America vs. Astronaut: The Case of the Lifted Lunar Camera

Apollo 14 astronaut Ed Mitchell on the Moon, February 5, 1971. Credit: NASA.

[/caption]

Imagine you’re an astronaut. You have what it takes to be selected to fly a mission to the Moon. You train, make the trip, and become one of literally a handful of humans ever to have walked on the lunar surface. And when you leave the desolate beauty of the Moon behind in your Landing Module, and are just about to re-enter the Lunar Orbiter and head for home, you see one of the cameras that you used on the surface. If you leave it where it is it’s going to be lost forever, crashing into the lunar surface with the rest of the lander. If you take it, you’ll be going against standard NASA operating procedure since you hadn’t filled out the proper paperwork beforehand for official mission items appropriated by astronauts. Leave a piece of history behind to be destroyed or salvage it as a souvenir… what do you do?

Apollo 14 astronaut Edgar Mitchell decided to bring the camera back, and now, 40 years later, his decision is going to land him in court.

Last June, the U.S. government brought a case against the 81-year-old moonwalker after he offered the 16-millimeter Data Acquisition Camera (DAC) up for sale at New York’s Bonhams auction house as part of their May “Space History Sale”. While it was common for Apollo astronauts to be able to keep various pieces of equipment and space suits as mementos after their missions, certain paperwork had to be filled out beforehand… it’s just the NASA way.

The late Donald “Deke” Slayton, head of the astronaut corps in 1971, mentioned this during an interview with the Tuscon Daily Citizen in 1972.

“They give me a list of things they’re going to bring back,” Slayton said. “I give it to the program office and they bring ’em back.”

This Data Acquisition Camera (DAC) was one of two 16mm cameras on the Apollo 14 lunar module "Antares" when it landed on the moon on Feb, 5, 1971. Credit: Bonhams.

The DAC, it seems, was not on any lists handed in by Mitchell. Yet it was never intended to be on the ride back to Earth, either. Rather its destination was to be in the bottom of a crater made by the landing module when it crashed back onto the Moon.

Must have seemed a rather wasteful end for a historic – and valuable – piece of equipment. Were it to go to auction it could have fetched between $60,000 to $80,000.

“We had an agreement with NASA management, that small items that didn’t exceed our weight limitations, we could bring back.”

– Edgar Mitchell to WPTV

Regardless of its value – sentimental or otherwise – NASA’s lawyer claims that Mitchell was contacted several times about returning the camera but never responded. Mitchell’s attorney, on the other hand, argues that too many years have passed for NASA to now claim the camera as stolen property.

When it was brought before a Florida district court judge to have the case dismissed, however, the judge had no option but to side with the government.

“‘It is well settled that the United States is not bound by state statutes of limitation or subject to the defense of laches in enforcing its rights,'” quoted Judge Daniel Hurley of an appeals court ruling. “Defendant’s allegations that NASA intended the camera to be destroyed after the mission or that it routinely awarded used mission equipment to astronauts do not preclude as a matter of law Plaintiff’s contrary allegation that Defendant impermissibly converted the camera.”

Bottom line: the case goes in front of a jury in October 2012.

Read more about this on collectSPACE.com.

Bolden Visits Kennedy Space Center, Talks SLS and the Future

Kennedy Space Center Director Bob Cabana introduces NASA Administrator Charles Bolden in front of the Mobile Launch Platform at Kennedy Space Center in Florida. Photo Credit: Suresh Atapattu

[/caption]
CAPE CANAVERAL, Fla – NASA Administrator Charles Bolden stopped by Kennedy Space Center in Florida to tour NASA’s Mobile Launch Platform. Bolden was joined by fellow former shuttle astronaut and current Kennedy Space Center Director Robert Cabana. The duo toured the 355-foot-tall structure Tuesday, Oct. 11 at 11 a.m. EDT.

The Mobile Launcher’s future was in doubt after the Constellation Program was cancelled. Although nothing definite was stated – everything from scrapping the structure, using it as a platform for tourists at the Kennedy Space Center Visitor Center to just keeping it in reserve was suggested. The space agency now plans to use the structure to launch the Space Launch System or SLS rocket.

NASA Kennedy Space Center Director Bob Cabana (far left) gestures while discussing how the MLP will be used in upcoming missions. To his left is NASA Administrator Charles Bolden and they are surrounded by members of the local media. Photo Credit: Suresh Atapattu

The NASA administrator’s visit was designed to help promote NASA’s recently-unveiled SLS heavy-lift rocket. The launch vehicle somewhat resembles a cross between the cancelled Ares V and the Saturn V moon rockets that launched Apollo astronauts to the moon. It is slated to begin conducting flights by 2017. SLS is comprised primarily of so-called “legacy hardware” – proven technology derived from the space shuttle and Saturn systems.

Bolden spent some time chatting with reporters and working to reassure Kennedy Space Center’s remaining workforce, as well as several hundred Space Coast community and business leaders and elected officials that the area’s future was bright. Bolden used the visit to state that this was a sign that things were improving in the region. He highlighted the fact that new capabilities, such as the placement of the Commercial Crew program office at Kennedy, will help to maintain aerospace skills and capabilities.

NASA Administrator Charles Bolden descends the steps of the MLP during his visit to Kennedy Space Center on Oct. 11, 2011. Photo Credit: Suresh Atapattu

“As our nation looks for ways to compete and win in the 21st century, NASA continues to be an engine of job growth and economic opportunity,” Bolden said. “From California to Florida, the space industry is strong and growing. The next generation of explorers will
not fly a space shuttle, but they may be able to walk on Mars. And those journeys are starting at the Kennedy Space Center today.”

The shuttle elements of SLS include the RS-25 engines (Space Shuttle Main Engines) along with modified versions of the Solid Rocket Boosters that were employed on the space shuttle. The Saturn elements (descendent) are the J-2X engines, which are simpler variants of the J-2 engines employed during the Apollo era.

A few up the massive Mobile Launch Platform and Mobile Launch Tower (the combined structure is generally called the Mobile Launcher). Photo Credit: Julian Leek/Blue Sawtooth Studios

NASA made its plans for the SLS public in September, just one day after Alliant Techsystems (ATK) and NASA announced that an unfunded Space Act Agreement deal to study the viability of using the Liberty rocket to ferry astronauts to orbit. If all goes according to plan, SLS will eventually be utilized to launch the Orion Multi-Purpose Crew Vehicle. It is hoped that the introduction of SLS and other space systems will help to stem the flow of highly-trained and experienced workers from the space agency.

Astronomy Cast Ep. 234: Lunar Phases

The Moon is a stark reminder that we actually live in a Universe filled with stars and planets and moons. The changing phases of the Moon show us the relative positions of the Earth, the Sun and the Moon as they interact with one another. Let’s learn about the different phases, the geometry of the whole system, and some of the interesting science wrapped up with our fascination of our only natural satellite.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Lunar Phases” on the Astronomy Cast website.

Why is Tonight’s Full Moon the Smallest of the Year?

Moon at Perigee and Apogee. Credit NASA

[/caption]
Think we can only see half of the Moon’s surface from Earth? Not always.

Over the course of the year, observers on Earth can view a bit less and a bit more than half of the lunar surface. Additionally, the Moon appears smaller in the sky during some months compared to other times of the year.

Due to the processes at work, tonight’s full Moon is an opposite of the “Supermoon” that made headlines earlier this year.

What causes our Moon to change apparent size throughout the year, and how do we notice this phenomenon?

While it would be difficult to judge the apparent size of the full Moon each month with our eyes, the phenomenon of Lunar librations is readily apparent in the animation below.

There are three forces at work that help produce the “dancing” effect as shown in the video above.

There are three types of lunar libration:

First, the Moon doesn’t orbit Earth in a perfectly circular orbit. An eccentric orbit will cause our Moon to lead and lag in its orbital position while its rotational speed stays the same. This causes a libration in longitude.

Secondly, the Moon’s rotational axis is slightly inclined to its orbital plane, with respect to Earth. The Moon’s orbit is also inclined with respect to the ecliptic, allowing the Moon to be illuminated from above and sometimes from below. The illumination from above and below allows some of the lunar surface beyond the poles to be visible from Earth.

Last but not least, there is a small daily oscillation due to Earth’s rotation. This oscillation changes the perspective at which an observer views the Moon. Imagine a straight line connecting the center of Earth with the center of the Moon. Over time an observer would be on one side of this imaginary line and then the other, which would allow the observer to look first around one side of the Moon and then around the other. This is because an observer on Earth is on the surface and not at the center of Earth.

A slight bit of Lunar trivia: Lunar librations helped notable British astronomer Patrick Moore investigate the edge regions where librations provided extra coverage. Moore’s investigations lead him to discover a large circular feature, which he named “Mare Oriental”. Once studies of the Lunar farside were performed from space, it was discovered that Mare Oriental was a lava filled impact crater.

Book Review: The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane

The Space Shuttle: Celebating Thirty Years Of NASA's First Space Plane is chocked full of great imagery and works to cover each of the shuttle's 135 missions. Photo Credit: Zenith Press

[/caption]

The space shuttle program is over. The orbiters are being decommissioned, stripped of the components that allowed them to travel in space. For those that followed the program, those that wished they did and those with only a passing interest in what the program accomplished a new book has been produced covering the entirety of the thirty years that comprised NASA’s longest human space flight program. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is written by aerospace author Piers Bizony and weighs in at 300 pages in length.

Bizony is a prolific author who has focused a lot of his work on space flight. Some of the books that he has written include (but definitely are not limited to) include: One Giant Leap: Apollo 11 Remembered, Space 50, The Man Who Ran the Moon: James E. Webb, NASA, and the Secret History of Project Apollo and Island in the Sky: The International Space Station.

Bizony pulls out all the stops in detailing the shuttle era. From thunder and light - to tragedy, the full spectrum of the shuttle program is highlighted here. Photo Credit: NASA

The book contains 900 color images, detailing the entire history of NASA’s fleet of orbiters. From the first launches and the hope that those initial flights were rich in, to the Challenger tragedy and the subsequent realization that the space shuttles would never be what they were intended to be.

The next phase of the book deals with the post-Challenger period and how NASA worked to find a balance with its fleet of orbiters, while at the same time worked to regain the trust of the America public. The path was both hindered and helped by a single payload – the Hubble Space Telescope.

The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane - has stunning imagery on every page, allowing the reader to once again view the majesty that the shuttle program provided. Photo Credit: NASA

When the images the orbiting telescope beamed back turned out fuzzy, NASA was a laughing stock. Hubble would become a sensation and NASA redeemed its name after the first servicing mission to Hubble corrected the problem with the telescope’s mirror.

Hubble was not the only telescope or probe that the shuttle placed in the heavens. It would however, be the only one that NASA’s fleet of orbiters would visit during several servicing missions. Besides Hubble the shuttle also sent the Chandra X-Ray telescope, Galileo probe to Jupiter and the Magellan probe to Venus during the course of the program’s history.

It is currently unknown when the U.S. will launch crews into orbit again. Some aerospace experts have even suggested that the shuttles be pulled out of retirement to help fill this gap - but this is highly unlikely to happen. Photo Credit: NASA

NASA was now on course to begin construction of the most ambitious engineering feat in human history – the International Space Station. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane details this period, as well as the tragic loss of the shuttle Columbia in 2003 with great care and attention to detail. Many never-before-seen images are contained within and Bizony uses them to punctuate the history that the space shuttle accomplished with every flight.

With a chance of catastrophic failure estimated by some as being as high as one chance in 53 - the shuttle was a risky endeavor. However, given all of the program's accomplishments - it is not a stretch to say that the shuttle made fact out of last century's science fiction. Photo Credit: NASA

The book also contains a detailed diagram of the orbiter (it is long and therefore was produced as a pull-out section. This element is included near the end and acts as a nice punctuation mark to the stream of imagery contained within.

While it required the combined effort of 16 different nations to make the International Space Station work - the space shuttle made the orbiting laboratory a reality. Photo Credit: NASA

The book is not perfect (but what book is). If one did not know better, upon reading this book one would assume that the Delta Clipper (both DC-X and DC-XA) flew once and upon landing caught fire. DC-X flew eight times – not once. Bizony also describes the lunar element of the Vision for Space Exploration (VSE) as being a repeat of Apollo. Apollo 17 was the longest duration that astronauts roamed the Moon’s surface – they were there for about three days. The VSE called for a permanent crewed presence on the moon.

For those out there that consider themselves “shuttle huggers” this book is simply a must-have. It is perfect to take to autograph shows to be signed by astronauts (as every mission is detailed, it is a simple matter to have crew members sign on the pages that contain their missions). It is also a perfect gift for space aficionados this holiday season. Published by Zenith Press and retailing for $40.00, The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is a welcome addition to your home library.

How will the shuttle be remebered? According to Bizony, given the technological restraints and the numerous accomplishments that the orbiter accomplished - it will be remembered in a positive light. Photo Credit: NASA

LROC “Treasure Map” Reveals Titanium Deposits

LROC WAC mosaic showing boundary between Mare Serenitatis and Mare Tranquillitatis. The relative blue colour of the Tranquillitatis mare is due to higher abundances of the titanium bearing mineral ilmenite. Image Credit: NASA/GSFC/Arizona State University

[/caption]
At a joint meeting of the European Planetary Science Congress and the American Astronomical Society’s Division for Planetary Sciences, Mark Robinson and Brett Denevi have unveiled a map of the Moon combining observations in visible and ultraviolet wavelengths showing areas rich in Titanium ores. This discovery not only provides a potential source of a valuable metal, but also provides valuable information which will help scientists better understand lunar formation and composition of the Moon’s interior.

How did Robinson and Denevi create this map, and what can other scientists learn from this new data?

“Looking up at the Moon, its surface appears painted with shades of grey – at least to the human eye. But with the right instruments, the Moon can appear colourful,” said Robinson, (Arizona State University). “The maria appear reddish in some places and blue in others. Although subtle, these colour variations tell us important things about the chemistry and evolution of the lunar surface. They indicate the titanium and iron abundance, as well as the maturity of a lunar soil.”

Robinson and the LROC team previously used similar methods with Hubble Space Telescope images to map titanium abundances near the Apollo 17 landing site, which had varying titanium levels. When Robinson compared the Apollo data with the HST images, it was revealed that titanium levels corresponded to the ratio of ultraviolet to visible light reflected by the lunar surface.

“Our challenge was to find out whether the technique would work across broad areas, or whether there was something special about the Apollo 17 area,” said Robinson. Using nearly 4000 images from the LRO Wide-Area Camera (WAC), Robinson’s team created a mosaic image, which was then studied using the techniques developed with the Hubble imagery. The research used the same ultraviolet to visible light ratio to deduce titanium abundance, which was verified by surface samples gathered by Apollo and Luna missions.

“We still don’t really understand why we find much higher abundances of titanium on the Moon compared to similar types of rocks on Earth. What the lunar titanium-richness does tell us is that the interior of the Moon had less oxygen when it was formed, knowledge that geochemists value for understanding the evolution of the Moon,” added Robinson.

On our Moon, titanium is found in a mineral known as ilmenite, which contains iron, titanium and oxygen. In theory, Lunar miners could process ilmenite to separate the iron, titanium and oxygen. Aside from the elements present in ilmenite, Apollo data shows that minerals containing titanium can retaining particles from the solar wind, such as helium and hydrogen. Future inhabitants of the Moon would find helium and hydrogen, along with oxygen and iron to be vital resources.

“The new map is a valuable tool for lunar exploration planning. Astronauts will want to visit places with both high scientific value and a high potential for resources that can be used to support exploration activities. Areas with high titanium provide both – a pathway to understanding the interior of the Moon and potential mining resources,” said Denevi (John Hopkins University).

The new maps also provide insight into how lunar surface materials are altered by the impact of charged particles from the solar wind and high-velocity micrometeorite impacts. Over time, lunar rock is pulverized into a fine powder by micrometeorite impacts, and charged particles alter the chemical composition and color of the surface.Recently exposed materials, such as ejecta from impacts appear bluer and have higher reflectivity than older Lunar regolith (soil). Younger material is estimated to take about half a billion years to fully “weather” to the point where it would blend in with older material.

“One of the exciting discoveries we’ve made is that the effects of weathering show up much more quickly in ultraviolet than in visible or infrared wavelengths. In the LROC ultraviolet mosaics, even craters that we thought were very young appear relatively mature. Only small, very recently formed craters show up as fresh regolith exposed on the surface,” said Robinson.

So it seems there’s always something new to be learned from our Moon. Coincidentally, tomorrow (October 8th) is International Observe the Moon Night, so make sure you grab your binoculars or telescope tomorrow night and do some lunar observations! Be sure to check out our previous coverage of International Observe the Moon Night by our Senior Editor, Nancy Atkinson at: http://www.universetoday.com/89522/need-an-excuse-to-gaze-at-the-moon-international-observe-the-moon-night-is-coming/

If you’d like to learn more about the Lunar Reconnaissance Orbiter Camera, visit: http://lroc.sese.asu.edu/

Source: Europlanet Research Infrastructure / Division for Planetary Sciences of the American Astronomical Society Joint Press Release

In Focus: Aerospace Photojournalist Mike Killian

Mike Killian is an aerospace journalist who jumped at the opportunity to cover space events at Kennedy Space Center and Cape Canaveral Air Force Station. Photos Courtesy of Mike Killian

[/caption]CAPE CANAVERAL, Fla – The photographers that cover the events that take place in and around Florida’s Space Coast come from diverse backgrounds. However, when it comes to the passion that attracts so many to Cape Canaveral Air Force Station and Kennedy Space Center – their origins are very similar.

Many amateur photographers like Mike Killian have always been interested in spaceflight, in capturing the spectacle of launch. Like Killian, these photographers start out not knowing how to get onto Kennedy Space Center to shoot the launches and other events that take place there. They work out arrangements with NASA friends to get close and then, finally, they get affiliated with an accredited news organization (in Killian’s case the ARES Institute).

“I have loved the space program since I was a child,” Killian said. “Most folks that come out here and do this I doubt very highly that they do it thinking they will get rich. They do it because what they are showing the world is so important, so awe-inspiring…and so beautiful.”

Killian caught the reflection of space shuttle Atlantis as it was towed back to its OPF after completing the final mission of the space shuttle era - STS-135. Photo Courtesy of Mike Killian

Killian has only covered the space program as a photographer for a relatively short time, about three years. During that time however – he has covered some pivotal points in space flight history. The last flights of the space shuttle era, the launch of spacecraft to Earth orbit, the Moon and soon Mars. Killian, also like his compatriots, sacrifices long hours and endures low pay to capture images of these events. But when he gets that perfect shot of solid rocket boosters separating from an Atlas V on its way to orbit, or the final landing of the space shuttle – it is all worth it.

“Photography is pretty much like anything else,” said Killian during a recent interview. “It’s all about timing – being at the right place – at the right time.”

Whether static or in dramtic motion, Killian has captured the space shuttle program's final days. Photo Courtesy of Mike Killian

One recurring theme that occurs in aerospace photography is – progression. Photographers will come out to KSC/CCAFS with their digital cameras, then they will buy a more powerful camera and then they move on to remote cameras. When one hears remote they think the cameras are far away – the truth is that these cameras are extremely close. “Remote” means that they are remotely activated – generally by either a sound or light sensor.

Killian employs 2 Canon Rebel XSi cameras due to the camera’s affordability and versatility.

The 27-year-old, unlike many of his colleagues, does have a favorite image – and it isn’t even one that he took on Kennedy Space Center proper.

Killian's favorite shot shows Launch Complex 39A in the distance, a Shuttle Training Aircraft or STA checking weather conditions - and a very active thunderstorm. Photo Courtesy of Mike Killian

“My favorite shot thus far is of a lightning storm over KSC for the night launch of Discovery on STS-128. That storm scrubbed the launch attempt, but the images I captured that night were unreal,” said Killian. “This particular photo has so much going on – Discovery basking in xenon lights atop launch pad 39A fully fueled with her crew onboard, lightning racing through the clouds directly above KSC, & the shuttle training aircraft flying over the storm (upper left of photo) on weather recon trying to determine if there would be any chance the storm could let up in time to support a launch that night. It’s very unique, not your typical launch photo.”

For Killian photographing the space program allows him to both combine his love of photography with the driving interest that he has for space flight. Killian has no plans to stop photographing the space program anytime soon. For him this is not about the money, it’s about the history of thunder and the wonder of light and like so many of his fellow photojournalists he feels privileged to be able to do what he does.

Killian has covered many different events at Kennedy Space Center. His camera has captured events as stirring as the final launch of the shuttle era - and as poignant as the final rollout of space shuttle Discovery (seen here). Images Courtesy of Mike Killian

United Launch Alliance’s Delta II Approved for Potentially Five More Launches

United Launch Alliance's Delta II rocket has been added to the National Launch Services II contract by NASA. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
NASA announced that it has added the Delta II rocket, a launch vehicle that appeared to be slipping into history, to the NASA Launch Services (NLS) II contract. The Delta II, produced by United Launch Alliance, is one of the most successful expendable launch vehicles that has ever been produced.

This modification of the contract will allow ULA to add the Delta II rocket as part of the contract’s on-ramp provision. The modification allows United Launch Services to offer as much as five Delta II rockets.

The Delta II was most recently utilized to launch the GRAIL mission to study the Moon's composition. Photo Credit: Mike Killian/ARES Institute

“We are extremely pleased NASA has added the reliable Delta II to the NLS II contract and look forward to continuing the legacy of the program,” said Michael Gass, ULA’s president and CEO. “ULA has demonstrated its ability to fully integrate Atlas V, Delta IV and Delta II product lines allowing us to continue offering medium launch capability at the best value for our customers.”

The Delta II rocket, in its various configurations has been launched 150 times and has a success rate of 98.7 percent. The one notable failure was the 1997 launch of a U.S. Air Force Global Positioning IIR-1 satellite (GPS IIR-1). Within 13 seconds of launch the Delta II exploded causing severe destruction to the surrounding area. The cause of this mishap was determined to be a crack within one of the GEM-40 solid rocket boosters that are affixed to the base of the Delta II.

The Delta II rocket has a very extensive history of success and has been used to launch many famous missions. Image Credit: NASA/JPL

“While we count success one mission at a time, we have been able to count on the Delta II’s success 96 times in a row over the last decade,” Gass said. “This is a tribute to our dedicated ULA employees, our supplier teammates and our NASA Launch Services Program customer who ensures mission success is the focus of each and every launch.”

The planetary science missions that the rocket has sent into space reads like a “Who’s Who” of space exploration missions. The Mars Exploration Rovers Spirit and Opportunity, Mars Phoenix Lander, Genesis, Stardust, Mars Pathfinder, Mars Global Surveyor, Messenger, Deep Impact, Dawn, Kepler, Wise and the recent GRAIL mission to the Moon – all thundered to orbit atop a Delta II.

The Delta II rocket is launched from either Vandenberg Air Force Base in California or Cape Canaveral Air Force Station located in Florida. Photo Credit: NASA.gov

ULA’s next planned launch of a Delta II will carry the NPOESS Preparatory Project (NPP) mission for NASA. It is currently slated to launch Oct. 25, 2011 from Space Launch Complex-2 at Vandenberg Air Force Base, located in California. ULA launches from both Vandenberg as well as Cape Canaveral Air Force Station, located in Florida.

While this change does allow for at least five more launches of the Delta II, after those launches, the rocket will no longer be utilized and will be phased out of service.

The NLS II contracts are designed to provide for payloads weighing about 550 pounds or more to be sent to a minimum 124-mile-high circular orbit. The launch service providers signed into these contracts also may offer different launch vehicles to NASA to meet other requirements. NASA can also provide launch services to other agencies, such as the National Oceanic and Atmospheric Administration or NOAA.

Spirit and Opportunity, Pathfinder, Deep Impact, Dawn, Kepler, Stardust, Genesis and Wise - were all launched on the Delta II rocket. Photo Credit: NASA/George Shelton

Ed Weiler – NASA Science Leader and Hubble Chief Scientist Retires

Dr. Ed Weiler retired on Sept 30, 2011 as the NASA Associate Administrator for the Science Mission Directorate at NASA HQ, Washington, DC after 33 distinguished years at NASA, including 10 years as Chief of all NASA Space Science and nearly 20 years as Chief Scientist for the Hubble Space Telescope. In this photo, Weiler ‘Hugs Hubble' after launch of STS-125 on the final shuttle mission to repair and upgrade the Hubble Space Telescope in May 2009. A happy and relieved Weiler chats post-launch inside the KSC Press Center about Hubble and NASA Space Science. Credit: Ken Kremer

[/caption]

Ed Weiler, NASA’s Science leader in charge of the robotic missions that continually produce scientific breakthroughs that amaze all humanity and longtime Chief Scientist on the Hubble Space Telescope that has completely revolutionized our understanding of humanities place in the Universe, retired today (Sept. 30) from NASA after a distinguished career spanning almost 33 years.

Weiler is departing NASA during what has been dubbed the “Year of Space Science”- the best year ever for NASA Space Science research. The two most recent successes are the launch of JUNO to Jupiter and the twin GRAIL probes to the Moon. Blastoff of the Curiosity Mars Science Laboratory rover is slated for late November 2011.

Weiler’s official title is associate administrator of NASA’s Science Mission Directorate (SMD) at agency Headquarters in Washington, DC. In that capacity he was responsible for overseeing NASA’s science and research programs in Earth science, heliophysics, planetary science and astrophysics.

Weiler was appointed to lead SMD in 2008. He holds this position now for the second time after serving in between as Director of NASA Goddard Spaceflight Center in Greenbelt, Maryland from 2004 to 2008. His earlier stint as associate administrator lasted from 1998 to 2004 for what was then called the Space Science Enterprise.

Dr. Ed Weiler, NASA Associate Administrator for the Science Mission Directorate. Credit: NASA/Bill Ingalls

Probably the job he loved best was as Chief Scientist of the Hubble Space Telescope from 1979 to 1998, until he was promoted to the top rung of NASA management.

I was very lucky to meet and chat with Ed Weiler while I was covering the final space shuttle flight – STS-125 – to repair and upgrade Hubble. STS 125 blasted off in May 2009 and accomplished every single objective to catapult Hubble to the apex of its capabilities.

At the recent launch of the twin GRAIL lunar mapping probes, I spoke with Weiler about a wide range of NASA missions. Watch for my upcoming interview with Ed.

Weiler is very hopeful that Hubble will continue to operate for several more years at least.

NASA issued this statement from NASA Administrator Charles Bolden, “Ed leaves an enduring legacy of pride and success that forever will remain a part of NASA’s science history. His leadership helped inspire the public with each new scientific discovery, and enabled NASA to move forward with new capabilities to continue to explore our solar system and beyond.”

The successes under Weiler’s leadership include NASA’s great observatory missions, unprecedented advances in Earth science and extensive exploration of Mars and other planets in our solar system. These advances have rewritten science textbooks and earned enormous support for NASA’s science programs from the general public.

The Mars rovers Spirit and Opportunity are just one example of the science missions approved and funded during Weiler’s tenure.

Weiler’s leadership has been instrumental in securing continued support and funding for NASA Space Science from Congress and the White House. He has received numerous prestigious awards including the NASA Distinguished Service Medal and several Presidential Rank Awards for Meritorious Executive and Distinguished Executive.

Ed Weiler remembers Spirit at JPL symposium. Credit: AP

Student Alert: GRAIL Naming Contest – Essay Deadline November 11

NASA announces student Essay Naming Contest for the twin GRAIL Lunar spaceships. The essay writing contest is open to students in Grades K - 12 at schools in the United States. Submission Deadline is November 11, 2011. GRAIL A & B are twin science robots that will explore the gravity field of the moon like never before.

[/caption]

Student Alert ! – Here’s your once in a lifetime chance to name Two NASA robots speeding at this moment to the Moon on a super science mission to map the lunar gravity field. They were successfully launched from the Earth to the Moon on September 10, 2011. Right now the robots are called GRAIL A and GRAIL B. But, they need real names that inspire. And they need those names real soon. The goal is to “capture the spirit and excitement of lunar exploration”, says NASA – the US Space Agency.

NASA needs your help and has just announced an essay writing contest open to students in Grades K – 12 at schools in the United States. The deadline to submit your essay is November 11, 2011. GRAIL stands for “Gravity Recovery And Interior Laboratory.”

The rules state you need to pick two names and explain your choices in 500 words or less in English. Your essay can be any length up to 500 words – even as short as a paragraph. But, DO NOT write more than 500 words or your entry will be automatically disqualified.

Learn more about the GRAIL Essay Naming Contest here:

Read all the Official Contest Rules here:

Download the Naming Contest Submission Form here:

Students: NASA Wants You to Name that GRAIL !
Write an Essay and name these twin Lunar mapping satellites. NASA’s twin GRAIL A & B science probes are now streaking to the Moon and arrive on New Year’s Day 2012. This picture shows how they looked, mounted side by side, during launch preparations prior to blasting off for the Moon on Sept. 10, 2011 from Florida. Credit: Ken Kremer

The GRAIL A and B lunar spaceships are twins – just like those other awe inspiring robots “Spirit” and “Opportunity” , which were named by a 10 year old girl student and quickly became famous worldwide and forever because of their exciting science missions of Exploration and Discovery.They arrive in Lunar Orbit on New Year’s Day 2012.

Blastoff of twin GRAIL A and B lunar gravity mapping spacecraft on a Delta II Heavy rocket on Sept. 10 from Pad 17B Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT. Credit: Ken Kremer

And there is another way that students can get involved in NASA’s GRAIL mission.

GRAIL A & B are both equipped with four student-run MoonKAM cameras. Students can suggest targets for the cameras. Then the cameras will take close-up views of the lunar surface, taking tens of thousands of images and sending them back to Earth.

“Over 1100 middle schools have signed up to participate in the MoonKAM education and public outreach program to take images and engage in exploration,” said Prof. Maria Zuber of MIT.

Prof. Zuber is the top scientist on the mission and she was very excited to announce the GRAIL Essay Naming contest right after the twin spaceships blasted off to the Moon on Sep 10, 2011 from Cape Canaveral in Florida.

What is the purpose of GRAIL ?

“GRAIL simply put, is a ‘Journey to the Center of the Moon’,” says Dr. Ed Weiler, NASA Associate Administrator of the Science Mission Directorate in Washington, DC.

“It will probe the interior of the moon and map its gravity field by 100 to 1000 times better than ever before. We will learn more about the interior of the moon with GRAIL than all previous lunar missions combined. Precisely knowing what the gravity fields are will be critical in helping to land future human and robotic spacecraft. The moon is not very uniform. So it’s a dicey thing to fly orbits around the moon.”

“There have been many missions that have gone to the moon, orbited the moon, landed on the moon, brought back samples of the moon,” said Zuber. “But the missing piece of the puzzle in trying to understand the moon is what the deep interior is like.”

So, what are you waiting for.

Start thinking and writing. Students – You can be space explorers too !

Read Ken’s continuing features about GRAIL
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery