time that these observations were obtained, we were working on models predicting exactly these kinds of structures: a very lucky coincidence.”

“This structure we see with ALMA could be scaled down to represent what may be happening in the inner solar system where more Earth-like rocky planets would form,” said Birnstiel. “In the case of these observations, however, we may be seeing something analogous to the formation of our Sun’s Kuiper Belt or Oort Cloud, the region of our solar system where comets are believed to originate.”

Like that dream factory of our childhood, ALMA is still under construction. These unique observations were taken with the ALMA Band 9 receivers – European-made instrumentation which permits ALMA to deliver its sharpest, most detailed images so far.

“These observations show that ALMA is capable of delivering transformational science, even with less than half of the full array in use,” says Ewine van Dishoeck of the Leiden Observatory, who has been a major contributor to the ALMA project for more than 20 years. “The incredible jump in both sensitivity and image sharpness in Band 9 gives us the opportunity to study basic aspects of planet formation in ways that were simply not possible before.”

Original Story Source: ESO News Release. For further reading: NRAO News Release.

Podcast: The Arecibo Observatory

The Arecibo Observatory in Puerto Rico.

The mighty Arecibo Radio Observatory is one of the most powerful radio telescopes ever built – it’s certainly the larger single aperture radio telescope on Earth, nestled into a natural sinkhole in Puerto Rico. We’re celebrating the 50th anniversary of the construction of the observatory with a special episode of Astronomy Cast.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

The Arecibo Observatory” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:


Hydrogen Clouds Discovered Between Andromeda And Triangulum Galaxies

This combined graphic shows new, high-resolution GBT imaging (in box) of recently discovered hydrogen clouds between M31 (upper right) and M33 (bottom left). Credit: Bill Saxton, NRAO/AUI/NSF.

Score another point for the National Science Foundation’s Green Bank Telescope (GBT) at the National Radio Astronomy Observatory (NRAO) in Green Bank. They have opened our eyes – and ears – to previously undetected region of hydrogen gas clouds located in the area between the massive Andromeda and Triangulum galaxies. If researchers are correct, these dwarf galaxy-sized sectors of isolated gases may have originated from a huge store of heated, ionized gas… Gas which may be associated with elusive and invisible dark matter.

“We have known for some time that many seemingly empty stretches of the Universe contain vast but diffuse patches of hot, ionized hydrogen,” said Spencer Wolfe of West Virginia University in Morgantown. “Earlier observations of the area between M31 and M33 suggested the presence of colder, neutral hydrogen, but we couldn’t see any details to determine if it had a definitive structure or represented a new type of cosmic feature. Now, with high-resolution images from the GBT, we were able to detect discrete concentrations of neutral hydrogen emerging out of what was thought to be a mainly featureless field of gas.”

So how did astronomers detect the extremely faint signal which clued them to the presence of the gas pockets? Fortunately, our terrestrial radio telescopes are able to decipher the representative radio wavelength signals emitted by neutral atomic hydrogen. Even though it is commonplace in the Universe, it is still frail and not easy to observe. Researchers knew more than 10 years ago that these repositories of hydrogen might possibly exist in the empty space between M33 and M32, but the evidence was so slim that they couldn’t draw certain conclusions. They couldn’t “see” fine grained structure, nor could they positively identify where it came from and exactly what these accumulations meant. At best, their guess was it came from an interaction between the two galaxies and that gravitational pull formed a weak “bridge” between the two large galaxies.

The animation demonstrates the difference in resolution from the original Westerbork Radio Telescope data (Braun & Thilker, 2004) and the finer resolution imaging of GBT, which revealed the hydrogen clouds between M31 and M33. Bill Saxton, NRAO/AUI/NSF Credit: Bill Saxton, NRAO/AUI/NSF.

Just last year, the GBT observed the tell-tale fingerprint of hydrogen gas. It might be thin, but it is plentiful and it’s spread out between the galaxies. However, the observations didn’t stop there. More information was gathered and revealed the gas wasn’t just ethereal ribbons – but solid clumps. More than half of the gas was so conspicuously aggregated that they could even have passed themselves off as dwarf galaxies had they a population of stars. What’s more, the GBT also studied the proper motion of these gas pockets and found they were moving through space at roughly the same speed as the Andromeda and Triangulum galaxies.

“These observations suggest that they are independent entities and not the far-flung suburbs of either galaxy,” said Felix J. Lockman, an astronomer at the NRAO in Green Bank. “Their clustered orientation is equally compelling and may be the result of a filament of dark matter. The speculation is that a dark-matter filament, if it exists, could provide the gravitational scaffolding upon which clouds could condense from a surrounding field of hot gas.”

And where there is neutral hydrogen gas, there is fuel for new stars. Astronomers also recognize these new formations could eventually be drawn into M31 and M33, eliciting stellar creation. To add even more interest, these cold, dark regions which exist between galaxies contain a large amount of “unaccounted-for normal matter” – perhaps a clue to dark matter riddle and the reason behind the amount of hydrogen yet to revealed in universal structure.

“The region we have studied is only a fraction of the area around M31 reported to have diffuse hydrogen gas,” said D.J. Pisano of West Virginia University. “The clouds observed here may be just the tip of a larger population out there waiting to be discovered.”

Original Story Source: National Radio Astronomy Observatory News Release.

The Curious Channel 37 — Must-see TV For Radio Astronomy

The Very Large Array, one of the world's premier astronomical radio observatories, consists of 27 radio antennas in a Y-shaped configuration 50 miles west of Socorro, New Mexico. Each antenna is 82 feet (25 m) in diameter. The data from the antennas is combined electronically to give the resolution of an antenna 22 miles (36 km) across. Image courtesy of NRAO/AUI and NRAO

Thanks to Channel 37, radio astronomers keep tabs on everything from the Sun to pulsars to the lonely spaces between the stars. This particular frequency, squarely in the middle of the UHF TV broadcast band, has been reserved for radio astronomy since 1963, when astronomers successfully lobbied the FCC to keep it TV-free.

Back then UHF TV stations were few and far between. Now there are hundreds, and I’m sure a few would love to soak up that last sliver of spectrum. Sorry Charley, the moratorium is still in effect to this day. Not only that, but it’s observed in most countries across the world.

Channel 37, a slice of the radio spectrum from 608 and 614 Megahertz (MHz) reserved for radio astronomy, sits in the middle of the UHF TV band. Click to see the full spectrum. Credit: US Dept. of Commerce
Channel 37, a slice of the radio spectrum from 608 and 614 Megahertz (MHz) reserved for radio astronomy, sits in the middle of the UHF TV band. Click to see the full spectrum. Credit: US Dept. of Commerce

So what’s so important about Channel 37? Well, it’s smack in the middle of two other important bands already allocated to radio astronomy – 410 Megahertz (MHz) and 1.4 Gigahertz (Gz). Without it, radio astronomers would lose a key window in an otherwise continuous radio view of the sky. Imagine a 3-panel bay window with the middle pane painted black. Who wants THAT?

The visible colors, infrared, radio, X-rays and gamma rays are all forms of light and comprise the electromagnetic spectrum. Here you can compare their wavelengths with familiar objects and see how their frequencies (bottom numbers) increase with decreasing wavelength. Credit: ESA
The visible colors, infrared, radio, X-rays and gamma rays are all forms of light and comprise the electromagnetic spectrum. Here you can compare their wavelengths with familiar objects and see how their frequencies (bottom numbers) increase with decreasing wavelength. Credit: ESA

Channel 37 occupies a band spanning from 608-614 MHz. A word about Hertz. Radio waves are a form of light just like the colors we see in the rainbow or the X-rays doctors use to probe our bones. Only difference is, our eyes aren’t sensitive to them. But we can build instruments like X-ray machines and radio telescopes to “see” them for us.

Diagram showing what how Earth's atmosphere allows visible light, a portion of infrared and radio light to reach the ground from outer space but filters shorter-wavelength, more dangerous forms of light like X-rays and gamma rays. To study the cosmos in these varieties of light, orbiting telescopes are required.
Diagram showing what how Earth’s atmosphere allows visible light, a portion of infrared and radio light to reach the ground from outer space but filters shorter-wavelength, more dangerous forms of light like X-rays and gamma rays. To study the cosmos in these varieties of light, orbiting telescopes are required.

Every color of light has a characteristic wavelength and frequency. Wavelength is the distance between successive crests in a light wave which you can visualize as a wave moving across a pond. Waves of visible light range from one-millionth to one-billionth of a meter, comparable to the size of a virus or DNA molecule.

X-rays crests are jammed together even more tightly – one X-ray is only as big as an small atom. Radio waves fill out the opposite end of the spectrum with wavelengths ranging from baseball-sized to more than 600 miles (1000 km) long.

The frequency of a light wave is measured by how many crests pass a given point over a given time. If only one crest passes that point every second, the light beam has a frequency of 1 cycle per second or 1 Hertz. Blue light has a wavelength of 462 billionths of a meter and frequency of 645 trillion Hertz (645 Terahertz).

If our eyes could see radio light, this is what the sky would look like. What appear to be stars are distant galaxies. The wispy arcs and shells are the remnants of exploding supernovae.
If our eyes could see radio light, this is what the sky would look like. What appear to be stars are actually distant galaxies glowing brightly with energy radiated as matter gets sucked down black holes in the cores. The wispy arcs and shells are the remnants of exploding supernovae. Since air molecules don’t scatter radio waves like they do visible light to create a blue sky, the sky would be dark even on a sunny day. Credit: National Science Foundation

The higher the frequency, the greater the energy the light carries. X-rays have frequencies starting around 30 quadrillion Hertz (30 petahertz or 30 PHz), enough juice to damage body cells if you get too much exposure. Even ultraviolet light has power to burn skin as many of us who’ve spent time outdoors in summer without sunscreen are aware.

Radio waves are the gentle giants of the electromagnetic spectrum. Their enormous wavelengths mean low frequencies. Channel 37 radio waves have more modest frequencies of around 600 million Hertz (MHz), while the longest radio waves deliver crests almost twice the width of Lake Superior at a rate of 3 to 300 Hertz.

Sun as it would look in the radio portion of the spectrum at a frequency of 1.4 gigahertz (GHz). Credit: NRAO
The sun as it would look in the radio portion of the spectrum at a frequency of 1.4 gigahertz (GHz). Image courtesy of the National Radio Astronomy Observatory (NRAO/AUI)

If Channel 37 were ever lost to TV, the gap would mean a loss of information about the distribution of cosmic rays in the Milky Way galaxy and rapidly rotating stars called pulsars created in the wake of supernovae. Closer to home, observations in the 608-614 MHz band allow astronomers track bursts of radio energy produced by particles blasted out by solar flares traveling through the sun’s outer atmosphere. Some of these can have powerful effects on Earth. No wonder astronomers want to keep this slice of the electromagnetic spectrum quiet. For more details on how useful this sliver is to radio astronomy, click HERE.

Just as optical astronomers seek the darkest sites for their telescopes to probe the most remote corners of the universe, so too does radio astronomy need slices of silence to listen to the faintest whispers of the cosmos.

Radio Observatory Moves to a Shopping Mall

Control room of the Onsala Radio Telescope in Sweden. (Photo courtesy: Onsala Space Observatory / Robert. Cumming)

How’s this for bringing science to the public? This weekend, the Onsala Space Observatory in Sweden will be moving their telescope’s control room to Scandinavia’s biggest shopping mall, Nordstan (North Town) in Gothenburg.

“The idea is to remotely observe with our 20-meter telescope — as well as a couple of smaller ones — and let the general public take part and see how it’s done and how exciting it is,” the observatory’s public relations director Robert Cumming told Universe Today.”

The great thing about radio astronomy is that is can be done during the day – during business hours at the mall.

And they’ve got some interesting targets on the list, including Comet Lemmon. “It’s too close to the sun for ordinary telescopes, but for a radio telescope like ours that’s no problem,” said Cumming.

Of course, the radio telescope itself still has to be out at its normal location, away from radio interference, but the control room will move to allow public interaction. But there will be bus tours available out to the big telescope.

But beyond public outreach, looking at Comet Lemmon gives the astronomers at Onsala practice for the (hopefully) big one this fall, Comet ISON. “Onsala will have one of very few telescopes that can study ISON from the Earth,” Cumming said.

So, for any of our readers in Sweden, head out the North Town Mall in Gothenburg between the hours of 11:00 and 16:00 local time on Sunday, April 28. This is part of the Gothenburg Science Festival.

“It is the first time we are trying to make a telescope control room outside Onsala,” said Mitra Hajigholi, graduate student in astronomy at Chalmers University of Technology, who will be one of several researchers on location at the mall. “With the help of our large 20-meter telescope, we want to look at a comet and display measurements in real time. It will be exciting!”