Searching for the End of the Universe’s “Dark Age”

According to the most widely accepted cosmological theories, the first stars in the Universe formed a few hundred million years after the Big Bang. Unfortunately, astronomers have been unable to “see” them since their emergence coincided during the cosmological period known as the “Dark Ages.” During this period, which ended about 13 billion years ago, clouds of gas filled the Universe that obscured visible and infrared light.

However, astronomers have learned that light from this era can be detected as faint radio signals. It’s for this reason that radio telescopes like the Murchison Widefield Array (MWA) were built. Using data obtained by this array last year, an international team of researchers is scouring the most precise radio data to date from the early Universe in an attempt to see exactly when the cosmic “Dark Ages” ended.

Continue reading “Searching for the End of the Universe’s “Dark Age””

How the World’s Biggest Radio Telescope Could be Used to Search for Aliens

In 2016, China’s Five-hundred-meter Aperture Spherical radio Telescope – the largest single-aperture radio telescope in the world – gathered its first light. Since then, the telescope has undergone extensive testing and commissioning and officially went online in Jan of 2020. In all that time, it has also been responsible for multiple discoveries, including close to one hundred new pulsars.

According to a recent study by an international team of scientists and led by the Chinese Academy of Sciences (CAS) suggests that FAST might have another use as well: the search for extraterrestrial intelligence (SETI)! Building on their collaboration with the non-profit science organization Breakthrough Initiatives, the authors of the study highlight the ways in which FAST could allow for some novel SETI observations.

Continue reading “How the World’s Biggest Radio Telescope Could be Used to Search for Aliens”

Detecting Exoplanets Through Their Exoauroras

At present, scientists can only look for planets beyond our Solar System using indirect means. Depending on the method, this will involve looking for signs of transits in front of a star (Transit Photometry), measuring a star for signs of wobble (Doppler Spectroscopy), looking for light reflected from a planet’s atmosphere (Direct Imaging), and a slew of other methods.

Based on certain parameters, astronomers are then able to determine whether a planet is potentially-habitable or not. However, a team of astronomers from the Netherlands recently released a study in which they describe a novel approach for exoplanet-hunting: looking for signs of aurorae. As these are the result of interaction between a planet’s magnetic field and a star, this method could be a shortcut to finding life!

Continue reading “Detecting Exoplanets Through Their Exoauroras”

How Interferometry Works, and Why it’s so Powerful for Astronomy

Three of the dishes that make up the Atacama Large Millimeter/submillimter Array (ALMA). Image Credit: H. Calderón – ALMA (ESO/NRAO/NAOJ)

When astronomers talk about an optical telescope, they often mention the size of its mirror. That’s because the larger your mirror, the sharper your view of the heavens can be. It’s known as resolving power, and it is due to a property of light known as diffraction. When light passes through an opening, such as the opening of the telescope, it will tend to spread out or diffract. The smaller the opening, the more the light spreads making your image more blurry. This is why larger telescopes can capture a sharper image than smaller ones.

Continue reading “How Interferometry Works, and Why it’s so Powerful for Astronomy”

A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days

A team of scientists in Canada have found a Fast Radio Burst (FRB) that repeats every 16 days. This is in stark contrast to other FRBs, which are more sporadic. Some of those sporadic FRBs occur in clusters, and repeat irregularly, but FRBs with a regular, repeatable occurrence are rare.

Continue reading “A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days”

Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away

The theory of general relativity is packed with strange predictions about how space and time are affected by massive bodies. Everything from gravitational waves to the lensing of light by dark matter. But one of the oddest predictions is an effect known as frame-dragging. The effect is so subtle it was first measured just a decade ago. Now astronomers have measured the effect around a white dwarf, and it tells us how some supernovae occur.

Continue reading “Astronomers See Space Twist Around A White Dwarf 12,000 Light Years Away”

China’s 500-Meter FAST Radio Telescope is Now Operational

The world’s largest and most sensitive radio telescope is officially open for business according to Xinhua, China’s official state-run media. The FAST Radio Telescope saw fist light in 2016 but has been undergoing testing and commissioning since then. FAST stands for Five-hundred meter Aperture Spherical Telescope.

Continue reading “China’s 500-Meter FAST Radio Telescope is Now Operational”

There’s Now an Operational Radio Telescope on the Far Side of the Moon

The Chang’e-4 mission, the fourth installment in the Chinese Lunar Exploration Program, has made some significant achievements since it launched in December of 2018. In January of 2019, the mission lander and its Yutu 2 (Jade Rabbit 2) rover became the first robotic explorers to achieve a soft landing on the far side of the Moon. Around the same time, it became the first mission to grow plants on the Moon (with mixed results).

In the latest development, the Netherlands-China Low Frequency Explorer (NCLE) commenced operations after a year of orbiting the Moon. This instrument was mounted on the Queqiao communications satellite and consists of three 5-meter (16.4 ft) long monopole antennas that are sensitive to radio frequencies in the 80 kHz – 80 MHz range. With this instrument now active, Chang’e-4 has now entered into the next phase of its mission.

Continue reading “There’s Now an Operational Radio Telescope on the Far Side of the Moon”

Astronomers Are About to Detect the Light from the Very First Stars in the Universe

A team of scientists working with the Murchison Widefield Array (WMA) radio telescope are trying to find the signal from the Universe’s first stars. Those first stars formed after the Universe’s Dark Ages. To find their first light, the researchers are looking for the signal from neutral hydrogen, the gas that dominated the Universe after the Dark Ages.

Continue reading “Astronomers Are About to Detect the Light from the Very First Stars in the Universe”