The Moon is the Perfect Spot for SETI

In less than four years, NASA plans to land the first woman and the next man on the Moon as part of Project Artemis. This long-awaited return to the Moon is to be followed by the construction of the Lunar Gateway, the Artemis Base Camp, and a program of “sustainable lunar exploration.” The creation of an enduring human presence on the Moon will also create many opportunities for exciting scientific research.

For example, astronomers want to conduct radio astronomy on the far side of the Moon, where telescopes could probe the earliest period of the Universe free of terrestrial radio interference. Taking this a step further, a team of astronomers recently recommended that a radio telescope on the far side of the Moon (or in lunar orbit) could aid in another important area of research: the Search for Extraterrestrial Intelligence (SETI)!

Continue reading “The Moon is the Perfect Spot for SETI”

Radio Astronomers are Worried About Mega-Constellations and the Square Kilometer Array

In the coming years, a number of next-generation observatories and arrays will become operational. These facilities will make major contributions to multiple fields of astronomy: exploring the mysteries of the early Universe, studying gravitational waves, determining the role of dark matter and dark energy in cosmic evolution, and directly image “Earth-like” exoplanets.

Unfortunately, this revolutionary development in astronomy may be going up against another major project: the creation of mega-constellations. Because of this, the SKA Organization (SKAO) – which oversees the international Square Kilometre Array (SKA) – is insisting that corrective measures be taken so satellites won’t interfere with its radio observations once it’s operational.

Continue reading “Radio Astronomers are Worried About Mega-Constellations and the Square Kilometer Array”

New Radio Telescope Is Going to Fly to the Far Side of the Moon to Listen to the Signals From the Early Universe

The phrase “silence is golden” is even more important for radio astronomers.  The sheer amount of radio output created by humans can drown out any interesting signal from the heavens that they might wish to study.  Those signals are also partially blocked by Earth’s atmosphere, adding more complexity to the challenge.  

The obvious solution to the atmosphere problem is to launch space based observatories, and that has been done in the past.  However, in near Earth orbit the radio waves emitted from radio stations all around the world can still blast any radio receiver with an unwanted deluge of signals.  So scientists have come up with a novel idea to get the silence they so crave: park a probe on the far side of the moon.

Continue reading “New Radio Telescope Is Going to Fly to the Far Side of the Moon to Listen to the Signals From the Early Universe”

An Update on the Damage to the Arecibo Observatory

On Aug. 10th, a little over a month ago, the iconic Arecibo Observatory suffered serious damage when an auxiliary cable broke and struck the reflector dish. This cable struck the observatory’s Gregorian Dome on its way down and twisted an access platform before landing on the reflecting dish itself. The impact created a gash over 30 meters (100 feet) in length and forced the observatory to shut down until repairs could be made.

Since then, teams have been busy working to stabilize the structure and determine the cause. These teams are made up of technicians from the observatory and the University of Central Florida (UCF), which manages the facility for the National Science Foundation (NSF). For the past few weeks, they have been meeting with experts from various fields and laying the groundwork for an investigation and a rigorous repair schedule.

Continue reading “An Update on the Damage to the Arecibo Observatory”

A Broken Cable Smashed Part of the Arecibo Observatory

The Arecibo Observatory is an iconic institution. Located in Puerto Rico, this National Science Foundation (NSF) observatory was the largest radio telescope in the world between 1963 and 2016. While that honor now goes to the Five hundred meter Aperture Spherical Telescope (FAST) in China, Arecibo will forever be recognized for its contributions to everything from radio astronomy to the Search for Extraterrestrial Intelligence (SETI).

Unfortunately, the Arecibo Observatory suffered serious damage when on Monday, Aug. 10th, an auxiliary cable that supports the platform suspended above the telescope reflector dish broke. The cable struck the Gregorian Dome (which sits on the underside of the platform) before landing on the reflector dish, which created a gash over 30 meters (100 feet) in length and forced the observatory to temporarily shut down operations.

Continue reading “A Broken Cable Smashed Part of the Arecibo Observatory”

Searching for the End of the Universe’s “Dark Age”

According to the most widely accepted cosmological theories, the first stars in the Universe formed a few hundred million years after the Big Bang. Unfortunately, astronomers have been unable to “see” them since their emergence coincided during the cosmological period known as the “Dark Ages.” During this period, which ended about 13 billion years ago, clouds of gas filled the Universe that obscured visible and infrared light.

However, astronomers have learned that light from this era can be detected as faint radio signals. It’s for this reason that radio telescopes like the Murchison Widefield Array (MWA) were built. Using data obtained by this array last year, an international team of researchers is scouring the most precise radio data to date from the early Universe in an attempt to see exactly when the cosmic “Dark Ages” ended.

Continue reading “Searching for the End of the Universe’s “Dark Age””

How the World’s Biggest Radio Telescope Could be Used to Search for Aliens

In 2016, China’s Five-hundred-meter Aperture Spherical radio Telescope – the largest single-aperture radio telescope in the world – gathered its first light. Since then, the telescope has undergone extensive testing and commissioning and officially went online in Jan of 2020. In all that time, it has also been responsible for multiple discoveries, including close to one hundred new pulsars.

According to a recent study by an international team of scientists and led by the Chinese Academy of Sciences (CAS) suggests that FAST might have another use as well: the search for extraterrestrial intelligence (SETI)! Building on their collaboration with the non-profit science organization Breakthrough Initiatives, the authors of the study highlight the ways in which FAST could allow for some novel SETI observations.

Continue reading “How the World’s Biggest Radio Telescope Could be Used to Search for Aliens”

Detecting Exoplanets Through Their Exoauroras

At present, scientists can only look for planets beyond our Solar System using indirect means. Depending on the method, this will involve looking for signs of transits in front of a star (Transit Photometry), measuring a star for signs of wobble (Doppler Spectroscopy), looking for light reflected from a planet’s atmosphere (Direct Imaging), and a slew of other methods.

Based on certain parameters, astronomers are then able to determine whether a planet is potentially-habitable or not. However, a team of astronomers from the Netherlands recently released a study in which they describe a novel approach for exoplanet-hunting: looking for signs of aurorae. As these are the result of interaction between a planet’s magnetic field and a star, this method could be a shortcut to finding life!

Continue reading “Detecting Exoplanets Through Their Exoauroras”

How Interferometry Works, and Why it’s so Powerful for Astronomy

Three of the dishes that make up the Atacama Large Millimeter/submillimter Array (ALMA). Image Credit: H. Calderón – ALMA (ESO/NRAO/NAOJ)

When astronomers talk about an optical telescope, they often mention the size of its mirror. That’s because the larger your mirror, the sharper your view of the heavens can be. It’s known as resolving power, and it is due to a property of light known as diffraction. When light passes through an opening, such as the opening of the telescope, it will tend to spread out or diffract. The smaller the opening, the more the light spreads making your image more blurry. This is why larger telescopes can capture a sharper image than smaller ones.

Continue reading “How Interferometry Works, and Why it’s so Powerful for Astronomy”

A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days

A team of scientists in Canada have found a Fast Radio Burst (FRB) that repeats every 16 days. This is in stark contrast to other FRBs, which are more sporadic. Some of those sporadic FRBs occur in clusters, and repeat irregularly, but FRBs with a regular, repeatable occurrence are rare.

Continue reading “A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days”