Continent-Wide Telescope Array Now Seeing 450 Million Light-Years Into Space

[/caption]

Kitt Peak. Los Alamos. St. Croix. Pie Town.

What do these places have in common? They each house one of 10 giant telescopes in the Very Large Baseline Array, a continent-spanning collection of telescopes that’s flexing its optical muscles, reaching farther into space — with more precision — than any other telescope in the world.

And today, at the 177th annual meeting of the American Association for the Advancement of Science in Washington, DC, VLBA researchers announced an amazing feat: They’ve used the VLBA to peer, with stunning accuracy, three times as far into the universe as they had just two years ago. New measurements with the VLBA have placed a galaxy called NGC 6264 (coordinates below) at a distance of 450 million light-years from Earth, with an uncertainty of no more than 9 percent. This is the farthest distance ever directly measured, surpassing a measurement of 160 million light-years to another galaxy in 2009.

VLBA telescope locations, courtesy of NRAO/AUI

Previously, distances beyond our own Galaxy have been estimated through indirect methods. But the direct seeing power of the VLBA scraps the need for assumptions, noted James Braatz, of the National Radio Astronomy Observatory.

The VLBA provides the greatest ability to see fine detail, called resolving power, of any telescope in the world. It can produce images hundreds of times more detailed than those from the Hubble Space Telescope, at a power equivalent to sitting in New York and reading a newspaper in Los Angeles. VLBA sites include Kitt Peak, Arizona; Los Alamos and Pie Town, New Mexico; St. Croix in the Virgin Islands, Mauna Kea, Hawaii; Brewster, Washington; Fort Davis, Texas; Hancock, New Hampshire; North Liberty, Iowa; and Owens Valley in California. Sure, I could include pictures of the scopes in Hawaii or the Virgin Islands. But Pie Town, besides hosting the Very Large Array, also has two fun restaurants (the Daily Pie and the Pie-O-Neer) with really amazing pie. And an annual pie-eating festival. So it wins:

The VLBA site at Pie Town, N.M., courtesy of NRAO/AUI.

Tripling the visible “yardstick” into space bears favorably on numerous areas of astrophysics, including determining the nature of dark energy, which constitutes 70 percent of the Universe. The VLBA is also redrawing the map of the Milky Way and is poised to yield tantalizing new information about extrasolar planets, the NRAO points out.

Fine-tuning the measurement of ever-greater distances is vital to determining the expansion rate of the Universe, which helps theorists narrow down possible explanations for the nature of dark energy. Different models of Dark Energy predict different values for the expansion rate, known as the Hubble Constant.

“Solving the Dark Energy problem requires advancing the precision of cosmic distance measurements, and we are working to refine our observations and extend our methods to more galaxies,” Braatz said. Measuring more-distant galaxies is vital, because the farther a galaxy is, the more of its motion is due to the expansion of the Universe rather than to random motions.

As for the map of our own galaxy, the direct VLBA measurements are improving on earlier estimates by as much as a factor of two. The clearer observations have already revealed the Milky Way has four spiral arms, not two as previously thought.

Mark Reid, of the Harvard-Smithsonian Center for Astrophysics led an earlier VLBA study revealing that the Milky Way is also rotating faster than previously believed — and that it’s as massive as Andromeda.

Reid’s team is now observing the Andromeda Galaxy in a long-term project to determine the direction and speed of its movement through space. “The standard prediction is that the Milky Way and Andromeda will collide in a few billion years. By measuring Andromeda’s actual motion, we can determine with much greater accuracy if and when that will happen,” Reid said.

The VLBA is also being used for a long-term, sensitive search of 30 stars to find the subtle gravitational tug that will reveal orbiting planets. That four-year program, started in 2007, is nearing its completion. The project uses the VLBA along with NRAO’s Green Bank Telescope in West Virginia, the largest fully-steerable dish antenna in the world. Early results have ruled out any companions the size of brown dwarfs for three of the stars, and the astronomers are analyzing their data as the observations continue.

Ongoing upgrades in electronics and computing have enhanced the VLBA’s capabilities. With improvements now nearing completion, the VLBA will be as much as 5,000 times more powerful as a scientific tool than the original VLBA of 1993.

NGC 6264 Coordinates, from DOCdb: 16<sup>h</sup> 57<sup>m</sup> 16.08<sup>s</sup>; +27° 50′ 58.9″

Source: A press release from the National Radio Astronomy Observatory, via the American Astronomical Society (AAS). Not to be confused with the American Association for the Advancement of Science (AAAS), which now conducting its annual meeting in Washington, DC — and where the VLBA results were presented.

First-Time Solar System Mosaic From the Inside Out

[/caption]

Say cheese! The MESSENGER spacecraft has captured the first portrait of our Solar System from the inside looking out. The images, captured Nov. 3 and 16, 2010, were snapped with the Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) of MESSENGER’s Mercury Dual Imaging System (MDIS).

All of the planets are visible except for Uranus and Neptune, which at distances of 3.0 and 4.4 billion kilometers were too faint to detect with even the longest camera exposure time of 10 seconds. Their positions are indicated. The dwarf-planet Pluto, smaller and farther away, would have been even more difficult to observe.

Earth’s Moon and Jupiter’s Galilean satellites (Callisto, Ganymede, Europa, and Io) can be seen in the NAC image insets. Our Solar System’s perch on a spiral arm provided a beautiful view of part of the Milky Way galaxy, bottom center.

The following is a graphic showing the positions of the planets when the graphic was acquired:

The new mosaic provides a complement to the Solar System portrait – that one from the outside looking in – taken by Voyager 1 in 1990.

These six narrow-angle color images were made from the first ever 'portrait' of the solar system taken by Voyager 1, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. The spacecraft acquired a total of 60 frames for a mosaic of the solar system which shows six of the planets. Mercury is too close to the sun to be seen. Mars was not detectable by the Voyager cameras due to scattered sunlight in the optics, and Pluto was not included in the mosaic because of its small size and distance from the sun. These blown-up images, left to right and top to bottom are Venus, Earth, Jupiter, and Saturn, Uranus, Neptune. The background features in the images are artifacts resulting from the magnification. The images were taken through three color filters -- violet, blue and green -- and recombined to produce the color images. Jupiter and Saturn were resolved by the camera but Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposure times. Earth appears to be in a band of light because it coincidentally lies right in the center of the scattered light rays resulting from taking the image so close to the sun. Earth was a crescent only 0.12 pixels in size. Venus was 0.11 pixel in diameter. The planetary images were taken with the narrow-angle camera (1500 mm focal length). Credit: NASA/JPL

“Obtaining this portrait was a terrific feat by the MESSENGER team,” says Sean Solomon, MESSENGER principal investigator and a researcher at the Carnegie Institution. “This snapshot of our neighborhood also reminds us that Earth is a member of a planetary family that was formed by common processes four and a half billion years ago. Our spacecraft is soon to orbit the innermost member of the family, one that holds many new answers to how Earth-like planets are assembled and evolve.”

Source: MESSENGER

Astronomy Without A Telescope – Situation Cloudy

[/caption]

Most people agree that the Magellanic Clouds are in orbit around the Milky Way. What’s not clear is whether it is a bound orbit or just a temporary ‘ships passing in the night’ arrangement. Something which could clarify the relationship is the Magellanic Stream, a 600,000 light year long string of gas dragged through and beyond the Small and Large Magellanic Clouds.

For the complete picture, note that there is also a shorter trail of gas drawn out ahead of the Clouds, known as the Leading Arm – and the gas flow between the Clouds is known as the Magellanic Bridge. The Bridge is an indication that the Clouds are gravitationally bound in a binary pair – at least for now. The Large Magellanic Cloud may dragging the Small Magellanic Cloud behind it, since the Magellanic Stream ‘skid mark’ is most chemically similar to the contents of the Small Magellanic Cloud.

What remains unresolved is whether the Clouds are in a bound orbit around the Milky Way – or are they just passing by? The level of uncertainty about the dynamics of objects that are relatively close to us, and are easily visible to the naked eye, may seem surprising.

Firstly, it is tricky to gain an accurate estimation of each Cloud’s velocity relative to the Milky Way – partly because we, the observers, have our own independent movement and we need to find a reference frame that we can reliably measure the Clouds’ velocity against.

Estimates derived from Hubble Space Telescope observations by Kallivayalil and colleagues in 2006, measured the Clouds’ velocities against a background of distant quasars, which are visible through the Clouds. These data were then used by Besla and colleagues to propose that the Clouds’ velocities were too fast to be in bound orbits around the Milky Way and so must be just passing by.

But there is another area of uncertainty, where – even with the Clouds’ velocity determined – you still need to decide what escape velocity they need to avoid being caught in a bound orbit of the Milky Way. While we can estimate the Milky Way’s mass, there is the issue of dark matter – which we can’t see and hence can’t locate accurately – so there is some uncertainty about how the combined mass of the Milky Way’s visible and dark matter is distributed.

If, like the visible matter, the dark matter is centralized around the galactic hub, the Clouds won’t need so much velocity to escape. But if the dark matter is more evenly distributed with the galactic disk of visible matter being surrounded by a spherical halo of dark matter, then it’s less clear as to whether the Cloud’s could escape (a scenario that was acknowledged by Besla et al).

A spherical halo of dark matter is the generally preferred model for the Milky Way’s total mass distribution – since, without it, the outer edges of the Milky Way’s visible disk are rotating so fast that they should fly off into space.

Diaz and Bekki have run with this idea by computer-modeling a Milky Way with a circular velocity of 250 kilometres a second (a recent new estimate), which hence requires a more substantial dark matter halo than was assumed by Besla et al. Otherwise, they still use the same Cloud velocities determined from the 2006 Hubble Space Telescope observations.

Left: The neutral hydrogen Magellanic Stream stretching upwards past the Large (red) and Small (green) Magellanic Clouds Right: A computer-modeled scenario in which both clouds are in bound orbits around the Milky Way. Most of the Stream, Bridge and Leading Arm structures are replicated - and are found to originate from the substance of the Small Magellanic Cloud. Credit: Diaz and Bekki.

Their model, when wound back in time, suggests the Clouds have been locked in bound orbits around the Milky Way for more than 5 billion years – with the Magellanic Stream and Leading Arm arising more recently, following a close encounter between the two Clouds (an idea also proposed in Besla et al’s unbound orbit model).

Diaz and Bekki suggest that the Clouds began separate orbits, but passed close to each other around 1.25 billion years ago and then became the binary pair we observe today. The Leading Arm is freed gas being drawn into the Milky Way’s halo – an indication that both Clouds may eventually be assimilated.

Further reading: Diaz and Bekki. Constraining the orbital history of the Magellanic Clouds: A new bound scenario suggested by the tidal origin of the Magellanic Stream.

The Zooniverse is Expanding: The Milky Way Project Begins Today

[/caption]

From the folks that brought you the addictive citizen science projects Galaxy Zoo and Moon Zoo (among others), comes yet another way to explore our Universe and help out scientists at the same time. The Milky Way Project invites members of the public to look at images from infrared surveys of our Milky Way and flag features such as gas bubbles, knots of gas and dust and star clusters.

As with the other Zooniverse projects, the participation of the public is a core feature. Accompanying the Milky Way Project is a way for Zooniverse members – lovingly called “zooites” – to discuss the images they’ve cataloged. Called Milky Way Talk, users can submit images they find curious or just plain beautiful to the talk forum for discussion.

The Milky Way Project uses data from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Multiband Imaging Photometer for Spitzer Galactic Plane Survey (MIPSGAL). These two surveys have imaged the Milky Way in infrared light at different frequencies. GLIMPSE at 3.6, 4.5, 5.8, and 8 microns, and MIPSGAL at 24 and 70 microns. In the infrared, things that don’t emit much visible light – such as large gas clouds excited by stellar radiation – are apparent in images.

The new project aims at cataloging bubbles, star clusters, knots of gas and dark nebulae. All of these objects are interesting in their own ways.

Bubbles – large structures of gas in the galactic plane – belie areas where young stars are altering the interstellar medium that surrounds them. They heat up the dust and/or ionize the gas that surrounds them, and the flow of particles from the star pushes the diffuse material surrounding out into bubble shapes.

The green knots are where the gas and dust are more dense, and might be regions that contain stellar nurseries. Similarly, dark nebulae – nebulae that appear darker than the surrounding gas – are of interest to astronomers because they may also point to stellar formation of high-mass stars.

Star clusters and galaxies outside of the Milky Way may also be visible in some of the images. Though the cataloging of these objects isn’t the main focus of the project, zooites can flag them in the images for later discussion. Just like in the other Zooniverse projects, which use data from robotic surveys, there is always the chance that you will be the first person ever to look at something in one of the images. You could even be like Galaxy Zoo member Hanny and discover something that astronomers will spend telescope time looking at!

This image is full of objects that are interesting to astronomers for study. You can help them pick out which things to study. Image Credit: Spitzer/The Milky Way Project

The GLIMPSE-MIPSGAL surveys were performed by the Spitzer Space Telescope. Over 440,000 images – all taken in the infrared – are in the catalog and need to be sifted through. This is a serious undertaking, one that cannot be accomplished by graduate students in astronomy alone.

In cataloging these bubbles for subsequent analysis, Milky Way Project members can help astronomers understand both the interstellar medium and the stars themselves imaged by the survey. It will also help them to make a map of the Milky Way’s stellar formation regions.

As with the other Zooniverse projects, this newest addition relies on the human brain’s ability to pick out patterns. Diffuse or oddly-shaped bubbles – such as those that appear “popped” or are elliptical – are difficult for a computer to analyze. So, it’s up to willing members of the public to help out the astronomy community. The Zooniverse community boasts over 350,000 members participating in their various projects.

A little cataloging and research of these gas bubbles has already been done by researchers. The Milky Way Project site references work by Churchwell, et. al, who cataloged over 600 of the bubbles and discovered that 75% of the bubbles they looked at were created by type B4-B9 stars, while 0-B3 stars make up the remainder (for more on what these stellar types mean, click here).

A zoomable map that uses images from the surveys – and has labeled a lot of the bubbles that have been already cataloged by the researchers- is available at Alien Earths.

For an extensive treatment of just how important these bubbles are to understanding stars and their formation, the paper “IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions” by Watson, et. al is available here.

If you want to get cracking on drawing bubbles and cataloging interesting features of our Milky Way, take the tutorial and sign up today.

Sources: The Milky Way Project, Arxiv, GLIMPSE

Fermi Telescope Finds Giant Structure in the Milky Way

[/caption]

From a NASA press release:

NASA’s Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and may be the remnant of an eruption from a supersized black hole at the center of our galaxy.

“What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center,” said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who first recognized the feature. “We don’t fully understand their nature or origin.”

The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old. A paper about the findings has been accepted for publication in The Astrophysical Journal.

Finkbeiner and Harvard graduate students Meng Su and Tracy Slatyer discovered the bubbles by processing publicly available data from Fermi’s Large Area Telescope (LAT). The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest-energy form of light.

Other astronomers studying gamma rays hadn’t detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this so-called diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure’s shape and emissions suggest it was formed as a result of a large and relatively rapid energy release — the source of which remains a mystery.

One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way’s black hole has such a jet today, it may have in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way’s center several million years ago.

“In other galaxies, we see that starbursts can drive enormous gas outflows,” said David Spergel, a scientist at Princeton University in New Jersey. “Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics.”

Hints of the bubbles appear in earlier spacecraft data. X-ray observations from the German-led Roentgen Satellite suggested subtle evidence for bubble edges close to the galactic center, or in the same orientation as the Milky Way. NASA’s Wilkinson Microwave Anisotropy Probe detected an excess of radio signals at the position of the gamma-ray bubbles.

The Fermi LAT team also revealed Tuesday the instrument’s best picture of the gamma-ray sky, the result of two years of data collection.

“Fermi scans the entire sky every three hours, and as the mission continues and our exposure deepens, we see the extreme universe in progressively greater detail,” said Julie McEnery, Fermi project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.
NASA’s Fermi is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

“Since its launch in June 2008, Fermi repeatedly has proven itself to be a frontier facility, giving us new insights ranging from the nature of space-time to the first observations of a gamma-ray nova,” said Jon Morse, Astrophysics Division director at NASA Headquarters in Washington. “These latest discoveries continue to demonstrate Fermi’s outstanding performance.”

Missing Milky Way Dark Matter

[/caption]

Although dark matter is inherently difficult to observe, an understanding of its properties (even if not its nature) allows astronomers to predict where its effects should be felt. The current understanding is that dark matter helped form the first galaxies by providing gravitational scaffolding in the early universe. These galaxies were small and collapsed to form the larger galaxies we see today. As galaxies grew large enough to shred incoming satellites and their dark matter, much of the dark matter should have been deposited in a flat structure in spiral galaxies which would allow such galaxies to form dark components similar to the disk and halo. However, a new study aimed at detecting the Milky Way’s dark disk have come up empty.


The study concentrated on detecting the dark matter by studying the luminous matter embedded in it in much the same way dark matter was originally discovered. By studying the kinematics of the matter, it would allow astronomers to determine the overall mass present that would dictate the movement. That observed mass could then be compared to the amount of mass predicted of both baryonic matter as well as the dark matter component.

The team, led by C. Moni Bidin used ~300 red giant stars in the Milky Way’s thick disk to map the mass distribution of the region. To eliminate any contamination from the thin disc component, the team limited their selections to stars over 2 kiloparsecs from the galactic midplane and velocities characteristic of such stars to avoid contamination from halo stars. Once stars were selected, the team analyzed the overall velocity of the stars as a function of distance from the galactic center which would give an understanding of the mass interior to their orbits.

Using estimations on the mass from the visible stars and the interstellar medium, the team compared this visible mass to the solution for mass from the observations of the kinematics to search for a discrepancy indicative of dark matter. When the comparison was made, the team discovered that, “[t]he agreement between the visible mass and our dynamical solution is striking, and there is no need to invoke any dark component.”

While this finding doesn’t rule out the presence of dark matter, it does place constraints on it distribution and, if confirmed in other galaxies, may challenge the understanding of how dark matter serves to form galaxies. If dark matter is still present, this study has demonstrated that it is more diffuse than previously recognized or perhaps the disc component is flatter than previously expected and limited to the thin disc. Further observations and modeling will undoubtedly be necessary.

Yet while the research may show a lack of our understanding of dark matter, the team also notes that it is even more devastating for dark matter’s largest rival. While dark matter may yet hide within the error bars in this study, the findings directly contradict the predictions of Modified Newtonian Dynamics (MOND). This hypothesis predicts the apparent gain of mass due to a scaling effect on gravity itself and would have required that the supposed mass at the scales observed be 60% higher than indicated by this study. Continue reading “Missing Milky Way Dark Matter”

The Milky Way Might Be Square

[/caption]

Just like being stuck inside and not being able to see what the outside of your house looks like, we’re trapped inside the Milky Way galaxy and aren’t able to see its complete structure. Most of us have this vision of a circular, spiral galaxy with gracefully curving spiral arms. Nope, says a group of astronomers from Brazil. The Milky Way might be square. Not like a box, but, in places, the spiral arms are straight rather than curved, giving the Milky Way a distinctly square look. And our solar system sits right on one the straightest parts of an outer arm.

It really IS hip to be square.

The map of the Milky Way has been redrawn several times since the first attempts in the 1950’s using radio telescopes to trace out the spiral arms of our home galaxy. However, the concept of our galaxy having square-ish arms is not so farfetched: we know of the Pinwheel Galaxy, above, that has areas of straight and squared off arms, and a 2008 study using the Very Long Baseline Array found that instead of arms neatly circling the galactic center, the stars mapped traced a more elliptical orbit. But most of the maps of the Milky Way have assumed that the material in our galaxy orbits the center in a circular fashion, so having arms stars that don’t follow this path come as somewhat of a surprise.

Jaques Lepine and his team from the University of Sao Paulo in Brazil wanted to obtain the equivalent of a ”face-on” map of the spiral arms of our Galaxy, so they studied the spectra produced by clouds of carbon monosulphide, a common gas in our galaxy, rather than the usual suspect of ionized hydrogen.

They were able to determine velocity information for 870 regions of the Milky Way which is a larger number than that of previous studies based on classical HII regions, so they’ve created a new map of the galaxy with detail never seen before. “One way to improve the description of the spiral arms is to increase the number of objects used to trace them,” the team writes in their paper.

The distribution of CS sources and maser sources in the galactic plane with the Cepheid stars in orange and the young open clusters in green. The Sun is represented by a yellow dot. Credit: Lepine, et al.

Not only did they find evidence for straight places in the arms, but they also found an additional third arm. A 2008 study by the Spitzer Space Telescope had demoted the number of arms from four to two, but other studies, including an earlier one by Levine have said three. So, yes, there is some uncertainty on the number of arms. The new arm is about 30,000 light years from the galactic core at a longitude of between 80 and 140 degrees. This one is rounded however, “with strong inward curvature.”

“Basically, our results confirm the main aspects of the spiral structure revealed by the studies of HII regions,” said Lepine and his team. “For instance if we move horizontally across the figure, to the right or to the left of the Galactic center, we find roughly 3 spiral arms on each side, like the previous works. There are departures from the pure logarithmic spirals, with segments of arms that are almost straight lines.”

Drawing a map of the Milky Way is a challenging task, since we only have an edge-on view of the galaxy in which we reside. To top it off, it’s full of dust and gas that muck up the view in the visible light spectrum. So, we have to rely on other spectra.

We may not ever know exactly what our galaxy would look like when viewed from other worlds, but we’ll keep trying.

Read the team’s paper: The spiral structure of the Galaxy revealed by CS sources and evidence for the 4:1 resonance, Lepine, et al.

Additional source: Technology Review Blog

Milky Way Sidelined in Galactic Tug of War

[/caption]

From a Harvard-Smithsonian Center for Astrophysics press release:

The Magellanic Stream is an arc of hydrogen gas spanning more than 100 degrees of the sky as it trails behind the Milky Way’s neighbor galaxies, the Large and Small Magellanic Clouds. Our home galaxy, the Milky Way, has long been thought to be the dominant gravitational force in forming the Stream by pulling gas from the Clouds. A new computer simulation by Gurtina Besla and her colleagues from the Harvard-Smithsonian Center for Astrophysics now shows, however, that the Magellanic Stream resulted from a past close encounter between these dwarf galaxies rather than effects of the Milky Way.

“The traditional models required the Magellanic Clouds to complete an orbit about the Milky Way in less than 2 billion years in order for the Stream to form,” says Besla. Other work by Besla and her colleagues, and measurements from the Hubble Space Telescope by colleague Nitya Kallivaylil, rule out such an orbit, however, suggesting the Magellanic Clouds are new arrivals and not long-time satellites of the Milky Way.

This creates a problem: How can the Stream have formed without a complete orbit about the Milky Way?

To address this, Besla and her team set up a simulation assuming the Clouds were a stable binary system on their first passage about the Milky Way in order to show how the Stream could form without relying on a close encounter with the Milky Way.

The team postulated that the Magellanic Stream and Bridge are similar to bridge and tail structures seen in other interacting galaxies and, importantly, formed before the Clouds were captured by the Milky Way.

“While the Clouds didn’t actually collide,” says Besla, “they came close enough that the Large Cloud pulled large amounts of hydrogen gas away from the Small Cloud. This tidal interaction gave rise to the Bridge we see between the Clouds, as well as the Stream.”

“We believe our model illustrates that dwarf-dwarf galaxy tidal interactions are a powerful mechanism to change the shape of dwarf galaxies without the need for repeated interactions with a massive host galaxy like the Milky Way.”

While the Milky Way may not have drawn the Stream material out of the Clouds, the Milky Way’s gravity now shapes the orbit of the Clouds and thereby controls the appearance of the tail.

“We can tell this from the line-of-sight velocities and spatial location of the tail observed in the Stream today,” says team member Lars Hernquist of the Center.

The paper describing this work has been accepted for publication in the October 1 issue of the Astrophysical Journal Letters and is available online: Simulations of the Magenllanic Stream in a First Infall Scenario.

The Hercules Satellite – A Galactic Transitional Fossil

[/caption]

On Friday, I wrote about the population of the thick disk and how surveys are revealing that this portion of our galaxy is largely made of stars stolen from cannibalized dwarf galaxies. This fits in well with many other pieces of evidence to build up the general picture of galactic formation that suggests galaxies form through the combination of many small additions as opposed to a single, gigantic collapse. While many streams of what is, presumably, tidally shredded galaxies span the outskirts of the Milky Way, and other objects exist that are still fully formed galaxies, few objects have yet been identified as a satellite that is undergoing the process of tidal disruption.

A new study, to be published in the October issue of the Astrophysical Journal suggests that the Hercules satellite galaxy may be one of the first of this intermediary forms discovered.

In the past decade, numerous minor stellar systems have been discovered in the halo of our Milky Way galaxy. The properties of these systems have suggested to astronomers that they are faint galaxies in their own right. Although many have elongated and elliptical shapes (averaging an ellipticity of 0.47; 0.15 higher than that of brighter dwarf galaxies that orbit further out), simulations have suggested that even these stretched dwarfs are still able to remain largely cohesive. In general, the galaxy will remain intact until it is stretched to an ellipticity of 0.7.  At this point, a minor galaxy will lose ~90% of its member stars and dissolve into a stellar stream.

In 2008, Munoz et al. reported the first Milky Way satellite that was clearly over this limit. The Ursa Major I satellite was shown to have an ellipticity of 0.8. Munoz suggested that this, as well as the Hercules and Ursa Major II dwarfs were undergoing tidal break up.

The new paper, by Nicolas Martin and Shoko Jin, further analyzes this proposition for the Hercules satellite by going further and examining the orbital characteristics to ensure that their passage would continue to distort the galaxy sufficiently. The system already contains an ellipticity of 0.68, which puts it just under the theoretical limit.

The team looked to see just how closely the satellite would pass to our own galactic center. The closer it passed, the more disruption it would feel. By projecting the orbit, they estimated the galaxy would come within ~6 kiloparsecs of the galactic center which is about 40% of the radius of the galaxy overall. While this may not seem especially close Martin and Jin report that they cannot conclude that it will be insufficient. They state that disruption would be dependent on “the properties of the stellar system at that time of its journey in the Milky Way potential and, as such, out of reach to the current observer.”

However, there were some telling signs that the dwarf may already be shedding stars. Along the major axis of the galaxy, deep imaging has revealed a smaller number of stars that does not appear to be bound to the galaxy itself. Photometry of these stars has shown that their distribution on a color-magnitude diagram is strikingly similar to that of the Hercules galaxy itself.

At this point, we cannot fully determine if the Hercules galaxy is doomed to become another stellar stream around the Milky Way, but if it is not truly in the process of breaking up, it seems to be on the very edge.

The Thick Disk: Galactic Construction Project or Galactic Rejects?

Our Milky Way Gets a Makeover

[/caption]

The disk of spiral galaxies is comprised of two main components: The thin disk holds the majority of stars and gas and is the majority of what we see and picture when we think of spiral galaxies. However, hovering around that, is a thicker disk of stars that is much less populated. This thick disk is distinct from the thin disk in several regards: The stars there tend to be older, metal deficient, and orbit the center of the galaxy more slowly.

But where this population of the stars came from has been a long standing mystery since its identification in the mid 1970’s. One hypothesis is that it is the remainder of cannibalized dwarf galaxies that have never settled into a more standard orbit. Others suggest that these stars have been flung from the thin disk through gravitational slingshots or supernovae. A recent paper puts these hypothesis to the observational test.

At a first glance, both propositions seem to have a firm observational footing. The Milky Way galaxy is known to be in the process of merging with several smaller galaxies. As our galaxy pulls them in, the tidal effects shred these minor galaxies, scattering the stars. Numerous tidal streams of this sort have been discovered already. The ejection from the thin disk gains support from the many known “runaway” and “hypervelocity” stars which have sufficient velocity to escape the thin disk, and in some cases, the galaxy itself.

The new study, led by Marion Dierickx of Harvard, follows up on a 2009 study by Sales et al., which used simulations to examine the features stars would take in the thick disk should they be created via these methods. Through these simulations, Sales showed that the distribution of eccentricities of the orbits should be different and allow a method by which to discriminate between formation scenarios.

By using data from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), Dierickx’s team compared the distribution of the stars in our own galaxy to the predictions made by the various models. Ultimately, their survey included some 34,000 stars. By comparing the histogram of eccentricities to that of Sales’ predictions, the team hoped to find a suitable match that would reveal the primary mode of creation.

The comparison revealed that, should ejection from the thin disk be the norm there were too many stars in nearly circular orbits as well as highly eccentric ones. In general, the distribution was too wide. However, the match for the scenario of mergers fit well lending strong credence to this hypothesis.

While the ejection hypothesis or others can’t be ruled out completely, it suggests that, at least in our own galaxy, they play a rather minor role. In the future, additional tests will likely be employed, analyzing other aspects of this population.