Pulsar Seen Speeding Away From the Supernova That Created it

When a star exhausts its nuclear fuel towards the end of its lifespan, it undergoes gravitational collapse and sheds its outer layers. This results in a magnificent explosion known as a supernova, which can lead to the creation of a black hole, a pulsar or a white dwarf. And despite decades of observation and research, there is still much scientists don’t know about this phenomena.

Luckily, ongoing observations and improved instruments are leading to all kinds of discoveries that offer chances for new insights. For instance, a team of astronomers with the National Radio Astronomy Observatory (NRAO) and NASA recently observed a “cannonball” pulsar speeding away from the supernova that is believed to have created it. This find is already providing insights into how pulsars can pick up speed from a supernova.

Continue reading “Pulsar Seen Speeding Away From the Supernova That Created it”

Astronomers are Using NASA’s Deep Space Network to Hunt for Magnetars

Right, magnetars. Perhaps one of the most ferocious beasts to inhabit the cosmos. Loud, unruly, and temperamental, they blast their host galaxies with wave after wave of electromagnetic radiation, running the gamut from soft radio waves to hard X-rays. They are rare and poorly understood.

Some of these magnetars spit out a lot of radio waves, and frequently. The perfect way to observe them would be to have a network of high-quality radio dishes across the world, all continuously observing to capture every bleep and bloop. Some sort of network of deep-space dishes.

Like NASA’s Deep Space Network.  

Continue reading “Astronomers are Using NASA’s Deep Space Network to Hunt for Magnetars”

Scientists are Using Artificial Intelligence to See Inside Stars Using Sound Waves

NASA's Solar Dynamics Observatory has captured images of a growing dark region on the surface of the Sun. Called a coronal hole, it produces high-speed solar winds that can disrupt satellite communications. Image: Solar Dynamics Observatory / NASA

How in the world could you possibly look inside a star? You could break out the scalpels and other tools of the surgical trade, but good luck getting within a few million kilometers of the surface before your skin melts off. The stars of our universe hide their secrets very well, but astronomers can outmatch their cleverness and have found ways to peer into their hearts using, of all things, sound waves. Continue reading “Scientists are Using Artificial Intelligence to See Inside Stars Using Sound Waves”

Astronomers Observe a Pulsar 6500 Light-Years From Earth and See Two Separate Flares Coming off its Surface

Astronomy can be a tricky business, owing to the sheer distances involved. Luckily, astronomers have developed a number of tools and strategies over the years that help them to study distant objects in greater detail. In addition to ground-based and space-based telescopes, there’s also the technique known as gravitational lensing, where the gravity of an intervening object is used to magnify light coming from a more distant object.

Recently, a team of Canadian astronomers used this technique to observe an eclipsing binary millisecond pulsar located about 6500 light years away. According to a study produced by the team, they observed two intense regions of radiation around one star (a brown dwarf) to conduct observations of the other star (a pulsar) – which happened to be the highest resolution observations in astronomical history.

The study, titled “Pulsar emission amplified and resolved by plasma lensing in an eclipsing binary“, recently appeared in the journal Nature. The study was led by Robert Main, a PhD astronomy student at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics, and included members from the Canadian Institute for Theoretical Astrophysics, the Perimeter Institute for Theoretical Physics, and the Canadian Institute for Advanced Research.

The system they observed is known as the “Black Widow Pulsar”, a binary system that consists of a brown dwarf and a millisecond pulsar orbiting closely to each other. Because of their close proximity to one another, scientists have determined that the pulsar is actively siphoning material from its brown dwarf companion and will eventually consume it. Discovered in 1988, the name “Black Widow” has since come to be applied to other similar binaries.

The observations made by the Canadian team were made possible thanks to the rare geometry and characteristics of the binary – specifically, the “wake” or comet-like tail of gas that extends from the brown dwarf to the pulsar. As Robert Main, the lead author of the paper, explained in a Dunlap Institute press release:

“The gas is acting like a magnifying glass right in front of the pulsar. We are essentially looking at the pulsar through a naturally occurring magnifier which periodically allows us to see the two regions separately.”

Like all pulsars, the “Black Widow” is a rapidly rotating neutron star that spins at a rate of over 600 times a second. As it spins, it emits beams of radiation from its two polar hotspots, which have a strobing effect when observed from a distance. The brown dwarf, meanwhile, is about one third the diameter of the Sun, is located roughly two million km from the pulsar and orbits it once every 9 hours.

Image of the pulsar surrounded by its bow shock. White rays indicate particles of matter and antimatter being spewed from the star. Its companion star is too close to the pulsar to be visible at this scale. Credit: NASA/CXC/M.Weiss

Because they are so close together, the brown dwarf is tidally-locked to the pulsar and is blasted by strong radiation. This intense radiation heats one side of the relatively cool brown dwarf to temperatures of about 6000 °C (10,832 °F), the same temperature as our Sun. Because of the radiation and gases passing between them, the emissions coming from the pulsar interfere with each other, which makes them difficult to study.

However, astronomers have long understood that these same regions could be used as “interstellar lenses” that could localize pulsar emission regions, thus allowing for their study. In the past, astronomers have only been able to resolve emission components marginally. But thanks to the efforts of Main and his colleagues, they were able observing two intense radiation flares located 20 kilometers apart.

In addition to being an unprecedentedly high-resolution observation, the results of this study could provide insight into the nature of the mysterious phenomena known as Fast Radio Bursts (FRBs). As Main explained:

“Many observed properties of FRBs could be explained if they are being amplified by plasma lenses. The properties of the amplified pulses we detected in our study show a remarkable similarity to the bursts from the repeating FRB, suggesting that the repeating FRB may be lensed by plasma in its host galaxy.”

It is an exciting time for astronomers, where improved instruments and methods are not only allowing for more accurate observations, but also providing data that could resolve long-standing mysteries. It seems that every few days, fascinating new discoveries are being made!

Further Reading: University of Toronto, Nature

Second Fastest Pulsar Spins 42,000 Times a Minute

Pulsars are what remains when a massive star undergoes gravitational collapse and explodes in a supernova. These remnants (also known as neutron stars) are extremely dense, with several Earth-masses crammed into a space the size of a small country. They also have powerful magnetic fields, which causes them to rotate rapidly and emit powerful beams of gamma rays or x-rays – which lends them the appearance of a lighthouse.

In some cases, pulsars spin especially fast, taking only milliseconds to complete a single rotation. These “millisecond pulsars” remain a source of mystery for astronomers. And after following up on previous observations, researchers using the Low Frequency Array (LOFAR) radio telescope in the Netherlands identified a pulsar (PSR J0952?0607) that spins more than 42,000 times per minute, making it the second-fastest pulsar ever discovered.

The study which described their findings, titled “LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field“, recently appeared in The Astrophysical Journal Letters. Led by Dr. Cees Bassa, an astrophysicist from the University of Utrecht and the Netherlands Institute for Radio Astronomy (ASTRON), the team conducted follow-up observations of PSR J0952?0607, a millisecond pulsar located 3,200 to 5,700 light-years away.

An all-sky view in gamma ray light made with the Fermi gamma ray space telescope. Credit: NASA/DOE/International LAT Team

This study was part of an ongoing LOFAR survey of energetic sources originally identified by NASA’s Fermi Gamma-ray space telescope. The purpose of this survey was to distinguish between the gamma-ray sources Fermi detected, which could have been caused by neutron stars, pulsars, supernovae or the regions around black holes. As Elizabeth Ferrara, a member of the discovery team at NASA’s Goddard Space Center, explained in a NASA press release:

“Roughly a third of the gamma-ray sources found by Fermi have not been detected at other wavelengths. Many of these unassociated sources may be pulsars, but we often need follow-up from radio observatories to detect the pulses and prove it. There’s a real synergy across the extreme ends of the electromagnetic spectrum in hunting for them.”

Their follow-up observations indicated that this particular source was a pulsar that spins at a rate of 707 revolutions (Hz) per second, which works out to 42,000 revolutions per minute. This makes it, by definition, a millisecond pulsar. The team also confirmed that it is about 1.4 Solar Masses and is orbited every 6.4 hours by a companion star that has been stripped down to less than 0.05 Jupiter masses.

The presence of this lightweight companion is a further indication of how the spin of this pulsar became so rapid. Over time, matter would have been stripped away from the star, gradually accreting onto PSR J0952?0607. This would not only raise its spin rate but also greatly increase its electromagnetic emissions. The process continues to this day, with the star becoming increasingly smaller as the pulsar becomes more energetic.

Artist’s impression of a pulsar siphoning material from a companion star. Credit: NASA

Because of the nature of this relationship (which can only be described as “cannibalistic”), systems like PSR J0952?0607 are often called “black widow” or “redback” pulsars. Most of these systems were found by following up on sources identified by the Fermi mission, since the process has been known to result in a considerable amount of electromagnetic radiation being released.

Beyond the discovery of this record-setting pulsar, the LOFAR discovery could also be an indication that there is a new population of ultra-fast spinning pulsars in our Universe. As Dr. Bassa explained:

“LOFAR picked up pulses from J0952 at radio frequencies around 135 MHz, which is about 45 percent lower than the lowest frequencies of conventional radio searches. We found that J0952 has a steep radio spectrum, which means its radio pulses fade out very quickly at higher frequencies. It would have been a challenge to find it without LOFAR.”

The fastest spinning pulsar known, PSR J1748-2446ad, spins just slightly faster than PSR J0952?0607 – reaching a rate of nearly 43,000 rpm (or 716 revolutions per second). But some theorists think that pulsars could spin as fast as 72,000 rpm (almost twice as fast) before breaking up. This remains a theory, since rapidly-spinning pulsars are rather difficult to detect.

But with the help of instrument like LOFAR, that could be changing. For instance, both PSR J1748-2446ad and PSR J0952?0607 were shown to have steep spectra – much like radio galaxies and Active Galactic Nuclei.  The same was true of J1552+5437, another millisecond pular detected by LOFAR which spins at 25,000 rpm.

As Ziggy Pleunis – a doctoral student at McGill University in Montreal and a co-author on the study – indicated, this could be a sign that the fastest-spinning pulsars are just waiting to be found.

“There is growing evidence that the fastest-spinning pulsars tend to have the steepest spectra,” he said. “Since LOFAR searches are more sensitive to these steep-spectrum radio pulsars, we may find that even faster pulsars do, in fact, exist and have been missed by surveys at higher frequencies.”

As with many other areas of astronomical research, improvements in instrumentation and methodology are allowing for new and exciting discoveries. As expected, some of the things we are finding are forcing astronomers to rethink more than a few previously-held assumptions about the nature and limits of certain phenomena.

Be sure to enjoy this NASA video that explains “black widow” pulsars and the ongoing search to find them:

Further Reading: NASA, Astrophysical Journal Letters