NASA Issues Report On Commercial Crew as SpaceX’s CEO Testifies About SpaceX’s Progress

NASA has released its third status report concerning the progress of the Commercial Crew Development program (CCDev). Photo Credit: SpaceX

[/caption]
NASA has recently posted the latest update as to how the Commercial Crew Development 2 (CCDev2) program is doing in terms of meeting milestones laid out at the program’s inception. According to the third status report that was released by NASA, CCDev2’s partners continue to meet these objectives. The space agency has worked to provide regular updates about the program’s progress.

“There is a lot happening in NASA’s commercial crew and cargo programs and we want to make sure the public and our stakeholders are informed about the progress industry is making,” said Phil McAlister, NASA’s director of commercial spaceflight development. “It’s exciting to see these spaceflight concepts move forward.”

One of the primary objectives of the Commercial Crew Development program is to cut down the length of time that NASA is forced to rely on Russia for access to the International Space Station. Photo Credit: NASA

Reports on the progress of commercial crew are issued on a bi-monthly basis. The reports are directed toward the primary stakeholder of this program, the U.S. taxpayer. NASA has invested both financial and technical assets in an effort to accelerate the development of commercial access to orbit.

This report came out at the same time as Space Exploration Technologies’ (SpaceX) CEO, Elon Musk, testified before the U.S. House Science, Space, and Technology Committee regarding NASA’s commercial crewed program.

Elon Musk testified before the U.S. House Science, Space, and Technology Committee regarding his company's efforts to provide commercial access to the International Space Station. Photo Credit: SpaceX

SpaceX itself has been awarded $75 million under the CCDev program to develop a launch abort system, known as “DragonRider” that would enable the company’s Dragon spacecraft to transport astronauts. SpaceX was awarded $1.6 billion under the Commercial Orbital Transportation Services or COTS contract with NASA. Under the COTS contract, SpaceX must fly three demonstration flights as well as nine cargo delivery flights to the orbiting outpost. SpaceX is currently working to combine the second and third demonstration flights into one mission, currently scheduled to fly at the end of this year.

During Musk’s comments to the House, he highlighted his company’s efforts to make space travel more accessible.

“America’s endeavors in space are truly inspirational. I deeply believe that human spaceflight is one of the great achievements of humankind. Although NASA only sent a handful of people to the moon, it felt like we all went,” Musk said in a written statement. “We vicariously shared in the adventure and achievement. My goal, and the goal of SpaceX, is to help create the technology so that more can share in that great adventure.”

SpaceX's Falcon 9 launch vehicle is currently being readied for a liftoff date later this year. Photo Credit: Alan Walters/awaltersphoto.com

To date, SpaceX is the only company to have demonstrated the capacity of their launch vehicle as well as a spacecraft. The company launched the first of its Dragon spacecraft atop of its Falcon 9 rocket this past December. The Dragon completed two orbits successfully before splashing down safely off the coast of California.

NASA is relying on companies like SpaceX to develop commercial crew transportation capabilities that could one day send astronauts to and from the International Space Station (ISS). It is hoped that CCDev2 will help reduce U.S. dependence on Russia’s Soyuz spacecraft for access to the ISS. Allowing commercial companies to take over the responsibility of sending crews to the ISS might also allow the space agency focus on sending astronauts beyond low-Earth-orbit for the first time in four decades.

SpaceX's Dragon spacecraft recently arrived at the firm's hangar located at Cape Canaveral Air Force Station's Space Launch Complex-40 (SLC-40). Photo Credit: Alan Walters/awaltersphoto.com

NASA Planetary Science Not Being Killed, Says NASA Official

Murmurs of disbelief and “say it ain’t so” rippled across social media outlets late Wednesday and early Thursday in reaction to an op-ed by Mars Society President Robert Zubrin, who claimed that “the Obama administration intends to terminate NASA’s planetary exploration program.” The article was published in the Washington Times, and claimed that the Office of Management and Budget (OMB) was also targeting the space astronomy program “for destruction.” This would all be horrible if true, but the director of NASA’s Planetary Science division, Jim Green assured members of the NASA Advisory Council’s Planetary Science subcommittee that it is not.

“It is not true the planetary program is being killed,” Green told members during a teleconference, according to Space News.

While the future of NASA’s budget is not looking stellar by any means, gutting NASA’s “crown jewel” – the very successful planetary science division — seems ludicrous and Zubrin’s claims appear unfounded. He supplied no source of his details beyond saying he had “leaked” information. Likely, his article was his way of advertising an upcoming symposium he is part of, a tactic he has used before.

NASA is likely facing budget cuts but not because of President Obama. In 2010, the President proposed to give NASA an additional $6 billion over five years, but Congress couldn’t agree on the 2011 budget and NASA since has worked under a continuing resolution at 2010 funding levels. In the latest budget proposal, Obama proposed freezing NASA’s budget for five years (not cutting), putting the budget at $18.7 billion annually through fiscal 2016. The budget provided $5 billion for science, including $1.54 billion for planetary science, along with $3.9 billion for future exploration systems and $569 million for aeronautics research.

NASA is still waiting for Congress to vote on their budget.

Do You Have Ideas for Deep Space Travel? NASA Wants to Hear from You

Credit: NASA

[/caption]

You’ve probably heard by now how NASA is going to focus more on deep space exploration, both manned and robotic, leaving the low-Earth orbit and suborbital realms to commercial companies, a major change. There is, however, an opportunity for public input for deep space exploration as well, thanks to a new initiative for competitive ideas from universities, students, companies and government agencies. This means that you may have a chance to forward your proposals to help solve the problems that will need to be resolved in the coming years.

NASA’s new technology offices are getting ready to spend millions of dollars, it was announced at a seminar held last Monday as part of the Von Braun Memorial Symposium in Huntsville, Alabama. NASA is hoping to get between $375 million and $560 million in the fiscal year 2012 budget, which would be enough for competition prizes of $1 million or more.

“We have a space technology program, and there’s some money behind it,” Marshall Chief Technologist Andrew Keys said at the seminar.

The new heavy-lift rocket being designed will initially cost $1 billion or more, and still use proven conventional technology for its first planned launch in 2017. But as those first rockets are then replaced by larger ones, technological challenges will have to be overcome for new, better boosters to be designed, for example, which will ne necessary to take human farther into deep space to places like Mars.

The solar sail is also a good example of new technology, which is much different from conventional rockets, using the pressure of photons emitted from the Sun for propulsion, a very novel idea which is now being proven to be both possible and useful.

As in other facets of business and technology, competition will be a good thing, helping to bring out the best ideas and concepts from a larger knowledge pool, allowing the space industry to move more quickly and efficiently into the solar system and beyond. We may not have Star Trek-style warp speed yet, but the future is looking bright for space exploration, a future that can be better shared by all of us.

Aerojet: Small Space Firm Has Big Space History

In this image an Orion MultiPurpose Crew Vehicle jettison motor or JM, which is produced by Aerojet is test-fired. Photo Credit: Aerojet

[/caption]
When it comes to space flight pedigrees, few companies have one that can compare to Aerojet’s. The California-based company has a resume on space operations that is as lengthy as it is impressive. Universe Today sat down with Julie Van Kleeck – the firm’s vice-president of space and launch systems business unit.

Van Kleeck spoke extensively about the company’s rich history, its legacy of accomplishments – as well as what it has planned for space missions of the future.

Universe Today: Hi Julie, thanks for taking the time to chat with us today.

Van Kleeck: “My pleasure!”

Universe Today: How long has Aerojet been in business and what exactly is it that your company produces?

Van Kleeck: “We’ve been in the space business – since there was a space program – so since at least the 50s. We’ve dealt with both launch systems as well as space maneuvering systems, those components that enable spacecraft to move while in space.”

Aerojet propulsion systems have helped many of NASA's deep-space probes explore the solar system. Image Credit: NASA.gov

Universe Today: What about in terms of human space flight, when did Aerojet get involved with that?

Van Kleeck: “We first started working on the manned side of the house back during the Gemini Program, from there we progressed to Apollo, then shuttle and we hope to be involved with SLS (Space Launch System) as well.”

Universe Today: I understand that your company also has an extensive history when it comes to unmanned missions as well, care to tell us a bit about that?

Van Kleeck: “We have been on every discovery mission that has ever been launched, we have touched every part of space that you can touch.”

It is Aerojet's solid rocket motors that provide that extra-added “punch” to the versions of the Atlas V launch vehicle that utilize them. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: Some aerospace companies only produce one product or service, why is Aerojet’s list of offerings so diversified?

Van Kleeck: “We’re quite different than our competitors in that we provide a very wide-range of products to our customers. We’ve provided the liquid engines that went on Titan and now we provide the solids that go on the Atlas V launch vehicle as well as the small chemical and electrical propulsion systems that are utilized on some satellites.”

An Aerojet AJ26 rocket engine is prepared for testing in this image. These engines, as well as a license to produce them, were purchased from Russia and were originally designated the NK-33. Picture Credit: Aerojet

Universe Today: Does this mean that Aerojet places more importance on one space flight system over others?

Van Kleeck: “We view each of the products that we produce as equally important. Having said that, the fact that Aerojet offers a diversity of products and understands each of them well – sets us apart from our competitors. Firms that only produce one type of product tend to work to sell just that one product, whereas Aerojet’s extensive catalog of services allows us to be more objective when offering those services to our customers.”

During a tour of the Vertical Integration Facility, Aerojet's Solid Rocket Motors or SRms -were on full display attached to the Atlas V rocket that is set to send the Mars Science Laboratory rover "Curiosity" to Mars. Photo Credit: Alan Walters/awaltersphoto.com

Universe Today: When you look back, what is one of the most interesting projects that Aerojet has been involved with?

Van Kleeck: “I think as I look back over the past decade, New Horizons comes to mind, it was the first Atlas to launch with five solids on it. I look at that mission in particular as a major accomplish for not just us – but the country as well.”

In this image an AJ26 liquid rocket engine is tested. These engines are utilized as part of Orbital Science's Taurus II program. Photo Credit: Aerojet

Universe Today: What does the future hold for Aerojet?

Van Kleeck: ”We’re working on the Orion crew capsule right now with both liquid propulsion for it as well as solid propulsion for the abort test motor. We’re very much looking forward to seeing Orion fly in the coming years. We are currently putting into place the basic infrastructure to support human space exploration. We are working with both commercial crewed as well as Robert Bigelow to provide propulsion systems that work with their individual system – because no one system fits everyone. We are pleased to be offer systems for a wide variety of space exploration efforts.”

Universe Today: Julie, thanks for taking the time to chat with us today!

Van Kleeck: “No problem at all – it was my pleasure!”

Aerojet’s products will be on full display Nov. 25 as, if everything goes as planned the Mars Science Laboratory (MSL) rover Curiosity is set to launch on that day. Four of the company’s solid rocket motors or SRMs will help power the Curiosity rover on its way to the red planet.

For a taste of what Aerojet’s SRMs provide – please view the NASA video below.

Virgin Galactic Taps Test Flight Veteran As Pilot

Virgin Galactic has tapped U.S. Air Force test pilot Keith Colmer as a pilot for the private space company. Photo Credit: Clay Center Observatory/Virgin Galactic

[/caption]
From a pool of 500 potential applicants, Virgin Galactic has found their man. The NewSpace firm chose from some of the greatest pilots the world has to offer to work to be a pilot for their company. U.S. Air Force test pilot Keith Colmer rose to the top of the list and was selected by Virgin Galactic to join the team that is working to allow private citizens a flight into space.

Virgin Galactic announced Colmer’s addition to the company’s space flight team on Oct. 26. He will join Virgin Galactic’s Pilot David Mackay as they work to get the company’s carrier aircraft, WhiteKnightTwo and its spacecraft SpaceShipTwo into service. They will be joined by more pilots as the company works to begin operations in 2013.

Colmer brings 12 years of operational, developmental and experimental aircraft test flight experience plus more than 10 years of combined military experience in USAF spacecraft operations and flying. Photo Credit: Virgin Galactic

“Keith brings the kind of tremendous multi-dimensional talent and skill set that we are looking for in our astronaut pilots,” said Virgin Galactic’s President and CEO George Whitesides. “But equally important to us are his impeccable character and his outstanding record of high caliber performance in highly demanding environments. He sets the bar very high for others to come.”

“This team in Mojave is second to none,” said Mackay about Scaled Composite’s test pilots. “Keith and I are indeed fortunate to have their expertise and body of work to build on as we enter the final phases of the test program and prepare to open space to all.”

Colmer is a veteran pilot, with 12 years worth of experience in testing experimental aircraft. He has over 5,000 hours logged in more than 90 different types of aircraft.

Virgin Galactic is preparing to launch private citizens into space, potentially as early as 2013. Photo Credit: Virgin Galactic/Mark Greenberg

Former NASA Space Shuttle Manager Mike Moses recently left NASA to work as Virgin Galactic’s Vice President of Operations. Virgin Galactic is working to begin powered test flights, and after that the company will try to begin commercial operations.

“I am extremely honored to have been the first astronaut pilot selected through competition to join the team,” said Colmer. “Virgin Galactic is truly revolutionizing the way we go to space and I am looking forward to being a part of that.”

Colmer has served as a combat pilot, flying an F-16 in two tours in Iraq with the Colorado Air National Guard. According to information provided in a Virgin Galactic press release he is the first Air National Guard pilot to ever be selected to attend the USAF Test Pilot School, at Edwards Air Force Base.

With the dedication of its spaceport located near Las Cruces, New Mexico; additions to its team such as former NASA Space Shuttle Program Manager Mike Moses and others, Virgin Galactic is working to have the needed infrastructure in place to begin flight operations within the next two years. Photo Credit: Virgin Galactic/Jeffrey Vock

Colmer has a Bachelor of Science in Aeronautics and Astronautics from the Massachusetts Institute of Technology. He holds a Masters degree in Aerospace Engineering and a Masters degree in Telecommunications from the University of Colorado, Boulder. He is a graduate of the USAF Undergraduate Space Training program, the Euro-NATO Joint Jet Pilot Training Program and USAF Test Pilot School, Class 02A.

Virgin Galactic recently dedicated its Space Port in Las Cruces, New Mexico. The company is part of the London-based Virgin Group which is owned by Sir Richard Branson. The company formed after Scaled Composites one the $10 million Ansari X-PRIZE back in 2004. The flights of WhiteKnightOne and SpaceShipOne paved the way for the development of the vehicles that Virgin Galactic is planning on utilizing to begin suborbital space flight operations. Tickets for flights on the commercial space plane are set to cost approximately $200,000.

Underwater Asteroid Mission Ends Early

Walking on an 'asteroid.' Takuya Onishi (JAXA) performs translations tasks on a simulated asteroid. Credit; NASA

[/caption]

NASA evacuated its crew of NEEMO underwater “aquanauts” from a deep sea laboratory off the coast of Key Largo, Florida where they were simulating a mission to an asteroid. With Hurricane Rina bearing down on the Gulf of Mexico, NASA decided to play it safe.

“Crew decompressed overnight and will return to surface shortly. Hurricane Rina just a little too close for comfort,” said the NASA_NEEMO Twitter feed early this morning.

The NASA Extreme Environment Mission Operations (NEEMO) team came to the surface and climbed aboard support boats, returning to land by about 9:00 am EDT, (1300 GMT).

Takuya Onishi (JAXA), David Saint-Jacques (CSA), Steve Squyres (Cornell), and Shannon Walker (NASA) before their NEEMO 15 mission. Credit: NASA.

The underwater mission began on Oct. 20, after an initial delay caused by another storm in the area.

The NEEMO crew — the 15th such underwater mission — conducted six underwater spacewalks and one day of scientific research inside the underwater Aquarius habitat, focusing on operational concepts that might be used in human exploration of an asteroid. The crew completed four days of scientific asteroid exploration analog operations using the deep worker submersibles that stood in for the Space Exploration Vehicle.

Screenshot of the NEEMO team during a videoconference with reporters on Oct. 24, 2011.

“This is a good way to learn techniques that we’ll need to use on other bodies in the solar system, without actually going into space,” said Commander and NASA astronaut Shannon Walker during a videoconference conversation with reporters on Monday from the underwater habitat.

The crew also included Mars scientist Steve Squyres, Principal Investigator with the Mars Exploration Rover mission.

“Asteroids are leftovers from formation of solar system, so by studying them we can learn about the building blocks of the solar system and understand how planets form,” Squyres said during the videoconference. “Going to asteroids will be a wonderful stepping stone to other destinations in the solar system, and we can flex our deep space muscles and learn how to do the things we want and need to do as we venture off of Earth.”

The six-member NEEMO crew also included Japan Aerospace Exploration Agency astronaut Takuya Onishi, Canadian Space Agency astronaut David Saint-Jacques, and James Talacek and Nate Bender of the University of North Carolina Wilmington.

Even though the mission was cut short, the remainder of NEEMO 15 will not be rescheduled. “Despite the length, we accomplished a significant amount of research,” said NEEMO Project Manager Bill Todd. “We’re already learning lessons from working in this environment.”

NASA Nabs Grandma for Trying to Sell Moon Rock

A collection of Moon rock samples that NASA uses for eduction. A similar type sample was invovlved in the recent sting operation. Credit: NASA

[/caption]

A 74-year-old grandmother was taken into custody after a NASA sting operation to recover a small shard of a Moon rock. In an Associated Press article, Joanna Davis said the Moon rock was given to her husband by Neil Armstrong in the 1970s, and she was trying to sell the item to take care of her sick son. However, any samples from the Moon are considered government property, and so cannot be sold for profit.

But no charges have been filed and NASA is not commenting on the case.

Davis said she was frightened and bruised during the incident that occurred at a Denny’s restaurant

“They grabbed me and pulled me out of the booth,” Davis told the AP.

Reportedly Davis emailed a NASA contractor on May 10, 2011 trying to find a buyer for the rock, as well as a nickel-sized piece of the heat shield that protected the Apollo 11 space capsule as it returned to earth from the Apollo 11 mission to the moon in 1969.

Neil Armstrong has said previously in a written affidavit that he has never given Moon rocks to private citizens.

While Davis’s attorney called the incident “abhorrent behavior by the federal government to steal something from a retiree that was given to her,” according to AP, Davis apparently knew that what she was doing was against the law.

You can read more in the original AP article.

Astronaut Scholarship Foundation Raising Funds, Awareness With Autograph Show

A light-hearted moment is shared between Apollo 12 Lunar Module Pilot Alan Bean (standing) and Apollo 11 Lunar Module Pilot Buzz Aldrin. Photo Credit: ASF

[/caption]
CAPE CANAVERAL, Fla – It all started – with seven. The original seven Mercury astronauts that is. They wanted to give back to the nation that had allowed them to reach the heights that they had achieved, while at the same time inspiring the nation’s young to follow in their footsteps. What arose was the Astronaut Scholarship Foundation (ASF).

There are more than 80 astronauts that are working with the ASF to ensure that the United States maintains its role as leader in terms of science and technology. The ASF accomplishes this by providing scholarships to students studying engineering, science and math.

Apollo 14 Lunar Module Pilot Edgar Mitchell poses with a guest during a previous ASF astronaut autograph show. Just over his shoulder is former shuttle astronaut Fred Gregory. Photo Credit: ASF

In 1984, the then six surviving Mercury astronauts established the 501 (c) 3 organization along with the widow of the seventh (Betty Grissom, widow of astronaut Virgil “Gus” Grissom. Astronauts Malcolm Scott Carpenter, L. Gordon Cooper Jr., John H. Glenn Jr., Walter M. Schirra, Alan B. Shepard Jr., and Donald K. (Deke) Slayton were also joined by the Mercury Program’s flight surgeon William Douglas M.D. as well as a local business man, Henry Landwirth.

What started with scholarships of only $1,000 has grown to $10,000 each. Twenty-six of these scholarships are handed out every year for a grand total of $260,000. All total? The ASF has handed out $3 million in scholarships to worthy students. The ASF’s current Chairman of its Board of Directors is Apollo 16 Command Module Pilot Charlie Duke; his vice-chair is shuttle veteran Dan Brandenstein.

Apollo 15 Commander Dave Scott poses with a young guest at the ASF's astronaut autograph show. Photo Credit: ASF

The ASF raises funds by a number of means. Astronaut guest appearance, fund-raisers, donations from different entities both public and private and autograph shows. The next of these is scheduled to take place at the Kennedy Space Center Visitor Complex located in Florida from Nov. 4-6. The annual show contains a wide range of events and tours to allow guests the opportunity to learn about the location’s history while picking up a signed item from an astronaut.

Former shuttle astronaut Robert Springer flew twice on the space shuttle and is a current member of the Astronaut Scholarship Foundation. Photo Credit: NASA.gov

Universe Today recently sat down with two-time shuttle veteran Robert C. Springer about his thoughts regarding ASF. Here is what he had to say:

Universe Today: Hi Bob thanks for chatting with us today.

Springer: “My pleasure, thanks for having me!”

Universe Today: How long have you been affiliated with the ASF and how do you view its activities?

Springer: “I have been associated with the Astronaut Scholarship Foundation for the past ten years. The foundation has had phenomenal success, increasing the number of scholarships to the current level of 26 scholarships, each in the amount of $10,000 awarded annually to young men and women who are pursuing degrees in engineering and scientific fields that are related to space exploration.”

Universe Today: What do you find most rewarding or interesting regarding the ASF’s efforts?

Springer: “One of the most interesting aspects of the fund raising effort, is the diversity of individuals who have contributed to the foundation. It has been both a national and international group of individuals who truly believe that we need to continue to invest in our future by providing funding assistance to talented and motivated students to enable them to continue their studies in selected fields.”

Universe Today: So your experience with these folks is rewarding?

Springer: “They are great, but it’s really wonderful to meet the recipients of these scholarships – each year we have the opportunity to hear from some of the individuals who have been awarded the scholarships, and it is remarkable to hear their stories and to understand the kinds of contributions they are making today and have the potential to make in the future.”

Universe Today: I bet that must be really gratifying. It seems we have to wrap, but I wanted to thank you for telling us a bit about your experiences.

Springer: “It was great talking with you!”

For more information regarding the Astronaut Scholarship Foundation’s annual autograph show visit: astronautscholarship.org or call: 321-455-7016.

The ASF astronaut autograph show is normally held during the first week in November and serves to raise funds for scholarships. Photo Credit: ASF

Here There Be Dragons: SpaceX’s Spacecraft Arrives at Launch Complex 40

The next Dragon spacecraft, the one that is set to launch to the International Space Station has arrived at Cape Canaveral Air Force Station's Space Luanch Complex 41 (SLC-41) for processing. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Space Exploration Technologies (SpaceX) welcomed a new guest to Space Launch Complex 40 (SLC-40) on Sunday – the next Dragon spacecraft that is set to launch later this year. Members of the media were invited to a photo opportunity to chronicle the Dragon spacecraft’s arrival which had been delayed a day due to issues with travel permits.

The Dragon that arrived on Sunday is destined to fly to the International Space Station (ISS). It will be the first time that a private firm docks with the space station. The COTS Demo 2 Dragon was shipped from SpaceX’s facilities in Hawthorne, California to Cape Canaveral in Florida.

SpaceX's next Dragon spacecraft, the one set to fly to the International Space Station, was delivered to Cape Canaveral Air Force Station's Space Launch Complex 40 on Sunday. Photo Credit: SpaceX

The Falcon 9 rocket, with its Dragon spacecraft payload, is currently scheduled to launch from Cape Canaveral Air Force Station’s SLC-40 on Dec. 19. If all goes as it is currently planned the Dragon will maneuver along side of the orbiting laboratory where the space station’s robot Canadarm 2 will grapple the unmanned spacecraft it and dock it with the station.

“When it comes to the launch day, NASA will determine that, we’re pushing to launch on Dec. 19, but the final “go” date is set by NASA and the range,” said SpaceX’s Vice-President for Communications Bobby Block. “We are currently working to conduct a wet dress rehearsal on November 21st.”

The Dragon spacecraft that is bound for the ISS will ride this Falcon 9 rocket to orbit. The launch date is tentatively set for Dec. 19. Photo Credit: Alan Walters/awaltersphoto.com

SpaceX recently passed a Preliminary Draft Review (PDR) of the Dragon’s Launch Abort System (LAS). This system, which pulls astronauts and their spacecraft to safety in case of some problem with the Falcon 9 launch vehicle, is unlike other systems of its type. Normal abort systems are essentially small rockets affixed to the top of the spacecraft (which is normally on top of the rocket). Not so with SpaceX’s design, dubbed DragonRider – it will be built into the walls of the spacecraft.

The reason for the difference in the abort system’s design is twofold. First, it will drive the costs down (Dragon is being developed as a reusable spacecraft) -whereas traditional abort systems are not capable of being reused. Secondly the system could one day be used as a potential means of landing spacecraft on other terrestrial worlds, such as the planet Mars.

SpaceX has been working with NASA to get the Dragon spacecraft ready for its historic mission. This will mark the first time that many of the systems have been used on an actual mission. Photo Credit: Alan Walters/awaltersphoto.com

This will mark the second demonstration flight that SpaceX will have flown to accomplish the objectives laid out in the Commercial Orbital Transportations Services or COTS contract. The $1.6 billion contract is an effort to ensure that needed cargo is delivered to the station safely and in a timely fashion.

SpaceX so far has launched two of its Falcon 9 rockets – both in 2010. The first flight occurred on June 4, 2010 with the second being launched on Dec. 8, 2010. It was on this second flight that SpaceX became the first private entity to launch a spacecraft into orbit and then safely recover it after it had successfully orbited the Earth twice. Before this only nations were capable of achieving this feat.

“This is very exciting, our last launch was about a year ago, so to have a fully-operational Dragon up-and-ready to make a historic docking to the International Space Station it’s terrifically exciting.” Block said.

SpaceX is working toward expanding the role of not only the Falcon 9 rocket - but the Dragon spacecraft as well. Photo Credit: Alan Walters/awaltersphoto.com

Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients

Curiosity Mars Science Laboratory (MSL)- all elements assembled into flight configuration in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The top portion is the cruise stage attached to the aeroshell (containing the compact car-sized rover) with the heat shield on the bottom. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: NASA/Glenn Benson

[/caption]

Take a good last, long look at the magnificent robot that is Curiosity, because she’s been all buttoned up for her long Martian voyage in search of the ingredients of life. After years of exhaustive work, the most technologically advanced surface robotic rover ever to be sent beyond Earth has been assembled into the flight configuration, a NASA spokesperson informed Universe Today.

The next time Curiosity opens her eyes she will have touched down at the foot of a layered mountain inside the planet’s Gale crater.

Curiosity Mars rover folded for flight and mated to the cruise stage. The cruise stage provides solar power, thrusters for navigation, and heat exchangers to the rover during its flight from Earth to Mars. Credit: NASA/Glenn Benson

Curiosity – NASA’s next Mars rover – is formally known as the Mars Science Laboratory (or MSL) and has entered the final stages of preflight processing.

After extensive quality assurance testing, Curiosity has been encapsulated for the final time inside the aeroshell that will be her home during the 10 month long interplanetary cruise to Mars. Furthermore, she’s been attached to the cruise stage that will guide her along the path from the home planet to the red planet.

Curiosity Mars Science Laboratory (MSL) assembled into flight configuration in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The rover Curiosity has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. Credit: NASA/Glenn Benson

The work to combine all the components into an integrated assembly was carried out inside the clean room facilities of the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center (KSC) in Florida.

The aeroshell is comprised of the heat shield and back shell.

The job of the aeroshell is to protect Curiosity from the intense heat of several thousand degrees F(C) generated by friction as the delicate assemblage smashes into the Martian atmosphere at about 13,200 MPH (5900 m/s) and plummets some 81 miles during the terrifying seven minute long entry, descent and landing (EDL) on the surface.

See Video animation below

The massive 2000 lb (900 kg) rover is folded up and mated to the back shell powered descent vehicle, known as the PDV or Sky Crane. The spacecraft is designed to steer itself through a series of S-curve maneuvers to slow the spacecraft’s descent through the Martian atmosphere.

In the final moments, the rocket powered Sky crane will lower the robot on tethers and then safely set Curiosity down onto the ground at a precise location inside the chosen landing site astride a layered mountain in Gale Crater believed to contain phyllosilicate clays and hydrated sulfate minerals that formed in liquid water.

The robot is the size of a compact car and measures three meters in length, roughly twice the size of the MER rovers; Spirit and Opportunity. It is equipped with 10 science instruments for a minimum two year expedition across Gale crater.

NASA's Curiosity Mars Science Laboratory Rover
Inside the Clean room at the Payload Hazardous Servicing Facility at the Kennedy Space Center.
The science payload weighs ten times more than any prior Mars rover mission. Curiosity will zap rocks with a laser and deftly maneuver her outstretched robotic arm to retrieve and analyze dozens of Martian soil samples. Credit: Ken Kremer

Curiosity will search for the ingredients of life including water and organic molecules and environmental conditions that could have been hospitable to sustaining Martian microbial life forms if they ever existed in the past or survived to the present through dramatic alterations in Mars climatic and geologic history.

Liftoff of the $2.5 Billion Curiosity rover is slated for Nov. 25 from Cape Canaveral Air Force Station in Florida on a United Launch Alliance Atlas V booster rocket. The launch window to Mars extends until Dec. 18.

This coming week, Curiosity will be encapsulated into the clamshell like payload fairing and the MSL logo will then be applied to the fairing, KSC spokesman George Diller told Universe Today. It will then be hoisted onto the payload transporter and carefully conveyed to Space Launch Complex 41 on Nov. 2, for mating atop the Atlas V rocket.

Mars Science Laboratory Aeroshell with Curiosity enclosed inside. Credit: NASA

Read Ken’s continuing features about Curiosity starting here:
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s features about Russia’s upcoming Phobos-Grunt, Earth’s other 2011 Mars mission here::
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff