Mapping the Milky Way’s Dark Matter Halo

The Galactic disk warp "dances gracefully" under the torque of the dark matter halo (an artistic impression created by Kaiyuan Hou and Zhanxun Dong from the School of Design, Shanghai Jiao Tong University).

Anytime astronomers talk of mapping the Milky Way I am always reminded how tricky the study of the Universe can be. After all, we live inside the Milky Way and working out what it looks like or mapping it from the inside is not the easiest of missions. It’s one thing to map the visible matter but mapping the dark matter is even harder. Challenges aside, a team of astronomers think they have managed to map the dark matter halo surrounding our Galaxy using Cepheid Variable stars and data from Gaia. 

Continue reading “Mapping the Milky Way’s Dark Matter Halo”

The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising

Illustration depicting the Smith Cloud on its journey to the Milky Way Creator: NRAO/AUI/NSF Credit: B. Saxton, NRAO/AUI/NSF

At first glance, the universe and night sky seem largely unchanging. The reality is very different, even now, a gas cloud is charging toward the Milky Way Galaxy and is expected to crash into us in 27 million years. A team of astronomers hoping to locate the exact position of the expected impact site have been unsuccessful but have accidentally measured the thickness of the Milky Way! Analysing radio data, they have been able to deduce the thickness of the inner and outer regions and discovered a dramatic difference between the two. 

Continue reading “The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising”

The Milky Way’s Last Merger Event Was More Recent Than Thought

Our home galaxy as seen by the European Space Agency’s Gaia satellite. Image Credit: ESA/Gaia/DPAC

The Milky Way is only as massive as it is because of collisions and mergers with other galaxies. This is a messy process, and we see the same thing happening with other galaxies throughout the Universe. Currently, we see the Milky Way nibbling at its two satellite galaxies, the Large and Small Magellanic Clouds. Their fate is likely sealed, and they’ll be absorbed into our galaxy.

Researchers thought the last major merger occurred in the Milky Way’s distant past, between 8 and 11 billion years ago. But new research amplifies the idea that it was much more recent: less than 3 billion years ago.

Continue reading “The Milky Way’s Last Merger Event Was More Recent Than Thought”

Hot Gas is Being Vented Away from the Center of the Milky Way

X-Ray Data Revealing Jets at the Center of the Milky Way Credit: X-ray: NASA/CXC/Univ. of Chicago/S.C. Mackey et al.; Radio: NRF/SARAO/MeerKAT; Image Processing: NASA/CXC/SAO/N. Wolk

Studying gas in the Universe is no easy task. We often look to ‘non-visible’ wavelengths of the electromagnetic spectrum such as X-rays. The Chandra X-Ray observatory has been observing a vent of hot gas blowing away from the centre of the Milky Way. Located about 26,000 light years away, the jet extends for hundreds of light years and is perpendicular to the disk of the Galaxy. It is now thought the gas has been forced away from the centre of the Milky Way because of a collision with cooler gas lying in its path and creating shockwaves. 

Continue reading “Hot Gas is Being Vented Away from the Center of the Milky Way”

Three of the Oldest Stars in the Universe Found Circling the Milky Way

MIT astronomers discovered three of the oldest stars in the universe, and they live in our own galactic neighborhood. The stars are in the Milky Way’s “halo” — the cloud of stars that envelopes the main galactic disk — and they appear to have formed between 12 and 13 billion years ago, when the very first galaxies were taking shape. Credits:Image: Serge Brunier; NASA

Mention the Milky Way and most people will visualise a great big spiral galaxy billions of years old. It’s thought to be a galaxy that took shape billions of years after the Big Bang. Studies by astronomers have revealed that there are the echo’s of an earlier time around us. A team of astronomers from MIT have found three ancient stars orbiting the Milky Way’s halo. The team think these stars formed when the Universe was around a billion years old and that they were once part of a smaller galaxy that was consumed by the Milky Way. 

Continue reading “Three of the Oldest Stars in the Universe Found Circling the Milky Way”

Does the Milky Way Have Too Many Satellite Galaxies?

Large Magellanic Cloud. Credit: ESA

The Large and Small Magellanic Clouds are well known satellite galaxies of the Milky Way but there are more. It is surrounded by at least 61 within 1.4 million light years (for context the Andromeda Galaxy is 2.5 million light years away) but there are likely to be more. A team of astronomers have been hunting for more companions using the Subaru telescope and so far, have searched just 3% of the sky. To everyone’s surprise they have found nine previously undiscovered satellite galaxies, far more than expected. 

Continue reading “Does the Milky Way Have Too Many Satellite Galaxies?”

Mapping the Milky Way’s Magnetic Field in 3D

The Milky Way's magnetic field

We are all very familiar with the concept of the Earth’s magnetic field. It turns out that most objects in space have magnetic fields but it’s quite tricky to measure them. Astronomers have developed an ingenious way to measure the magnetic field of the Milky Way using polarised light from interstellar dust grains that align themselves to the magnetic field lines. A new survey has begun this mapping process and has mapped an area that covers the equivalent of 15 times the full Moon. 

Continue reading “Mapping the Milky Way’s Magnetic Field in 3D”

The Milky Way’s History is Written in Streams of Stars

This artist’s impression shows a myriad of stellar streams in and around the Milky Way. These stretched-out remnants of dwarf galaxies and star clusters showcase gravitational interactions between stars, clumps of dark matter, and the entire galaxy. Rubin Observatory will reveal many more stellar streams than we have seen thus far, enabling scientists to study our galaxy’s history and properties of dark matter in more detail than ever before. Image Credit: NOIRLab

The Milky Way is ancient and massive, a collection of hundreds of billions of stars, some dating back to the Universe’s early days. During its long life, it’s grown to these epic proportions through mergers with other, smaller galaxies. These mergers punctuate our galaxy’s history, and its story is written in the streams of stars left behind as evidence after a merger.

And it’s still happening today.

Continue reading “The Milky Way’s History is Written in Streams of Stars”

Roman Will Learn the Ages of Hundreds of Thousands of Stars

By carefully observing star spots, the Nancy Grace Roman Space Telescope will determine stellar ages. It needs some help from AI though. Image Credit: NASA and STScI

Astronomers routinely provide the ages of the stars they study. But the methods of measuring ages aren’t 100% accurate. Measuring the ages of distant stars is a difficult task.

The Nancy Grace Roman Space Telescope should make some progress.

Continue reading “Roman Will Learn the Ages of Hundreds of Thousands of Stars”

The Stellar Demolition Derby in the Centre of the Galaxy

This illustration shows stars orbiting close to the Milky Way's central supermassive black hole. The black hole accelerates stars nearby and sends them crashing into one another. Credit: ESO/L. Calçada/

The region near the Milky Way’s centre is dominated by the supermassive black hole that resides there. Sagittarius A*’s overwhelming gravity creates a chaotic region where tightly packed, high-speed stars crash into one another like cars in a demolition derby.

These collisions and glancing blows change the stars forever. Some become strange, stripped-down, low-mass stars, while others gain new life.

Continue reading “The Stellar Demolition Derby in the Centre of the Galaxy”