China’s 500-Meter FAST Radio Telescope is Now Operational

The world’s largest and most sensitive radio telescope is officially open for business according to Xinhua, China’s official state-run media. The FAST Radio Telescope saw fist light in 2016 but has been undergoing testing and commissioning since then. FAST stands for Five-hundred meter Aperture Spherical Telescope.

Continue reading “China’s 500-Meter FAST Radio Telescope is Now Operational”

There’s Now an Operational Radio Telescope on the Far Side of the Moon

The Chang’e-4 mission, the fourth installment in the Chinese Lunar Exploration Program, has made some significant achievements since it launched in December of 2018. In January of 2019, the mission lander and its Yutu 2 (Jade Rabbit 2) rover became the first robotic explorers to achieve a soft landing on the far side of the Moon. Around the same time, it became the first mission to grow plants on the Moon (with mixed results).

In the latest development, the Netherlands-China Low Frequency Explorer (NCLE) commenced operations after a year of orbiting the Moon. This instrument was mounted on the Queqiao communications satellite and consists of three 5-meter (16.4 ft) long monopole antennas that are sensitive to radio frequencies in the 80 kHz – 80 MHz range. With this instrument now active, Chang’e-4 has now entered into the next phase of its mission.

Continue reading “There’s Now an Operational Radio Telescope on the Far Side of the Moon”

Astronomers Are About to Detect the Light from the Very First Stars in the Universe

A team of scientists working with the Murchison Widefield Array (WMA) radio telescope are trying to find the signal from the Universe’s first stars. Those first stars formed after the Universe’s Dark Ages. To find their first light, the researchers are looking for the signal from neutral hydrogen, the gas that dominated the Universe after the Dark Ages.

Continue reading “Astronomers Are About to Detect the Light from the Very First Stars in the Universe”

Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years

When a star reaches the end of its life cycle, it will blow off its outer layers in a fiery explosion known as a supernova. Where less massive stars are concerned, a white dwarf is what will be left behind. Similarly, any planets that once orbited the star will also have their outer layers blown off by the violent burst, leaving behind the cores behind.

For decades, scientists have been able to detect these planetary remnants by looking for the radio waves that are generated through their interactions with the white dwarf’s magnetic field. According to new research by a pair of researchers, these “radio-loud” planetary cores will continue to broadcast radio signals for up to a billion years after their stars have died, making them detectable from Earth.

Continue reading “Dead Planets Around White Dwarfs Could Emit Radio Waves We Can Detect, Sending Out Signals for Billions of Years”

A Fast Radio Burst has Finally Been Traced Back to its Source: the Outskirts of a Galaxy 4 Billion Light-Years Away

Fast-Radio Bursts (FRBs) are one of the most puzzling phenomena facing astronomers today. Essentially, FRBs are brief radio emissions from distant astronomical sources whose cause remains unknown. In some cases, FRBs that have been detected that have been repeating, but most have been one-off events. And while repeating sources have been tracked back to their point of origin, no single events have ever been localized.

Until now. Using the Australian Square Kilometer Array Pathfinder (ASKAP) and other radio telescopes from around the world, an Australian-led team of astronomers managed to confirm the distance to an intense radio burst that flashed for just a thousandth of a second. The constitutes the first non-repeating FRB to be traced back to its source, which in this case was a galaxy located 4 billion light-years away.

Continue reading “A Fast Radio Burst has Finally Been Traced Back to its Source: the Outskirts of a Galaxy 4 Billion Light-Years Away”

A Supercomputer has been Designed to run the World’s Largest Radio Telescope

When complete, the Square Kilometer Array (SKA) will be the largest radio telescope array in the entire world. The result of decades of work involving 40 institutions in 11 countries, the SKA will allow astronomers to monitor the sky in unprecedented detail and survey it much faster than with any system currently in existence.

Such a large array will naturally be responsible for gathering an unprecedented amount of data on a regular basis. To sort through all this data, the “brain” for this massive array will consist of two supercomputers. Recently, the SKA’s Science Data Processor (SDP) consortium concluded their engineering design work on one of these supercomputers.

Continue reading “A Supercomputer has been Designed to run the World’s Largest Radio Telescope”

Astronomers are Using NASA’s Deep Space Network to Hunt for Magnetars

Right, magnetars. Perhaps one of the most ferocious beasts to inhabit the cosmos. Loud, unruly, and temperamental, they blast their host galaxies with wave after wave of electromagnetic radiation, running the gamut from soft radio waves to hard X-rays. They are rare and poorly understood.

Some of these magnetars spit out a lot of radio waves, and frequently. The perfect way to observe them would be to have a network of high-quality radio dishes across the world, all continuously observing to capture every bleep and bloop. Some sort of network of deep-space dishes.

Like NASA’s Deep Space Network.  

Continue reading “Astronomers are Using NASA’s Deep Space Network to Hunt for Magnetars”

Canadian Telescope Finds 13 More Fast Radio Bursts Including the Second One Ever Seen Repeating

CHIME consists of four metal "half-pipes", each one 100 meters long. Image Credit: CHIME/Andre Renard, Dunlap Institute.

Canadian scientists using the CHIME (Canadian Hydrogen Intensity Mapping Experiment) have detected 13 FRBs (Fast Radio Bursts), including the second-ever repeating one. And they think they’ll find even more.

CHIME is an innovative radio telescope in the Okanagan Valley region in British Columbia, Canada. It was completed in 2017, and its mission is to act as a kind of time machine. CHIME will help astronomers understand the shape, structure, and fate of the universe by measuring the composition of dark energy.

CHIME’s unique design also makes it well-suited for detecting fast radio bursts.

Continue reading “Canadian Telescope Finds 13 More Fast Radio Bursts Including the Second One Ever Seen Repeating”

Superfast Jet of Material Blasted Out From Last Year’s Neutron Star Merger

In August of 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected waves that were believed to be caused by a neutron star merger. This “kilonova” event, known as GW170817, was the first astronomical event to be detected in both gravitational and electromagnetic waves – including visible light, gamma rays, X-rays, and radio waves.

In the months that followed the merger, orbiting and ground-based telescopes around the world have observed GW170817 to see what has resulted from it. According to a new study by an international team of astronomers, the merger produced a narrow jet of material that made its way into interstellar space at velocities approaching the speed of light.

Continue reading “Superfast Jet of Material Blasted Out From Last Year’s Neutron Star Merger”