Apollo Landing Sites Pose a Threat to LRO Instrument

The Laser Ranging Retroreflector experiment on the Moon. Credit: Lunar and Planetary Institute

[/caption]
The recent images released by the Lunar Reconnaissance Orbiter of the Apollo landing sites are truly remarkable. But there is one instrument on board LRO that must avoid studying some of the the Apollo sites as well as other places where humans have placed spacecraft on the the lunar surface. The Lunar Orbiting Laser Altimeter (LOLA) pulses a single laser beam down to the surface to create a high-resolution global topographic map of the Moon. However, LOLA is turned off when it passes over the Apollo sites because bouncing the laser off any of the retro-reflective mirrors on experiments left by the astronauts might damage the instrument.

Don Mitchell, who owns a software consulting company and is writing a book on the Soviet Exploration of Venus, wrote about this problem on his blog, saying that if LOLA’s beam did strike the retro reflector experiment, “the light bounced back would be 1,000 times the detector damage threshold.”

LOLA Engineering model. Credit: Goddard Space Flight Center
LOLA Engineering model. Credit: Goddard Space Flight Center

The LOLA instrument is based on Mars Orbiter Laser Altimeter (MOLA), flown on Mars Global Surveyor and the Mercury Laser Altimeter (MLA), currently on MESSENGER. LOLA will perform the same type of work as these previous instruments, but with 3-5 times greater vertical accuracy and 14 times more measurements along the spacecraft ground track.

The Laser Ranging Retroreflector experiment was deployed on Apollo 11, 14, and 15. It consists of a series of corner-cube reflectors, which reflects an incoming light beam back in the direction it came from.

Ever since the experiments were deployed, the McDonald Observatory in Texas has beamed a laser at these mirrors and measured the round-trip of the beam. This provides accurate data on the Moon’s orbit, the rate at which the Moon is receding from Earth (currently 3.8 centimeters per year) and variations in the rotation of the Moon. These are the only Apollo experiments that are still returning data. A similar device was also included on the Soviet Union’s Lunakhod spacecraft.

David E. Smith, LOLA principal investigator confirmed that, indeed, LOLA is switched off over the Apollo and Lunakhod sites, to avoid damaging the instrument. He said the Russians have been very helpful in in providing the LOLA team the best known locations for the two Lunokhod landers. Lunokhod-2 has been located precisely and is routinely probed by lasers from Earth. Lunokhod-1 has never been found by laser, and it is not known for certain if its reflector is deployed. Smith said he and co-PI Maria Zuber have visited Moscow to consult with Russian scientists, who have shared their knowledge of the locations of their landers.

As Mitchell wrote, “While conspiracy nuts debate the reality of the Apollo landings, scientists must deal with some practical consequences of what astronauts put on the Moon.”

Sources: Don Mitchell’s Blog, email exchange with David E. Smith

Hat tip to Emily Lakdawalla on Twitter!

After 40 Years Moon Rocks Still Revealing Secrets

Scientists in the Lunar Receiving Laboratory. Credit: NASA

[/caption]
Even though scientists have been able to study Moon rocks up close for almost 40 years, there are still many answers to be gleaned from the lunar samples collected by the Apollo astronauts. “We know even more now and can ask smarter questions as we research these samples,” says Randy Korotev from Washington University in St. Louis. “There are still some answers, we believe, in the Apollo 11 mission.” One possible clue the Moon rocks could provide is a better understanding of Earth’s history and when life actually began on our planet.

Korotev has been mainly interested in studying the impact history of the moon, how the moon’s surface has been affected by meteorite impacts and the nature of the early lunar crust.

“You can look at the moon and know that the moon has been hit a lot by very large meteorites,” he said. “We know this occurred some 3.9 billion years ago. We don’t know, however, the history of large meteorites hitting the Earth — we can’t see those impacts because they would have been erased by Earth’s active geology. We want to see if meteorite bombardment on the moon coincided with what was happening on Earth, and, in turn, with life starting on Earth.”

Recently, Korotev and his colleagues decided to begin taking a closer look at the Apollo samples to learn more about the Moon’s impact history. He says they still have much work to do with his samples, which have been chemically analyzed and are sealed in tubes and securely stored away for now.

Korotev expects the Apollo Moon rocks will provide scientific study for years to come, as our technology and understanding of the Moon improves. “We went to the moon and collected samples before we knew much about the moon,” he said. “We didn’t totally understand the big concept of what the moon was like until early 2000 as a result of missions that orbited the moon collecting mineralogical and compositional data.”
“Bringing samples back from the Moon wasn’t the point of the mission,” added Korotev. “It was really about politics. It took scientists like Bob Walker to bring these samples back — to show the value of them for research.”

Korotev credits Walker, also from Washington University and a handful of other scientists for the fact that there are even moon samples to study.

“Bob convinced them to build a receiving lab for the samples and advised them on the handling and storage of them. We didn’t go to the moon to collect rocks, so we scientists are really lucky that we have this collection.”

See Universe Today’s article on the history of the Lunar Receiving Lab.

Researchers in WUSTL's Laboratory for Space Sciences in Arts & Sciences have a long tradition of being among the first in the world to receive samples from a NASA mission. In this photo taken in 1969, the late Robert M. Walker, Ph.D., the McDonnell Professor of Physics and first director of the university's McDonnell Center for the Space Sciences in Arts & Sciences, displays photos and lunar samples from the Apollo 11 mission that year.  Credit: WUSTL
Researchers in WUSTL's Laboratory for Space Sciences in Arts & Sciences have a long tradition of being among the first in the world to receive samples from a NASA mission. In this photo taken in 1969, the late Robert M. Walker, Ph.D., the McDonnell Professor of Physics and first director of the university's McDonnell Center for the Space Sciences in Arts & Sciences, displays photos and lunar samples from the Apollo 11 mission that year. Credit: WUSTL

Walker was recruited to serve on the scientific team that advised NASA on the handling and distribution of moon rocks and soil samples from the first Apollo missions. That team distributed Apollo 11 samples to some 150 laboratories worldwide, including Washington University, St. Louis (WUSTL).

Walker also briefed those early astronauts about what to expect on the rocky, dusty moon surface.

In an interview some months after the first moon samples arrived in WUSTL’s space sciences lab, Walker recalled the excitement of that momentous day in 1969: “We felt just like a bunch of kids who were suddenly given a brand new toy store … there was so much to do, we hardly knew where to begin.”

Ghislaine Crozaz, Ph.D., professor of earth and planetary sciences emerita in Arts & Sciences at Washington University and a member of Walker’s space sciences group that was one of those selected to study the first lunar samples, says the event is “as vivid in my mind as if it had happened yesterday.”
Small rock fragments from the lunar "soil" collected by the Apollo 11 astronauts in 1969. The background grid spacing is 2 mm.  Credit: WUSTL
Crozaz says that the team studied the cosmic rays and radiation history of the lunar samples mainly using nuclear particle tracks, which were revealed by techniques invented by Walker.

“After we received the samples in early September, we worked like hell until the First Lunar Science Conference in early January 1970 in Houston, where we arrived with our Science paper after having worked ‘incommunicado’ for 4 months.”

In their study of the lunar materials, Walker’s laboratory led the way in deciphering their record of lunar, solar system and galactic evolution. Of special importance was the information they gave on the history of solar radiation and cosmic rays.

Crozaz says the lunar samples provided insights into the history of the solar system that couldn’t be achieved at the time by looking at meteorites found on Earth. The intense heat encountered during their passage through the atmosphere would have erased much of the record of radiation the meteorites carried.

Source: Washington University St. Louis

Land on the Moon in Google Earth


To celebrate the 40th anniversary of the Apollo 11 Moon landing, Google has launched a new feature: the Moon in Google Earth. You can now use Google Earth to explore, fly around and search the Moon. Google was able to get several astronauts to participate in this new feature, and you can get tours of landing sites, narrated by Apollo astronauts, view 3D models of landed spacecraft, zoom into 360-degree photos to see astronauts’ footprints and watch rare TV footage of the Apollo missions. The hi-resolution views of the Moon were developed in collaboration with NASA Ames Research and JAXA. It’s loads of fun and provides an historic perspective as well as a look to the future of lunar exploration. If you already have Google Earth 5.0 on your computer, just click on the tab on the top toolbar that has a picture of Saturn, and click on Moon. If you click on the Apollo 11 flag, you can zoom in on that location and take a tour of the first landing site on the Moon! What a great way celebrate the 40th anniversary. Enjoy!

Click here to go the the Moon in Google Earth.

Book Review: Magnificent Desolation, by Buzz Aldrin

Magnificent Desolation, the new autobiography by Buzz Aldrin

[/caption]

I very much enjoyed chatting with Buzz Aldrin a couple of weeks ago, for some stories leading up to the 40th anniversary of the July 20, 1969 Apollo 11 landing on the moon. I found him honest, personable and generous with his time.

But when his publicist offered to send a copy of his new book, “Magnificent Desolation,” I didn’t set my expectations too high. I didn’t know what to make of an autobiography by a retired Air Force pilot and astronaut. Doesn’t that history put the “Rocket Hero” pretty squarely in the category of techie or a jock — a non-writer type?

Well, color me impressed. The book arrived late last week, and I turned the last page this morning — looking for more to read!

Courtsey of Buzz Aldrin
Courtsey of Buzz Aldrin

Granted, Aldrin got help when he teamed up with writer Ken Abraham. But no writer can spin a book like “Magnificent Desolation” without an incredible story, and Aldrin is a master of that.

The book opens with a few chapters on the Apollo program that made him famous. Even though I’ve dabbled in some research the past few weeks — including catching up on the movie “In the Shadow of the Moon” and leafing through some books — I learned new details both whimsical and serious.

Who knew, for example, that American astronauts traditionally eat steak and eggs prior to launch? Or that Aldrin is such a font of deep thoughts, which has apparently been true for a long time:

“From space there were no observable borders between nations, no observable reasons for the wars we were leaving behind,” he remembers musing as the Earth got smaller in Apollo 11’s windows.

“Magnificent Desolation” is about as revealing as you can get in personal realms. Aldrin engages in a lengthy discussion of his decade of deep depression and alcoholism following the Apollo years, from which he eventually escaped. At his rock bottom, Aldrin had lost faith in himself, had no vision for his purpose in life, and was failing at his job — as a salesman of Cadillacs.

During our interview, Aldrin said he turned his life around by deciding that he could share his experiences for a greater good.

“Do you continue to descend into an abyss? Or do you try to make a difference with what you know best?” he remembers thinking.

These days, Aldrin lives a life fitting for a hero. He hobnobs with greats in every field, from journalists and athletes to international leaders, scientists and movie stars. He and his wife, Lois, have traveled the world for scuba diving excursions, ski trips and unflagging efforts to promote his primary passion (besides Lois): a return to the collective national motivation that helped fuel the lunar landings. He desperately wants to see America lead the charge toward space exploration — to Mars and/or a moon of Mars, and beyond.

Aldrin admits he’s been criticized in the past, even by some of his astronaut peers, for garnering so much publicity as the second man (after Neil Armstrong) to set foot on the moon.

“The truth was, no other astronaut, active or inactive, was out in the public trying to raise awareness about America’s dying space program. None of them,” he writes. He points out that he is not promoting himself: “I did not want ‘a giant leap for mankind’ to be nothing more than a phrase from the past.”

Besides pushing for a new era of space exploration, the book is also a testament to the benefits of citizen space travel, which Aldrin avidly promotes through his outreach efforts, including his non-profit Sharespace Foundation. Among them: “The United States will capture the lion’s share of the global satellite market,” and “NASA’s planetary probes will become far more affordable.”

Aldrin has used traditional channels to advance his ideas, addressing international audiences of all stripes and testifying before Congress. But the really fun stuff comes when he reaches out to younger audiences. He seems to stop at nothing to reach out to the next generations, to ensure that his space exploration dreams will stay alive.

“I look forward to these things happening during my lifetime,” he writes, “but if they don’t, please keep this dream alive; please keep going; Mars is waiting for your footsteps.”

This review is cross-posted at the writer’s website, anneminard.com.

Fun Buzz Aldrin links:

Buzz Aldrin’s Web site

Training Buzz Lightyear for a NASA mission (YouTube video)

Comical interview with Ali G. (YouTube video)

“Rocket Experience” rap with Snoop Dogg

Other Universe Today Apollo 11 40th anniversary stories:

How to Handle Moon Rocks and Lunar Bugs: A Personal History of Apollo’s Lunar Receiving Lab

Q & A with Apollo 11 Astronaut Michael Collins

LRO Images Apollo Landing Sites (w00t!)

NASA Laments Missing Apollo 11 Film, Makes Do With What’s Left

And finally, the treasure trove: Apollo 11 Anniversary Link-O-Rama

How to Handle Moon Rocks and Lunar Bugs: A Personal History of Apollo’s Lunar Receiving Lab

Apollo 11 crew in quarantine talking with President Richard Nixon. Credit: NASA

50 lbs. of moon rocks. That’s how much weight was allocated for the Apollo 11 astronauts to bring back lunar samples to Earth. But this would be the first time materials from another world would be brought to our planet. What should be done with these alien rocks, and could they possibly be a threat to life as we know it?

What started out as a seemingly straightforward idea of building a facility to store and study rocks from the Moon ended up becoming a power struggle between engineers building the facility and scientists who wanted to study the rocks and those who wanted to save the world from biological disaster — not to mention even more squabbling between the various governmental agencies and politicians. In the middle of it all was James McLane, Jr. one of the engineers tasked with the early planning for the Manned Spaceflight Center –now known as Johnson Space Center in Houston — and in particular, he led a group to determine the requirements and design concept of NASA’s Lunar Receiving Laboratory.

James C. McLane Jr. in 1971.  Photo courtesy of James McLane Jr.
James C. McLane Jr. in 1971. Photo courtesy of James McLane Jr.

“We started the Manned Spaceflight Center from scratch and a cadre of people envisioned what we should have for the space program’s ground facilities,” said McLane, in an interview from his home with Universe Today. “A whole range of facilities were recommended. For a year or so I went from one design review to another to add my two bits as to how things might be done. The new facilities included a big manned centrifuge, electronics labs, and a thermal vacuum lab with a couple of very big space simulation chambers to test the Apollo spacecraft and its onboard crew under conditions similar to those to be found during the lunar missions. There was just about everything you could think of that was needed to support the Apollo program.”

While engineers at the MSC were intent on designing unique, world-class facilities (as well as rockets and spacecraft to take humans to the moon) scientists were excited about the prospect of researching pristine lunar materials.

Lunar Receiving lab concept drawing. Credit: NASA
Lunar Receiving lab concept drawing. Credit: NASA

During this time, a couple of young MSC scientists, chemist Don Flory and geologist Elbert King had been given responsibility of designing the airtight sample return containers in which lunar samples would be brought back to Earth. But, said McLane, no one had given much thought as to how the rocks should be handled or stored once they were brought back to Earth. “There really wasn’t much direction on what should be done after we got them back to Earth,” he said. “Oh, there were scientific committees of course, but for some reason this was down low on their priority list. I think they were thinking more about the research they were going to do with the rocks.”

But one day Flory and King showed up in their boss’s office and said since they had the responsibility for the container they were a little concerned what would be done with it after the astronauts returned the samples. They suggested that, at least, the containers ought to be opened in a vacuum chamber.

“They asked, ‘Does anyone around the Center have a small vacuum chamber where we can open these boxes?’ And that started the whole business of what would happen to the lunar samples and what was required to do that,” said McLane. “A small office was setup under the Assistant Director of Engineering, Aleck Bond, and I was assigned to head it. We were charged with determining what was needed to receive, protect, catalog, and distribute the materials collected from the surface of the moon. We were guided and assisted by a committee appointed by NASA headquarters, consisting mostly of people who had been selected, or expected to be selected as principal investigators for some of the many examinations and experiments proposed for the lunar samples.”

The initial plan called for a clean room approximately “ten feet by ten feet by seven feet” where the sample box could be opened under vacuum conditions and repackaged for distribution to various researchers.

But some NASA officials concluded just a single room wouldn’t be sufficient, and quickly came up with a plan for a 2,500 square foot research facility where the lunar samples would not only be stored, but studied as well. After more discussion, an 8,000 square-foot version was proposed.

Scientists in the Lunar Receiving Laboratory. Credit: NASA
Scientists in the Lunar Receiving Laboratory. Credit: NASA

Working with the scientific advisory committee to develop a workable plan for the ever-growing and changing proposed facility turned out to be an interesting challenge for McLane and his team.

“The biggest challenges were political,” McLane said. “All the scientists involved in studying the samples had laboratories of their own. They didn’t want to do anything unless it was going to benefit their facility back home. Others were suspicious that we were trying to appropriate activities that weren’t in the Manned Spacecraft Center’s charter at the expense of other NASA Centers. So, it was difficult to get everybody to cooperate and agree on just on the initial receiving procedure. A few of the experiments such as those to determine low level radiation properties of the samples were very time dependant. Thus it became evident that the facility and equipment required to perform those experiments would have to be located very near the point where the samples were first available. That point was Houston, and it particularly rankled some of the scientists to see new state-of-the-art facilities and equipment being located at Houston rather than at their home laboratories.”

“I had never worked with high level scientists before, and our advisory committee usually consisted of people who were at the level of principal assistants to Nobel Prize winners,” McLane continued.”Overall, it was a great group to work with, with one important exception. They each reserved the right to change his mind. It was not unusual for us to settle a contentious issue only to have it brought up again some weeks later. This caused some real schedule problems, but the instigator would plead ’Well, I was just wrong before’, or ‘I changed my mind’, often ignoring schedule and reality.

For example, one issue was whether to use glove boxes or use a closed container with mechanical manipulators (McLane equated them to the toy grappling machines in restaurants, only a little fancier) to work with the moon rocks. It took many discussions and debates to decide, and the decision would make a big different on what direction the engineers needed to go for building the lab, and they had a limited amount of time to decide.

McLane was also surprised about all the different scientific speculation that took place. “Some of the leading scientists of this country thought the moon was covered with several hundred feet of lunar dust and thought that when we landed on the moon the spacecraft would sink into the dust,” he said. “Fortunately that didn’t happen. Others thought the rocks on the moon, sitting in hard vacuum and bombarded with radiation and meteorites, that when first exposed to air they might catch on fire or explode. The speculations by good, smart, reputable people were just unlimited. But I guess they were trying to think of all the possibilities. We were fortunate that no one forced us to plan for any of these extreme speculations. Overall, our advisors did a good job of things.”

The Lunar Receving Lab shortly after it was built. Credit: NASA
The Lunar Receving Lab shortly after it was built. Credit: NASA

But then at one of the meetings in Washington to meet with advisors at NASA Headquarters, a scientist from the Public Health Service showed up and asked how NASA was going to protect against contamination of the Earth by lunar microorganisms.

McLane said the initial reaction by everyone else was, “What?”

For a couple of years a small group of scientists (which included a young and relatively unknown scientist named Carl Sagan) had been discussing the remote possibility that lunar samples brought back to Earth might contain deadly organisms that could destroy life on Earth. Even the spacecraft and the astronauts themselves could possibly bring back non-terrestrial organisms that could be harmful. Several governmental agencies, including the Department of Agriculture, the US Army, and the National Institute of Health got wind of this idea — and perhaps blew it a little out of proportion — and NASA was forced to take action to prevent a possible biological disaster.

“The ‘lunar bugs’ as we called them,” said McLane, “well, nobody really believed there was life on the Moon, especially something that might affect people – make them sick or kill off our civilization, that sort of thing.”

McLane said that the first time Deke Slayton, head astronaut at the time, heard about this, he just about “flew out the window.”

“He said, ‘No way is somebody going to step in and put these restraints on the program. It’s difficult enough to just fly to the moon without all these precautions about contamination.’ But NASA had meetings with the Surgeon General of the US, and he took the attitude, ‘How much is the Apollo program going to cost – $20 billion or so? I don’t think it is outlandish to set aside one percent of that to guard against great catastrophe on Earth.'”

“We said that we would take on the challenge of guarding against organisms, but the Surgeon General would have to justify it to the Congress, about the increased costs to the program,” McLane recalled. “And he did. So that got settled. We developed a scheme and it was approved. Everyone had to accept it, there wasn’t any choice.”

That changed the entire complexion of what McLane and his team had to accomplish before astronauts could go to the Moon. What started out a just a small clean room would now have to be a research lab, plus a quarantine facility. Plans for the facility grew to an 86,000 square foot structure that would cost over $9 million.

Lunar Receiving Lab.  This drawing illustrates the complex design of the LRL, with its several different components including Lunar Sample Laboratory, Astronaut Reception Area, Radiation Laboratory, and Support and Administration. Credit: NASA
Lunar Receiving Lab. This drawing illustrates the complex design of the LRL, with its several different components including Lunar Sample Laboratory, Astronaut Reception Area, Radiation Laboratory, and Support and Administration. Credit: NASA


“We had to devise all the precautions,” said McLane, “as well as the facilities and procedures for quarantine of the astronauts, as well as accepting the samples and initiating tests on the rocks that had to be done quickly behind absolute biological barriers to test for any contamination before anything could be distributed to the scientific community. It was very interesting work.”

The LRL had accommodations for all the people and equipment that needed to be quarantined. “The astronauts were picked up in the ocean and they had to wear a special suit that was supposedly impervious to ‘lunar bugs,'” McLane said. “The astronauts were put into a modified Grumman Airstream trailer and delivered to Houston, trailer and all, waving at everyone through the windows, and talking to the president. They were taken to the Lunar Receiving Lab and placed in quarantine. It was comfortable in there, but the astronauts didn’t particularly like being in quarantine. We tried to limit the number of people who went into quarantine with them, but inevitably there were a few people– mostly ambitious secretaries and that sort of thing— who intentionally violated procedure and exposed themselves to the hypothetical lunar bugs and had move into the quarantine quarters.” The astronauts stayed in quarantine for three weeks.

First lunar samples arrive from Apollo 11.  Credit: NASA
First lunar samples arrive from Apollo 11. Credit: NASA

By the time Apollo 11 launched McLane had moved on to other projects. “My part of the organization was the engineering directorate, and I was only charged with determining the requirements for the facility and staffing the facility,” he said. “Once we reached the point where the design had come along and the staffing was pretty well up, leading the lab required someone with an interest in science as opposed to engineering.”

But he watched with interest as the first mission to the Moon unfolded. He even had a place in the Mission Control VIP viewing gallery for the launch, sitting just behind science-fiction writer Arthur C. Clarke.

Of course, it was determined that there were no “lunar bugs” and the quarantine requirement was dropped after Apollo 14. But the LRL safely stored, distributed and allowed for study of the lunar samples. In 1976 a portion of the samples were moved to Brooks Air Force Base in San Antonio, Texas for second-site storage.
The LRL building is currently occupied by NASA’s Life Sciences division. It contains biomedical and environment labs, and is used for experiments involving human adaptation to microgravity.

James C. McLane Jr today.  Photo courtesy of James McLane Jr.
James C. McLane Jr today. Photo courtesy of James McLane Jr.

The lessons learned from creating the LRL will certainly be used in preparing for the first Mars sample return mission. Now, 86 years of age, will McLane offer any words of advice?

“The best that I hear now is that the techniques of isolation we used wouldn’t be adequate for a sample coming back from Mars,” he said, “so somebody else has a big job on their hands.”

McLane will be attending a special Apollo 11 celebration at Johnson Space Center – “just for the old timers,” he said.

For more information on the history of the Lunar Receiving Lab, see NASA’s “Lunar Receiving Laboratory Project History.”

Additional source: “Moon Rocks and Moon Germs: A History of NASA’s Lunar Receiving Laboratory,” Astronautics and Aeronauts, Winter 2001.

LRO Images Apollo Landing Sites (w00t!)

The Apollo 14 landing site imaged by LRO. Credit: NASA

[/caption]

As anticipated, NASA released images of the Apollo landing sites taken by the Lunar Reconnaissance Orbiter (LRO). The pictures show the Apollo missions’ lunar module descent stages sitting on the moon’s surface, as long shadows from a low sun angle make the modules’ locations evident. Also visible are the tracks left where the astronauts walked repeatedly in a “high traffic zone” and perhaps by the Modularized Equipment Transporter (MET) wheelbarrow-like carrier used on Apollo 14. Wow.

As a journalist, I (most of the time) try to remain objective and calm. But there’s only one response to these images: W00T!


Apollo 11 landing site as imaged by LRO. Credit: NASA
Apollo 11 landing site as imaged by LRO. Credit: NASA

These first images were taken between July 11 and 15, and the spacecraft is not yet in its final mapping orbit. Future LROC images from these sites will have two to three times greater resolution.
Apollo 15 site by LRO. Credit: NASA
Apollo 15 site by LRO. Credit: NASA

These images are the first glimpses from LRO,” said Michael Wargo, chief lunar scientist, NASA Headquarters, Washington. “Things are only going to get better.”

The Japanese Kaguya spacecraft previously took images of some of the Apollo landing sites, but not at a high enough resolution to show any of the details of the lander or any other details. But here on these images, the hardware is visible. “It’s great to see the hardware on the surface, waiting for us to return,” said Mark Robinson, principal investigator for LRO.

Robinson said the LROC team anxiously awaited each image. “We were very interested in getting our first peek at the lunar module descent stages just for the thrill — and to see how well the cameras had come into focus. Indeed, the images are fantastic and so is the focus.”

Apollo 16 by LRO. Credit: NASA
Apollo 16 by LRO. Credit: NASA

The Lunar Reconnaissance Orbiter Camera, or LROC, was able to image five of the six Apollo sites, with the remaining Apollo 12 site expected to be photographed in the coming weeks.

The spacecraft’s current elliptical orbit resulted in image resolutions that were slightly different for each site but were all around four feet per pixel. Because the deck of the descent stage is about 12 feet in diameter, the Apollo relics themselves fill an area of about nine pixels. However, because the sun was low to the horizon when the images were made, even subtle variations in topography create long shadows. Standing slightly more than ten feet above the surface, each Apollo descent stage creates a distinct shadow that fills roughly 20 pixels.

Apollo 17 LRO. Credit: NASA
Apollo 17 LRO. Credit: NASA

The image of the Apollo 14 landing site had a particularly desirable lighting condition that allowed visibility of additional details. The Apollo Lunar Surface Experiment Package, a set of scientific instruments placed by the astronauts at the landing site, is discernable, as are the faint trails between the module and instrument package left by the astronauts’ footprints.
Zoomed in Apollo 14 image by LRO. Credit: NASA
Zoomed in Apollo 14 image by LRO. Credit: NASA

Source: NASA

Chandrayaan-1 Rescued from Failure

India Moon Mission
Artist concept of Chandrayaan-1 orbiting the moon. Credit: ISRO

[/caption]
The Chandrayaan 1 spacecraft, India’s moon orbiting satellite was almost lost earlier this year, Indian Space Research Organization revealed, as the star tracking system overheated and malfunctioned. The system helps determine and maintain the spacecraft’s orientation. Engineers were able to patch in the gyroscopes and another instrument to help maneuver the spacecraft, but they are not sure how long this jury-rigged system will work. At this point, determining the spacecraft’s future might be difficult, and differing statements from various officials reflect that.

“We are not sure how long we will be able to sustain it. The life of Chandrayaan-I designed for two years may be reduced,” said ISRO spokesman S. Satish.

ISRO chief Madhavan Nair said the star tracking system cannot be recovered, but he dismissed suggestions that the sensor’s failure might reduce the life span of the spacecraft.

“The life (of the spacecraft) is not dependent on this instrument. This instrument is used only for orientation of the spacecraft,” he said. “The sensor cannot be recovered at this stage and we hope that the remaining part of this mission will be completed.”
Chandrayaan-1's first picture of the moon.  Credit:  ISRO

Chandrayaan-1 launched in October 2008 and suffered from overheating shortly after it began operations in lunar orbit in November, but the ISRO was able to change the spacecraft’s orientation and cut down on the amount of time the instruments were used to compensate.

In May 2009, however, officials unexpectedly raised the orbit of the spacecraft. At that time officials said they had completed mission objectives from 100 km above the moon and raised the height of the spacecraft to 200 km to enable imaging lunar surface with a wider swath. But reports say that May is when the star tracker system malfunctioned, as well.

Nair said the star sensor is suspected to have failed because of “excessive radiation” from the Sun. He said gyroscopes are not susceptible for the kind of radiation that the sensor was subjected to. “So, we hope it will survive the remaining mission duration”.

He added more than 90 percent of the two-year mission’s objectives have already been achieved.

ISRO Scientists hope the Chandrayaan project will boost India’s capacity to build more efficient rockets and satellites, especially through miniaturization, and open research avenues for young Indian scientists. India plans to follow the Chandrayaan, which means “moon craft” in Sanskrit, by landing a rover on the moon in 2011.

Source: The Hindu

Apollo 11 Anniversary Link-O-Rama

Apollo 11 landing site on Tranquility Base. Credit: NASA

The Apollo 11 40th anniversary is coming at us fast and furious! With restored images and video, mission audio, interviews, and special features, who can keep track of it all? Well, we’re going to try. We’ll post here all the links we can find that has anything to do with the anniversary. If you find something of interest elsewhere you think we should add, email it to Nancy or post it in the comments, and we’ll add it. This will be Apollo 11 anniversary HQ!

Audio, Video, etc:

Listen to Apollo 11 mission audio “live” to the minute as it happened 40 years ago (July 16-24) or listen later at any time: We Choose the Moon

High-Definition Restored Apollo 11 Video from NASA

Listen to audio recorded from inside the Apollo 11 spacecraft which have never been heard before by the public

Read the transcriptions of the recorded audio

Find other recordings and transcriptions here.

Video from INA French television’s broadcasts from July 1969

IYA Malta’s Moon for All Mankind video

Cool websites:

NASA’s Apollo 11 40th Anniversary website

NASA’s Apollo Missions website

NASA’s Interactive Tranquility Base

Apollo 11 Timeline

NASA’s Apollo Lunar Surface Journals

Detailed Summaries of the Apollo missions

The Smithsonian National Air and Space Museum’s Apollo 11 site


The Boston Globe’s Big Picture does Apollo 11

Discovery News Apollo 11 Slideshow

Dramatic panoramas of the Apollo landing sites.
Miscellaneous:

Free online book from the National Acadamies Press:

NASA Laments Missing Apollo 11 Film, Makes Do With What’s Left

Apollo 11 astronauts Neil Armstrong, Michael Collins and Buzz Aldrin examine film taken of their mission. Credit: NASA

[/caption]

The engineers who helped beam images of the lunar surface to Earth in 1969 are doing a little hand-wringing these days – because original film of the historic event got recycled at NASA rather than preserved.

Still, the agency has teamed up with a Hollywood restoration team to collect and improve on backup copies of the Apollo 11 feat. The clearer, digitized versions will be available in a few months.

Dick Nafzger, a NASA engineer at Goddard Space Flight Center who oversaw television production of Apollo 11, said the initial tape was stored in the national archives until the Apollo program no longer needed the data it contained.

Sometime after that, NASA thinks, the tapes were pulled from their boxes, erased and used to record data for subsequent missions.

It wasn’t until years later that Nafzger and others understood the historical value of the tapes — and the gravity of their loss.

“When I was a 28-year-old engineer, maybe I didn’t understand that. But I certainly do now,” said Nafzger, who spoke at a NASA press conference on Thursday. He hastened to add that he wasn’t in the loop when the tapes were being erased; he and others discovered the tapes’ fate only later, when they became interested in improving the notoriously grainy footage.

Because backup tapes of the mission weren’t so readily discarded after the celebrated lunar landing on July 20, 1969, the engineer-turned-historian has been given another chance.

Nafzger was joined at the press conference by Stan Lebar, the now-retired Westinghouse electric program manager who spearheaded the lunar camera, and Mike Inchalik, president of Lowry Digital in Burbank, California. Together, the men have managed to secure tapes from Sydney, Australia and the archives at CBS, where the live footage was streamed from Houston on that monumental day.

They’re bringing the best of digital technology to bear on what was at the time the cutting edge of videography, even though it was made harder on the eyes of television audiences by conversion to broadcast form. For restoration purposes, the original footage that’s been recovered is actually quite useful, Inchalik said.

“Every frame in that sequence has some information that it shares with others … if you can extract what doesn’t belong, you can make those pictures clearer,” he said.

The team showed four short clips from the $230,000 restoration project at the press conference — including moments where both Neil Armstrong and Buzz Aldrin first set foot on the lunar surface. The “after” images are indeed clearer, with more accurate lightning and sharper contrast.

Inchalik said his company is sensitive to preserving the historical integrity of the footage, and aware that any missteps could fuel conspiracy theories that the lunar landing was faked.

“There are elements in the original where we’re not touching or making corrections we would normally make,” he said. “There’s some value in the fact that we’re not a special effects house; we’re a restoration house.”

Nafzger was careful to point out that no new footage will be issued of the landing; all the restored tape comes from video that has already been released. The final product is expected in September.

Q & A with Apollo 11 Astronaut Michael Collins

Apollo 11 astronaut Michael Collins. Credit: GeekoutNewYork

[/caption]

Michael Collins has always been one of my favorite people (I even wrote a song about him). He’s funny, he’s humble, he’s passionate, he’s a great writer, and oh yeah — he’s an astronaut. Collins was the command module pilot for Apollo 11 and he also flew on Gemini X in 1966.

Now, at 78 years of age, Collins decided not to give any media interviews during the hubbub of the Apollo 11 40th anniversary, and instead issued a Q & A of the questions he is most frequently asked. He did a great job of being both the interviewer and the interviewee, showing his humorous and honest nature. Collins took some of his answers from his book, Carrying the Fire, and any of the following sections in quotation marks are from that reference. Read on and find out for yourself if Mike Collins is a grumpy recluse!

Q. Circling the lonely moon by yourself, the loneliest person in the universe, weren’t you lonely?

A. No.

“Far from feeling lonely or abandoned, I feel very much a part of what is taking place on the lunar surface. I know that I would be a liar or a fool if I said that I have the best of the three Apollo 11 seats, but I can say with truth and equanimity that I am perfectly satisfied with the one I have. This venture has been structured for three men, and I consider my third to be as necessary as either of the other two. I don’t mean to deny a feeling of solitude. It is there, reinforced by the fact that radio contact with the Earth abruptly cuts off at the instant I disappear behind the moon, I am alone now, truly alone, and absolutely isolated from any known life. I am it. If a count were taken, the score would be three billion plus two over on the other side of the moon, and one plus God knows what
on this side.”

Collins suiting up for Apollo 11.  Credit: NASA
Collins suiting up for Apollo 11. Credit: NASA

Q. Did you have the best seat on Apollo 11?

A. No.

“The cancellation of 014 also freed Borman-Stafford-Collins for reassignment, and reassigned we were, but not as a unit. Tom Stafford moved up a notch and acquired his own highly experienced crew, John Young and Gene Cernan; they became McDivitt’s back-up. Score one for Tom. Borman and Collins got promoted to prime crew of the third
manned flight, picking up Bill Anders as our third member.

In the process, Collins also got ‘promoted’ from lunar module pilot to command module pilot, and lost right then and there his first chance to walk on the surface of the moon. The reason I had to move up was that Deke at that time had a firm rule that the command module pilot on all flights involving LM must have flown before in space, the idea being that he didn’t want any rookie in the CM by himself. Since Bill and Anders had not flown, I was it. Slowly it sunk in. No LM for me, no EVA, no fancy flying, no need to practice in helicopters anymore.”

Q. Were you happy with the seat you had?

A. Yes, absolutely. It was an honor.

Q. Has the space program helped young people become interested in careers in math and science? Don’t you tell kids to opt for these choices?

A. Yes and no. We definitely have a national problem in that kids seem to be going for money rather than what they consider ‘nerdy’ careers. Other countries are outstripping us in the quality and quantity of math and science grads, and this can only hurt in the long run. But a liberal arts education, particularly English, is a good entry point no matter what the later specialization. I usually talk up English.

Q. Turning to your flight, what is your strongest memory of Apollo 11?

A. Looking back at Earth from a great distance.

“I really believe that if the political leaders of the world could see their planet from a distance of 100,000 miles their outlook could be fundamentally changed. That all-important border would be invisible, that noisy argument silenced. The tiny globe would continue to turn, serenely ignoring its subdivisions, presenting a unified facade that would cry out for unified understanding, for homogeneous treatment. The earth must become as it appears: blue and white, not capitalist or Communist; blue and white, not rich or poor; blue and white, not envious or envied.”

Small, shiny, serene, blue and white, FRAGILE.

Q. That was 40 years ago. Would it look the same today?

A. Yes, from the moon, but appearances can be deceiving. It’s certainly not serene, but definitely fragile, and growing more so. When we flew to the moon, our population was 3 billion; today it has more than doubled and is headed for 8 billion, the experts say. I do
not think this growth is sustainable or healthy. The loss of habitat, the trashing of oceans, the accumulation of waste products – this is no way to treat a planet.

Q. You are starting to sound a little grumpy. Are you grumpy?

A. At age 78, yes, in many ways. Some things about current society irritate me, such as the adulation of celebrities and the inflation of heroism.

Collins' official astronaut photo. Credit: NASA
Collins' official astronaut photo. Credit: NASA

Q. But aren’t you both?

A. Not me. Neither.

Heroes abound, and should be revered as such, but don’t count astronauts among them. We work very hard; we did our jobs to near perfection, but that was what we had hired on to do. In no way did we meet the criterion of the Congressional Medal of Honor: ‘above and beyond the call of duty.’

Celebrities? What nonsense, what an empty concept for a person to be, as my friend the great historian Daniel Boorstin put it, “known for his well-known-ness.” How many live-ins, how many trips to rehab, maybe–wow–you could even get arrested and then you would really be noticed. Don’t get me started.

Q. So, if I wanted to sum you up, I should say “grumpy?”

A. No, no, lucky! Usually, you find yourself either too young or too old to do what you really want, but consider: Neil Armstrong was born in 1930, Buzz Aldrin 1930, and Mike Collins 1930. We came along at exactly the right time. We survived hazardous careers and we were successful in them. But in my own case at least, it was 10 percent shrewd planning and 90 percent blind luck. Put LUCKY on my tombstone.

Q. Okay, but getting back to the space program. What’s next?

A. I hope Mars. It was my favorite planet as a kid and still is. As celestial bodies go, the moon is not a particularly interesting place, but Mars is. It is the closest thing to a sister planet that we have found so far. I worry that at NASA’s creeping pace, with the emphasis on returning to the moon, Mars may be receding into the distance. That’s about all I have to say.

Q. I understand you have become a recluse.

A. I’m not sure that’s the word. I think of the Brown Recluse, the deadliest of spiders, and I have a suntan, so perhaps. Anyway, it’s true I’ve never enjoyed the spotlight, don’t know why, maybe it ties in with the celebrity thing.

Q. So, how do you spend your time?

A. Running, biking, swimming, fishing, painting, cooking, reading, worrying about the stock market, searching for a really good bottle of cabernet under ten dollars. Moderately busy.

Q. No TV?

A. A few nature programs, and the Washington Redskins, that’s about it.

Q. Do you feel you’ve gotten enough recognition for your accomplishments?

A. Lordy, yes, Oodles and oodles.

Q. Oodles?? But don’t you have any keen insights?

A. Oh yeah, a whole bunch, but I’m saving them for the 50th.

For more information about Michael Collins, read his books (Carrying the Fire, Flying to the Moon)or check out his official NASA astronaut biography.

Source: Michael Collins, via NASA