Infrared Moonset


When it comes to the Moon, there are times when I feel like the “Queen of Selene”. In just a few short weeks there will be a whole new style of lunar observing book out on the market, and just when I thought I’d heard it all and seen it all… along comes something new! While the header photograph on this article is absolutely spectacular, you’re going to go about your day (and night) smiling if you stop to take a look at what’s inside…

After spending an entire weekend with close friend, professional astronomer and member of the USGS team – Brent Archinal – who has been mapping out the information from the LRO, I’ve been in a real “Moon” mindset. Even our UT articles have seemed to have been geared towards our nearest astronomical neighbor, too! So, it just stands to reason that others might be feeling the call of lunacy as well. As it just so happens, one of the most prolific, dedicated and innovative astrophotographers I know – Joe Brimacombe – wasn’t cursing the Moon for re-appearing this month… He was celebrating it. Using a variety of techniques, he’s captured one of the most unique sets of sequences I’ve ever seen and I just had to share it with you!

“On the 20th September 2009 a crescent Moon set over the mountains behind Cairns and was captured in all its glory from Coral Towers Observatory using a variety of infrared cameras.” said Dr. Brimacombe, “These recordings not only show a majestic Moonset, but also the dramatic retrograde motion of the Moon against the fixed background of stars over a mere six minute period.”

This is simply one of those videos that were too good to go left unnoticed. Not only did it appeal to my scientific side, but it totally restored my faith that others can not only be creative and innovative – but know how to have fun, too!

I hope you enjoyed…

“Infrared Moonset” photo and video are courtesy, credit and copyright of Joe Brimacombe – Southerngalactic Imagers.

SMART-1 Releases Image of LCROSS Impact Site

This image of LCROSS impact site Cabeus A was taken by the Advanced Moon Imaging Experiment (AMIE) on board ESA’s SMART-1 mission. The picture was taken from about 500 km, with small-field (about 50 km across) high resolution view (50 m/pixel). Image credit: B.Grieger, B.H. Foing & ESA/SMART-1/ AMIE team

[/caption]
ESA’s SMART-1 team has released an image of the future impact site of NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS). The SMART-1 team searched through their database to find images of Cabeus A, where LCROSS will search for water ice by making two impacts into this crater at the lunar south pole. The impacts are scheduled for 11:30 and 11:34 am UT on 9 October 2009. This image was taken four years ago by SMART-1, a spacecraft that ended its mission in 2006 by deliberately crashing to the Moon, similar to what LCROSS will do, hoping to exhume materials buried under the lunar surface, particularly water ice. “This is like gathering evidence for a Crash Scene Investigation, but before the action takes place,” said Bernard Foing, SMART-1 project scientist.

Cabeus A is permanently shadowed, so ice lying inside the crater could be protected from the Sun’s harsh rays. LCROSS will send the upper stage Centaur rocket crashing into Cabeus A and a shepherd spacecraft will fly into the plume of dust generated and measure its properties before making a second impact with the lunar surface. Astronomers will observe both impacts using ground and space-based telescopes. The SMART-1 spacecraft also concluded its mission with a controlled bouncing impact on 3 September 2006. The event was observed with ground-based telescopes and the flash from the impact was detected at infrared wavelengths.

Find out more about observing the LCROSS event here.

Foing and Bjoern Grieger, the liaison scientist for SMART-1’s AIMIE camera searched through SMART-1’s database for images of Cabeus A, taken four years ago at conditions where solar elevation and direction were similar to those of LCROSS impact. The SMART-1 image is at high resolution as the spacecraft was at its closest distance of 500 km from the South Pole.

“We are pleased to contribute these ESA SMART-1 observations of the LCROSS target site in order to help in the planning and interpretation of impact observations,” said Foing. “The coordination and exchange of information between lunar missions is an important step for future exploration of the Moon. Cooperation is vital if we are ever to see ‘villages’ of robotic landers and eventual lunar bases, as recommended by the International Lunar Exploration Working Group.”

Source: AlphaGalileo

Water on the Moon: What Does it Mean?

The distribution of water (light blue) around a small young crater on the Moon. Credits: ISRO/NASA/JPL-Caltech/USGS/Brown Univ.

[/caption]
The Moon has been turned upside down. Figuratively, of course. La Luna still orbits and phases as it always has, but we are now looking at the moon anew. From this day forward we know the chemistry of the Moon is different than what we have thought for decades, the geology might vary from what is in textbooks today, and the physics of how the solar wind interacts with a rocky body without an atmosphere has implications not yet fully investigated. So, what does this mean for our future human and robotic exploration of our closest companion in space?

“The Moon continues to surprise us,” said Carle Pieters, principal investigator for the Moon Mineralogy Mapper (M cubed) at Thursdays press conference. “Widespread water has been detected on the surface of the Moon. You have to think outside of the box on this. This is not what any of us expected decades ago.”

Immediately, space enthusiasts’ thoughts turn to how finding water on the Moon will make future exploration there so much easier.

“Scientists thought they knew fairly accurately what the surface of the moon was like and these results show that they didn’t – or at least not completely,” said Dr. Chris Welch, astronautics and space systems expert at Kingston University in London. “Finding so much more water could make living on the moon much easier in the future…If there is water on the moon – in whatever form – then we have a potential reservoir that could be used for drinking or to make into hydrogen and oxygen which could be used as rocket propellant. Also, of course, we could use the oxygen to breathe.”

But the message the scientists wanted everyone to take away from today’s press conference is that a combination of water (H2O) and hydroxyl (OH) that resides in upper millimeter of the lunar surface doesn’t actually amount to much. The average amount of water, if extracted, is about a quart (1 liter) of water per ton of surface soil, or about 16 ounces (.5 liters) of water might be present for every 1,000 pounds (450 kg) of surface soil near the moon’s poles. For soil near the equator, only about two tablespoons of water is believed to be present in every 1,000 pounds (450 kg).

“That is truly astounding, and generating much excitement,” said Jim Green, director of the Planetary Science Division at NASA. “But please keep in mind that even the driest deserts on the Earth have more water than are at the poles and the surfaces of the moon.”

So maybe this water on the Moon is not such a big deal.

But there’s still the very real possibility that there could be water ice underneath the regolith on the Moon or buried deep within craters at the poles. Fairly recent (within the past million years) impact craters on the moon were found to have ejecta “rich” with water and hydroxyl, according to M cubed data, which implies recently those molecules are buried under the surface.

Plus the scientists hinted at data showing Goldschmidt Crater at the Moon’s north pole could be filled with water ice.

The image on the left shows albedo, or the sunlight reflected from the surface of the moon. The image on the right shows where infrared light is absorbed in the characteristic manner that indicates the presence of water and hydroxyl molecules. That image shows that signature most strongly at the cool, high latitudes near the poles. The blue arrow indicates Goldschmidt crater, a large feldspar-rich region with a higher water and hydroxyl signature.  Image credit: ISRO/NASA/JPL-Caltech/Brown Univ.
The image on the left shows albedo, or the sunlight reflected from the surface of the moon. The image on the right shows where infrared light is absorbed in the characteristic manner that indicates the presence of water and hydroxyl molecules. That image shows that signature most strongly at the cool, high latitudes near the poles. The blue arrow indicates Goldschmidt crater, a large feldspar-rich region with a higher water and hydroxyl signature. Image credit: ISRO/NASA/JPL-Caltech/Brown Univ.

Additionally, what the scientists at today’s briefing found most astonishing about the new findings is that the water and hydroxyl show up at all latitudes, even at the equator in sunlight, where it is quite hot, and that there are a wide variety of hydroxyl bearing minerals at the surface. This is telling us there are some dynamic processes happening on a moon we thought to be bone dry and basically dead.

There appears to be a cycle of water being created and lost during a lunar day. Without an atmosphere, the moon is exposed to solar wind, which includes hydrogen ions. The hydrogen is able to interact with oxygen in lunar soil to create water molecules. The water appears to be created at night on the Moon, lost during the “hottest” parts of the two-week lunar day; then as it cools near evening, the cycle repeats itself. So, regardless of the type of terrain on the Moon, the entire surface of the moon will be hydrated at least for part of the day. The scientists said similar hydration effects may be present on any body in our solar system that doesn’t have an atmosphere, including asteroids and Mercury.

Those implications are huge for our explorations of other moons and worlds.

But back to the Moon. “Before this press conference, it was thought to be impossible to have water on the surface of the Moon in hot sunlight, especially on the surface at the equator,” said Roger Clark, with the M cubed and Cassini mission.

Small amounts of water and hydroxyl (blue) were detected on the surface of the moon at various locations. This image illustrates their distribution at high latitudes toward the poles.  Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS
Small amounts of water and hydroxyl (blue) were detected on the surface of the moon at various locations. This image illustrates their distribution at high latitudes toward the poles. Image credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS

Could water be a renewable resource on the Moon? If the water is constantly being created, could a devise be built to extract or collect the water? Easy availability of water would have an immense impact on any future human exploration on the Moon, be it brief sorties or permanent colonies.

This is intriguing,” said Pieters, “but we need to go back and re-determine this silicate surface and the vacuum around it. This is an environment we know very little about, and the physics is in its infancy.”

Discussing the implications, Pieters said first, the source of the water needs to be determined, whether it is actually from the solar wind, comets, meteorites, possibly an outgassing from the interior. “There are fundamental questions we need to understand about this silicate body,” she said. “Clearly this has to be a marriage between geology and space physics.”

And what about the “follow the water” mantra NASA has been following in regards to Mars? Could the “where there’s water, there’s life” hypothesis pertain to the Moon? Is there water on the Moon? While these new details about the Moon are groundbreaking, Welch does not believe the new findings show there is or could once have been life on the moon, but he says further research is needed. “There need to be more detailed science missions, preferably with astronauts landing on the moon, to analyse the soil in space.”

Certainly, the upcoming LCROSS impact on the Moon’s south pole will be watched with even greater interest. But what about future exploration?

Will this impel the Constellation Program to continue as planned with a return to the Moon? The Obama administration has some big decision to make in regards to NASA, and it’s hard to imagine this new information about the Moon won’t have some impact on the future path the space agency will take.

We can only hope this news brings more public and congressional interest in NASA’s future.

Yes, There’s Water on the Moon

Schematic showing the stream of charged hydrogen ions carried from the Sun by the solar wind. One possible scenario to explain hydration of the lunar surface is that during the daytime, when the Moon is exposed to the solar wind, hydrogen ions liberate oxygen from lunar minerals to form OH and H2O, which are then weakly held to the surface. At high temperatures (red-yellow) more molecules are released than adsorbed. When the temperature decreases (green-blue) OH and H2O accumulate. [Image courtesy of University of Maryland/F. Merlin/McREL]

”]
Three different spacecraft have confirmed there is water on the Moon. It hasn’t been found in deep dark craters or hidden underground. Data indicate that water exists diffusely across the moon as hydroxyl or water molecules — or both — adhering to the surface in low concentrations. Additionally, there may be a water cycle in which the molecules are broken down and reformulated over a two week cycle, which is the length of a lunar day. This does not constitute ice sheets or frozen lakes: the amounts of water in a given location on the Moon aren’t much more than what is found in a desert here on Earth. But there’s more water on the Moon than originally thought.

The Moon was believed to extremely dry since the return of lunar samples from the Apollo and Luna programs. Many Apollo samples contain some trace water or minor hydrous minerals, but these have typically been attributed to terrestrial contamination since most of the boxes used to bring the Moon rocks to Earth leaked. This led the scientists to assume that the trace amounts of water they found came from Earth air that had entered the containers. The assumption remained that, outside of possible ice at the moon’s poles, there was no water on the moon.

Forty years later, an instrument on board the ill-fated Chandrayaan-1 spacecraft, the Moon Mineralogy Mapper (M cubed) found that infrared light was being absorbed near the lunar poles at wavelengths consistent with hydroxyl- and water-bearing materials.

M3 analyzes the way that light from the sun reflects off the lunar surface to understand what materials comprise the lunar soil. Light is reflected in different wavelengths off of different minerals, and specifically, the instrument detected wavelengths of reflected light that would indicate a chemical bond between hydrogen and oxygen. Given water’s well-known chemical symbol, H2O, which represents two hydrogen atoms bonded to one oxygen atom, this discovery was a source of great interest to the researchers.

The instrument can only see the very uppermost layers of the lunar soil – perhaps to a few centimeters below the surface. The scientists were looking for a signature of water in the craters near the poles, but found evidence for water instead on the sunlit portions of the moon. This was certainly unexpected and the science team from M3 looked and re-looked at their data for several months.

Confirmation came from a recent flyby of the re-purposed Deep Impact probe, on its way to rendezvous with another comet in 2010. In June of 2009, the spectrometer on board also showed strong evidence that water is ubiquitous over the surface of the moon.

Jessica Sunshine and colleagues with Deep Impact also found the presence of bound water or hydroxyl in trace amounts over much of the Moon’s surface. Their results suggest that the formation and retention of these molecules is an ongoing process on the lunar surface – and that solar wind could be responsible for forming them.

Still another spacecraft, the Cassini spacecraft while on its way to Saturn, also flew by the Moon in 1999. Roger Clark, a U.S. Geological Survey spectroscopist on the M3 team, reanalyzed archival data from Cassini, and that data as well agreed with the finding that water appears to be widespread across the lunar surface.

There are potentially two types of water on the moon: exogenic, meaning water from outside sources, such as comets striking the moon’s surface, and endogenic, meaning water that originates on the moon. The M3 research team, which includes Larry Taylor of the University of Tennessee, Knoxville, suspect that the water they’re seeing in the moon’s surface is endogenic.

But where did the water come from?

The team from M3 believe it may come from the solar wind.

As the sun undergoes nuclear fusion, it constantly emits a stream of particles, mostly protons, which are positively charged hydrogen atoms. On Earth, the atmosphere and magnetism prevent us from being bombarded by these protons, but the moon lacks that protection, meaning the oxygen-rich minerals and glasses on the surface of the moon are constantly pounded by hydrogen in the form of protons, moving at velocities of one-third the speed of light.

When those protons hit the lunar surface with enough force, suspects Taylor, they break apart oxygen bonds in soil materials, and where free oxygen and hydrogen are together, there’s a high chance that trace amounts of water will be formed. These traces are thought to be about a quart of water per ton of soil.

“The isotopes of oxygen that exist on the moon are the same as those that exist on Earth, so it was difficult if not impossible to tell the difference between water from the moon and water from Earth,” said Taylor. “Since the early soil samples only had trace amounts of water, it was easy to make the mistake of attributing it to contamination.”

Lead image caption: Schematic showing the stream of charged hydrogen ions carried from the Sun by the solar wind. One possible scenario to explain hydration of the lunar surface is that during the daytime, when the Moon is exposed to the solar wind, hydrogen ions liberate oxygen from lunar minerals to form OH and H2O, which are then weakly held to the surface. At high temperatures (red-yellow) more molecules are released than adsorbed. When the temperature decreases (green-blue) OH and H2O accumulate. Image courtesy of University of Maryland/F. Merlin/McREL

Source: Science

First Science Data from LRO; ‘Tantalizing’ Hints of Water

This image shows daytime and nighttime lunar temperatures recorded by Diviner. Credit: NASA/UCLA

[/caption]
The Lunar Reconnaissance Orbiter has successfully completed its testing and calibration phase and is now in its science and mapping orbit of the moon. Already, the spacecraft has made significant progress in creating the most detailed atlas of the moon’s south pole, and Thursday mission scientists reported some of the early science results, including “tantalizing” hints of water at the Moon’s south pole. So far, the data returned from LRO’s seven instruments “exceed our wildest expectations,” said Richard Vondrak, LRO project scientist at NASA Goddard Space Flight Center . “We’re looking at the moon now with new eyes.”

Last Tuesday, a final maneuver put LRO 50 km (31 miles) above the Moon, closer than any previous orbiter. LRO has already proved its keen eyes, imaging fine details of the Apollo landing sites earlier this summer with the LROC, the Lunar Reconnaissance Orbiter Camera.

Coldest place in the solar system

According to the first measurements from the Diviner instrument, which has infrared radiation detectors, LRO found that temperatures at about 35 Kelvin, or -238º Celsius deep in some permanently shaded regions. Vondrak said that these bitterly cold regions at the south pole “are perhaps the coldest part of the solar system.” With such cold temperatures, volatiles like water ice could be present, preserved for billions of years.

This image shows neutron flux detections around the lunar south pole from LEND. Credit: NASA/Institute for Space Research (Moscow)
This image shows neutron flux detections around the lunar south pole from LEND. Credit: NASA/Institute for Space Research (Moscow)

And indeed, first results from LRO’s Lunar Exploration Neutron Detector, or LEND instrument found hallmarks of hydrogen—a potential marker of water— not only in deep, dark craters, but in unexpected places as well.

“What it also seems to indicate is that the hydrogen is not confined to permanently shadowed craters,” said Vondrak. “Some of the permanently shadowed craters do indeed contain hydrogen. Others, on the other hand, do not appear to have hydrogen. And in addition, there appears to be concentrations of hydrogen that are not confined to the permanently shadowed regions.”


Surface topography

This mosaic shows altitude measurements from the LOLA instrument. Credit: NASA's Goddard Space Flight Center
This mosaic shows altitude measurements from the LOLA instrument. Credit: NASA's Goddard Space Flight Center

Data from LRO’s Lunar Orbiter Laser Altimeter, or LOLA, give scientists a detailed look at the topography of the lunar south pole, shown here. Red regions are high altitude, and blue regions are low altitude.

Some of the first results have turned up fresh craters, unknown boulders, and smooth sites that would be good landing sites for future humans or robotic missions. However, most regions are filled with rough terrain, which will make in situ exploration difficult. The roughness is probably a result of the lack of atmosphere and absence of erosion from wind or water, according to David Smith, LOLA principal investigator.

Another instrument, LRO’s Cosmic Ray Telescope for the Effects of Radiation instrument is exploring the lunar radiation environment and its potential effects on humans during record high, “worst-case” cosmic ray intensities accompanying the extreme solar minimum conditions of this solar cycle, showing damaging amounts of radiation at various points.

This Mini-RF image shows radar imagery of the lunar south pole. Credit: NASA/APL/LPI
This Mini-RF image shows radar imagery of the lunar south pole. Credit: NASA/APL/LPI

The Mini RF Technology Demonstration on LRO has confirmed communications capability and produced detailed radar images of potential targets for LRO’s companion mission, LCROSS, the Lunar Crater Observation and Sensing Satellite, which will impact the moon’s south pole on Oct. 9.

LRO’s prime science mission will last a year.

“The LRO instruments, spacecraft, and ground systems continue to operate essentially flawlessly,” said Craig Tooley, LRO project manager at Goddard “The team completed the planned commissioning and calibration activities on time and also got a significant head start collecting data even before we moved to the mission’s mapping orbit.”

“There’s still an awful lot to be done,” says Michael Wargo, chief lunar scientist at NASA Headquarters in Washington, D.C. “And the maps will only get better.”

See more information, including more images and flyover videos here.

LCROSS Impact Site on Moon Announced: Cabeus A

This view of the Moon is similar (in both geometry and phase) to the view that observatories will have during the October 9 impact of LCROSS into crater Cabeus A, near the Moon's south pole. Credit: NMSU / MSFC Tortugas Observatory

[/caption]
On October 9, 2009, at 7:30 a.m. EDT professional and amateur astronomers alike will be focusing their telescopes on the south pole of the Moon, hoping to see a little fireworks. Or more accurately, they are hoping to see ice. NASA will be sending the upper stage of a Centaur rocket to impact a permanently shadowed crater, along with the Lunar Crater Observation and Sensing Satellite, or LCROSS which will fly into the plume of dust left by the impact and measure the properties of the dust to look for water ice hidden inside the crater. LCROSS will collide with the lunar surface. Team scientists have been debating what crater would be the optimal location for the impact, and today they made their announcement: Cabeus A.

And just to clarify, the spacecraft will impact the Moon, NOT bomb it. No detonations involved.


The LCROSS team selected Cabeus A based on a set of conditions that include proper debris plume illumination for visibility from Earth, a high concentration of hydrogen, and mature crater features such as a flat floor, gentle slopes and the absence of large boulders.

“The selection of Cabeus A was a result of a vigorous debate within the lunar science community that included review of the latest data from Earth-based observatories and our fellow lunar missions Kaguya, Chandrayaan-1, and the Lunar Reconnaissance Orbiter,” said Anthony Colaprete, LCROSS project scientist and principle investigator at NASA’s Ames Research Center in Moffett Field, Calif. “The team is looking forward to the impacts and the wealth of information this unique mission will produce.”

Close up image depicting the slopes or steepness of the walls in Cabeus A. Credit: NASA
Close up image depicting the slopes or steepness of the walls in Cabeus A. Credit: NASA

“LCROSS will shepherd the Centaur to the precise orbit, and accelerate it into the moon,” said LCROSS project scientist Tony Colaprete. “The two will separate, with LCROSS following the Centaur by four minutes, taking live “bent pipe” measurements, sending back live video (which will be shown live via webcast) taking measurements of the lunar regolith characteristics, looking for lunar water vapor or ice characteristics, then impacting the lunar surface itself. LCROSS will be a smashing success.”

Observatories involved the observing campaign include the Infrared Telescope Facility and Keck telescope in Hawaii; the Magdalena Ridge and Apache Ridge Observatories in New Mexico and the MMT Observatory in Arizona; the newly refurbished Hubble Space Telescope; and the Lunar Reconnaissance Orbiter, among others.

“These and several other telescopes participating in the LCROSS Observation Campaign will provide observations from different vantage points using different types of measurement techniques,” said Jennifer Heldmann, lead for the LCROSS Observation Campaign at Ames. “These multiple observations will complement the LCROSS spacecraft data to help determine whether or not water ice exists in Cabeus A.”

The impact should be visible to people in the United States and Canada — the farther west the better.
Learn about the observing campaign for amateur astronomers here.

During a media briefing Sept. 11, Daniel Andrews, LCROSS project manager at Ames, provided a mission status update indicating the spacecraft is healthy and has enough fuel to successfully accomplish all mission objectives despite an anomaly that caused the spacecraft to spend an excessive amount of fuel.

Andrews also announced the dedication of the LCROSS mission to the memory of legendary news anchor, Walter Cronkite, who provided coverage of NASA’s missions from the beginning of America’s manned space program to the age of the space shuttle.

Source: NASA

Anticipated Joint Experiment with Chandrayaan-1 and LRO Failed

India Moon Mission
Artist concept of Chandrayaan-1 orbiting the moon. Credit: ISRO

[/caption]
A highly anticipated Bi-static radar experiment to look for possible water ice hiding in polar craters on the Moon failed due to the deterioration and eventual loss of the Chandrayaan-1 lunar orbiter. “Everything worked out as best as could be hoped, except for one thing,” said Paul Spudis, principal investigator for Chandrayaan-1’s radar instrument, Mini-SAR. “It turned out Chandrayaan-1 wasn’t pointed at the Moon when we were taking the data, but we didn’t know that at the time. So, the Bi-static attempt was a failure.” The experiment was attempted on August 20, and one week later the Chandrayaan-1 spacecraft failed completely due to overheating. The Indian Space Research Organization (ISRO) admitted they underestimated the amount of heat radiating from the Moon and didn’t have enough thermal protection on the spacecraft.

Spudis told Universe Today that both Chandrayaan-1 and the Lunar Reconnaissance Orbiter were in the right locations to do the experiment, but Chandrayaan-1 was pointed in the wrong direction. “We didn’t realize it, but the spacecraft was on its last legs at that point. When we commanded it to get into a certain attitude to do the experiment, it just wasn’t in that attitude, and we had no way of knowing it.”

The experiment required tricky maneuvers for both Chandrayaan-1 and LRO. The test was timed to coincide when both spacecraft were only 20 kilometers (12.4 miles) apart over Erlanger Crater near the Moon’s north pole. Chandrayaan-1’s radar was to transmit a signal to be reflected off the interior the crater to be picked up by LRO. Comparing the signal that would have bounced straight back to Chandrayaan-1 with the signal that bounced at a slight angle to LRO would have provided unique information about any water ice that may be present inside the crater.

Erlanger crater imaged by LRO. Credit: NASA
Erlanger crater imaged by LRO. Credit: NASA

Because of the loss of the star trackers earlier this year on Chandrayaan-1, Spudis said they weren’t certain during the test what direction the spacecraft was pointing. “We thought it was oriented in the right attitude, but it turned out it was not. So we didn’t send the radar beam into the crater like we had hoped, so therefore we didn’t get any echoes from it. It is disappointing, but that’s the space biz, that’s the way things go.”

Spudis said the international coordination required for the experiment between ISRO, JPL, NASA and the Applied Physics Lab worked exceptionally well. “Everyone did a great job and gave us great support on it. We came very close and the actual encounter was better than predicted. So everything worked except for the Chandrayaan-1 spacecraft.”

The teams were getting ready to try a repeat of the experiment, during the last weekend in August when Chandrayaan-1 quit communicating. “We were going to have another opportunity where the spacecraft were going to be close together over a different crater on the north pole,” Spudis said, “but then we lost the spacecraft on that Thursday. So that was disappointing. We gave it our best shot, but that’s the way it goes.”

But Spudis said he has his team have been busy focusing on studying and understanding the monostatic data they do have.

“We have some excellent quality data collected from mid- Feb to mid-April of this year,” he said. “We were able to get data from over 90% of both poles. We’re really just getting started analyzing it.”

There are missing pieces of data, especially directly at the poles because the instrument was a side-looking radar. The Mini-SAR always looked off nadir, off to one side of the ground track that is directly below the spacecraft. “So if you are in perfectly polar orbit, you will never image the poles because you are always looking off to the side,” Spudis explained. ” So we have these black zones around the poles. But we do have a lot of coverage around the poles of terrain that is in permanent darkness. We are studying that right now, and In fact, I am in the midst of writing up our first paper, and we’ll have some interesting results from that.”

Dr. Paul Spudis.
Dr. Paul Spudis.

Spudis said the loss of Chandrayaan-1 wasn’t totally unexpected due to the problems the spacecraft had been experiencing, but no one thought it would happen quite this quickly. “It was a little unexpected how rapidly it happened, how soon the end came,” he said. “Because the spacecraft had been having problems, we had been living with the various losses of capabilities, and we just kept soldiering through hoping that everything would work out. The timing was unfortunate.”

In addition the substantial amount of data received from Chandrayaan-1 data, Spudis is also looking to the data that will be coming from LRO. “LRO has a radar instrument that is a more advanced version than the one on Chandrayaan,” he said. “The difference is that there are two frequencies instead of one, and it has two resolutions – a normal resolution similar to India’s version on Chandrayaan-1 one, as well as a zoom version, a hi-res mode, with a factor of 6 or 7 better than the nominal mode.”

Spudis said LRO’s Mini-RF has been turned on during the LRO commissioning and so far it has been used to support the LCROSS impact. “They wanted to look at targets near the south pole, so we took some data for them. That data looks very interesting as well.”

For more information on Spudis’ work, check out his website.

Oh, the Places You’ll Go on the Moon!


NASA engineers have been putting prototypes of future moon buggies through the paces out at a field test in the Arizona desert lava fields. Here’s a video taken on Sept. 6 showing the capabilities of the Chariot B, and it’s pretty impressive. The Chariot features 12 wheels driven by two electric motors through a two-speed transmission. It can perform in a “bulldozer” mode with up to 1814 kg (4,000 pounds) of force or cruise at up to 24 kph (15 mph). Or, in this case, it can climb up extremely treacherous terrain. The modular design also means that the steel alloy frame can be fitted with several different crew and payload combinations, including a small pressurized cabin and a sample collector.

For more on the field tests, follow the Desert RATS on Twitter, and see more images of the Chariot and the Lunar Electric Rover (LER) on Flickr.

LRO Images Apollo 12 Landing Site

The Surveyor 3 spacecraft, Lunar Module descent stage, and Apollo Lunar Surface Experiment Package (ALSEP) along with astronaut tracks are all visible in this image of the Apollo 12 landing site. Credit: NASA/GSFC/Arizona State University

[/caption]
Back in July when the Lunar Reconnaissance Orbiter team released stunning images from several Apollo landing sites, it was not possible at that time to image the Apollo 12 site, the westernmost landing site, due to operational constraints. But now LRO has taken a good look at Oceanus Procellarum and the wait was well worth it. Easily and clearly visible are the Lunar Module descent stage and Apollo Lunar Surface Experiment Package (ALSEP), along with astronaut tracks, and the Surveyor 3 spacecraft.

“There are only so many locations that can be imaged at one time,” said Mark Robinson, principal investigator of LRO’s Camera, LROC. “Not every target can be imaged every time around. I’m glad we had to wait another month, it was very exciting to see this image a month after the excitement of the first round of Apollo landing sites.”

LRO is slated to orbit the moon for at least another 12 months, which means Robinson and his team have many more imaging opportunities ahead of them. In mid-September the spacecraft’s orbit will be lowered, allowing LROC to acquire even higher resolution images of the Apollo and Surveyor landing sites.

For higher resolution images and more info about about the Apollo 12 site, check out the LRO website.

Sources: LRO, ASU

Radio Contact Lost With Chandrayaan-1

Artists impress of Chandrayaan-1 at the moon. Credit: ISRO

[/caption]
India’s lunar orbiter Chandrayaan-1 lost contact with ISRO’s ground station early on August 29. “We are not able to establish contact with the spacecraft. We are not getting the data, we are not able to send commands,” an ISRO official told the Press Trust of India. “In simple terms, the spacecraft has become dumb. It can’t speak.” The 11 scientific payloads onboard the orbiter had been operating normally, and the spacecraft was sending data during a planned sequence to its ground station when contact was lost. Officials are now analyzing data obtained, hoping to find any indications of what could have happened.

Chandrayaan 1 and NASA’s Lunar Reconnaissance Orbiter teamed up on August 20 to perform a bi-static radar experiment, and although no results have been released yet, the data had been successfully returned from the test.

Chandrayaan-1 was launched October 22, 2008, reaching the moon in early November. It has made over 3,000 orbits and its high-resolution cameras relayed over 70,000 digital images of the lunar surface, providing breathtaking views of mountains and craters, including those in the permanently shadowed area of the moon’s polar region.

The Times Now website is reporting that the mission is over, with a quote from Project Director of the Chandrayaan-1 mission, M Annadurai: “The mission is definitely over. We have lost contact with the spacecraft.”

He added “It has done its job technically…100 per cent. Scientifically also, it has done almost 90-95 percent of its job.”

But as of this writing it has only been about 18 hours since contact was lost. We’ll keep you posted on further news on Chandrayaan-1

Sources: PTI , Times Now

Hat tip to Svetoslav Alexandrov