On the Road to One Thousand Exoplanets

Planets everywhere. So where are all the aliens? Credit: ESO/M. Kornmesser

A quiet milestone in modern astronomy may soon come to pass.  As of today, The Extrasolar Planets Encyclopedia lists a current tally of 998 extrasolar planets across 759 planetary systems. And although various tabulations differ slightly, very soon we should be living in an era where over one thousand exoplanets are known.

The history of exoplanet discovery has paralleled the course of the modern age of astronomy. It’s strange to think that a generation has already grown up over the past two decades in a world where knowledge of extrasolar planets is a given. I remember hearing of the promise of such detections growing up in the 1970’s, as astronomers put the odds at detection of planets beyond our solar system in our lifetime at around 50%.

A "Periodic Table of Exoplanets" Credit: PHL @ UPR Arecibo.
A “Periodic Table of Exoplanets” Credit: PHL @ UPR Arecibo.

Sure, there were plenty of false positives long before the first true discovery was made. 70 Ophiuchi was the site of many claims, starting with that of W.S. Jacob of the Madras Observatory way back in 1855. The high proper motion exhibited by Barnard’s Star at six light years distant was also highly scrutinized throughout the 20th century for claims of an unseen companion causing it to wobble. Ironically, Barnard’s Star still hasn’t made it into the pantheon of stars boasting planetary worlds.

A portrait of the HR8799 planetary system as imaged by the Hale Telescope. (Credit: NASA/JPL-Caltech/Palomar Observatory).
A portrait of the HR8799 planetary system as imaged by the Hale Telescope. (Credit: NASA/JPL-Caltech/Palomar Observatory).

But the first verified claim of an exoplanetary system came from a bizarre and unexpected source: a pulsar known as PSR B1257+12, which was discovered to host two worlds in 1992. This was followed by the first discovery of a world orbiting a main sequence star, 51 Pegasi in 1994. I still remember getting my hands on the latest issue of Astronomy magazine— we got our news, often months later, from actual paper magazines in those days —announcing “Planet Discovered!” on the cover.

Most methods and techniques used to discover exoplanets rely on either radial velocity or dips in the light output of a star from a transiting world. Both have their utility and drawbacks. Radial velocity looks for shifts in the star’s spectra as an unseen companion tugs it around a common center of mass. Though effective, it can only place a lower limit on the planet’s mass… and it’s biased towards worlds in short orbits. This is one reason that “hot Jupiters” have dominated the early exoplanet catalog: we hadn’t been looking for all that long.

Another method famously employed by surveys such as the Kepler space telescope is the transit detection method. This allows a much more refined estimate of a planet’s mass and orbit, assuming it transits the disk of its host star as seen from our Earthly vantage point in the first place, which most don’t.

A size comparision of exoplanets versus composition. (Credit: Marc Kuchner/NASA/GSFC).
A size comparision of exoplanets versus composition. (Credit: Marc Kuchner/NASA/GSFC).

Direct detection via occulting the host star is also coming of age. One of the first exoplanets directly imaged was Fomalhaut b, which can be seen changing positions in its orbit from 2004 to 2006.

Gravitational microlensing has also bared planetary fruit, with surveys such as MOA (Microlensing Observations in Astrophysics) and OGLE (the Optical Gravitational Lensing Experiment) catching brief lensing events as an unseen body passes in front of a background star. Distant free-ranging rogue planets can only be detected via this method.

More exotic techniques also exist, such as relativistic beaming (sounding like something out of Star Trek). Other methods include searches for tiny light variations as an illuminated planet orbits its host star, deformities caused by ellipsoidal variations as massive planets orbit a star, and infrared detections of circumstellar disks. We’re always amazed at the wealth of data that can be teased out of a few dim photons of light.

A scatter plot of exoplanet discoveries as of 2010 mass versus semi-major axis. Select exoplanets are labeled. A majority were detected via radial velocity (blue) and the transiting method (green). The remainder were detected by other methods (click here for a full discription). Graph in the Public Domain.
A scatter plot of exoplanet discoveries as of 2010 displaying mass versus semi-major axis. Select exoplanets are labeled. A majority were detected via radial velocity (blue) and the transiting method (green). The remainder were detected by other methods (click here for a full description). Graph in the Public Domain.

Universe Today has grown up with exoplanet science, from reporting on the hottest, fastest, and other notable “firsts”. A bizarre menagerie of worlds are now known, many of which defy the imagination of science fiction writers of yore. Want a world made of diamond, or one where it rains glass? There’s now an “exoplanet for that”.

Exoplanet news has almost gone from the incredible to the routine, as Tatooine-like worlds orbiting binary stars and systems with worlds in bizarre resonances are announced with increasing frequency.

Exoplanet surveys also have a capacity to peg down that key fp factor in the famous Drake equation, which asks us “what fraction of stars have planets”. It’s been long suspected that stars with planets are the rule rather than the exception, and we’re just now getting hard data to back that assertion up.

Missions, such as NASA’s Kepler space telescope and CNES/ESA CoRoT space telescope have swollen the ranks of extrasolar worlds. Kepler recently ended its career staring off in the direction of the constellations Cygnus, Hercules and Lyra and still has over 3,200 detections awaiting confirmation.

Exoplanet discoveries by year as of October 2013, color coded by method. Blue=radial velocity, Green=transiting, Yellow=timing, Red=direct imaging, Orange=microlensing
Exoplanet discoveries by year as of October 2013, color coded by method. Blue=radial velocity, Green=transiting, Yellow=timing, Red=direct imaging, Orange=microlensing

But is a given world Earthlike, or just Earth-sized? That’s the Holy Grail of modern exoplanet detection: an Earth-sized world orbiting in a star’s habitable zone. We’re cautious every time the latest “Earth-twin” makes its way into the headlines. From the perspective of an intergalactic astronomer, Venus in our own solar system might appear to fit the bill, though I wouldn’t bank the construction of an interstellar ark on it and head there just yet.

Exoplanet science has definitely come of age, allowing us to finally begin characterization of solar systems and give us some insight into solar system formation.

But perhaps what will be the most enduring legacy is what the discovery of extrasolar planets tells us about ourselves. How common (or rare) is the Earth? How typical is the story of our solar system? If the “first 1,000” are any indication, we strongly suspect that terrestrial planets come in enough distinct varieties or ”flavors” to make Baskin Robbins envious.

And the future of exoplanet science looks bright indeed. One proposed mission, known as the Fast INfrared Exoplanet Spectroscopy Survey Explorer, or FINESSE, would target exoplanet atmospheres, if given the go ahead for a 2017 launch. Another proposal, known as the Wide Field Infrared Survey Telescope, or WFIRST, would search for microlensing events starting in 2023. A mission that scientists would love to fly that always seems to be shelved is known as the Terrestrial Planet Finder.

But the exoplanet hunting mission that’s closest to launch is the Transiting Exoplanet Survey Satellite, or TESS. Unlike Kepler, which stares at a single patch of sky, TESS will be an all-sky survey looking at a half million stars.

We’re also just approaching an era where spectroscopy may allow us to detect exomoons and the chemistry taking place on these far off exoworlds. An example of an exciting discovery would be the detection of a chemical such as chlorophyll, a chemical that we know on Earth only exists as the result of life. But what a tantalizing discovery a blip on a graph would be, when what we humans really want to see is the vista of those far-flung alien forests!

Such is the exciting era we live in. Congratulations, humanity, on detecting 1,000 exoplanets… here’s to a thousand more!

First Cloudy Alien Planet Spotted From Earth

Cloud map of Kepler-7b (left) in comparison to Jupiter (right). Credit: NASA/JPL-Caltech/MIT

Call it cloudy with a low chance of meatballs. The alien world Kepler-7b — a very reflective world in big telescopes — has clouds in its upper atmosphere. And scientists have actually been able to map those out, despite the planet’s great distance from Earth (at least 1,000 light-years away.)

It’s the first time scientists have been able to map out clouds on a world outside of the solar system. If we can see clouds, then we can begin to think about what a planet’s climate will be, making this an important milestone in understanding the conditions on other worlds.

“Kepler-7b reflects much more light than most giant planets we’ve found, which we attribute to clouds in the upper atmosphere,” stated Thomas Barclay, Kepler scientist at NASA’s Ames Research Center. “Unlike those on Earth, the cloud patterns on this planet do not seem to change much over time — it has a remarkably stable climate.”

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

Here’s how scientists got it done:

  • Preliminary observations with the Kepler space telescope –which was designed to hunt planets until a second reaction wheel failed earlier this year — found “moon-like phases” on Kepler-7b. These showed a bright spot on the western  hemisphere.
  • NASA’s Spitzer Space Telescope measured Kepler-7b’s temperature using infrared light, calculating it at between 1,500 and 1,800 degrees Fahrenheit (815 and 982 degrees Celsius.)
  • Something was clearly going on, as the planet is extremely close to its star; only 0.06 Earth-sun distances away. The temperature was too cool. They figured out that the light was reflected off cloud tops on the planet’s west side.

Another cool fact — Kepler-7b, like Saturn, would float if it was put in a big enough tub of water!

You can read more details in the technical paper online here. The study, which was led by the Massachusetts Institute of Technology, has been accepted to the Astrophysical Journal, but not published yet.

Source: NASA

Flicker… A Bright New Method of Measuring Stellar Surface Gravity

A simple, yet elegant method of measuring the surface gravity of a star has just been discovered. These computations are important because they reveal stellar physical properties and evolutionary state – and that’s not all. The technique works equally well for estimating the size of hundreds of exoplanets. Developed by a team of astronomers and headed by Vanderbilt Professor of Physics and Astronomy, Keivan Stassun, this new technique measures a star’s “flicker”. Continue reading “Flicker… A Bright New Method of Measuring Stellar Surface Gravity”

Hobbled Kepler Space Telescope Now On The Hunt For A New Mission

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

It’s unclear how the Kepler space telescope’s science operations will continue, if at all, as NASA weighs what to do with the crippled spacecraft. But the agency says not to count Kepler out yet.

What’s known for sure is NASA cannot recover the two failed reaction wheels that stopped Kepler from doing its primary science mission, which was searching for exoplanets (with a focus on Earth-sized exoplanets) in a small area in the constellation Cygnus.

“We do not believe we can recover three-wheel operation or Kepler’s original science mission,” said Paul Hertz, NASA astrophysics division director, in a telephone press conference with reporters Thursday (Aug. 15).

But the spacecraft, which is already working years past when its prime mission ceased in 2010, is still in great shape otherwise, added Charles Sobeck, Kepler’s deputy project manager.

 

As such, NASA is now considering other science missions, which could be anything from searching for asteroids to a technique called microlensing, which could show Jupiter-sized planets around other stars with the spacecraft’s more limited pointed ability. More information should be available in the fall on these points, once Kepler’s team reviews some white papers with science proposals.

A view of Kepler's search area as seen from Earth. Credit: Carter Roberts / Eastbay Astronomical Society
A view of Kepler’s search area as seen from Earth. Credit: Carter Roberts / Eastbay Astronomical Society

There are limiting factors. The first is the health of the spacecraft, but it is so far listed as good (except for the two damaged reaction wheels). While radiation can degrade components over time, and a stray micrometeorid could (as a small chance) cause damage on the spacecraft, right now Kepler is able to work on something new, Sobeck said.

“We have it in a point rest state right now,” Sobeck said, referring to a state where the spacecraft uses as little fuel as possible. This will extend the fuel “budget” for years, although Sobeck was unable to say just how many years yet.

Another concern is NASA’s limited budget, which (like other government departments) has undergone sequestration and other measures as the U.S. government grapples with its debt. Kepler has an estimated $18 million budget in fiscal 2013, agency officials said, adding they would need to weigh any future science mission against those of other projects being done by the agency.

The public drama began on May 15, when NASA announced that a second of Kepler’s four reaction wheels — devices that keep the telescope pointed in the right direction — had failed.

Sizes and temperatures of Kepler discoveries compared to Earth and Jupiter
Sizes and temperatures of Kepler discoveries compared to Earth and Jupiter

“We need three wheels in service to give us the pointing precision to enable us to find planets,” said Bill Borucki, Kepler principal investigator, during a press briefing that day. “Without three wheels, it is unclear whether we could continue to do anything on that order.”

Around the same time, Scott Hubbard — a consulting professor of aeronautics and astronautics at Stanford’s School of Engineering — wrote an online Q&A about Kepler’s recovery process. He emphasized the potential loss, although sad, is not devastating to the science.

“The science returns of the Kepler mission have been staggering and have changed our view of the universe, in that we now think there are planets just about everywhere,” he wrote.

“It will be very sad if it can’t go on any longer, but the taxpayers did get their money’s worth. Kepler has, so far, detected more than 2,700 candidate exoplanets orbiting distant stars, including many Earth-size planets that are within their star’s habitable zone, where water could exist in liquid form.” (You can read about some of Kepler’s more unusual finds here.)

NASA's Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
In February 2013, NASA’s Kepler mission discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech

NASA made several attempts to resurrect the wheels. On July 18, team members tested reaction wheel four, which spun in a counterclockwise direction but would not budge in the clockwise direction. Four days later, a test with reaction wheel two showed it moving well to the test commands in both directions.

“Over the next two weeks, engineers will review the data from these tests and consider what steps to take next,” mission manager Roger Hunter said. “Although both wheels have shown motion, the friction levels will be critical in future considerations. The details of the wheel friction are under analysis.”

Mission managers successfully spun reaction wheel 4 in both directions on July 25, an Aug. 2 update said. While warning that friction could affect the usability of the wheels in the long term, the team expressed optimism as more tests continued.

Artist's conception of "Super-Earth" exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA.
Artist’s conception of “Super-Earth” exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA.

“With the demonstration that both wheels will still move, and the measurement of their friction levels, the functional testing of the reaction wheels is now complete,” Hunter wrote in the update, the last one to go out before Thursday’s press conference.”The next step will be a system-level performance test to see if the wheels can adequately control spacecraft pointing.”

That was expected to begin Aug. 8. You can read more technical details of the tests here. Those tests, however, showed that the friction built up beyond what the spacecraft could handle. Kepler entered safe mode, it was recovered, and it is now essentially in standby awaiting more instructions.

Meanwhile, probing the data Kepler produced thus far is still revealing new planetary candidates. The current count is now 3,548 — an increase from the approximately 2,700 quoted in May — even though Kepler was sidelined in the intervening time.

There’s also a follow-up spacecraft planned: the Transiting Exoplanet Survey Satellite, which is expected to start around 2017 or 2018. It will look for alien planets in the brightest and closest stars in the entire sky, in locations that are (in relative terms) close to Earth.

Kepler Team Has Some Success in Reaction Wheel Recovery Attempt

A diagram of the Kepler space telescope. Credit: NASA

In May of this year, the Kepler planet-hunting telescope lost its ability to precisely point toward stars, putting its exoplanet search in jeopardy. Two of the four reaction wheels failed, and Kepler scientists say the spacecraft needs at least three reaction wheels to be able to point precisely enough to continue the mission. In the latest update from Kepler, mission manager Roger Hunter says that the team has made a little headway and had initial success in testing the two failed reaction wheels. But the big test will come later to see how much friction the two wheels generate with continued use.

On Thursday, July 18, 2013 the team initiated recovery tests on the spacecraft’s two failed wheels in order to characterize how the two wheels (Reaction Wheels (RW) 4 and 2) operated and to determine if either could be returned to full use.

RW4 did not spin in the positive (or clockwise) direction but the wheel did spin in the negative (or counterclockwise) direction. Wheel 4 is thought to be the more seriously damaged of the two, Hunter said.

Then, on Monday, July 22 the team tested RW2, and that wheel responded positively to test commands and spun in both directions.

“Over the next two weeks, engineers will review the data from these tests and consider what steps to take next,” Hunter said. “Although both wheels have shown motion, the friction levels will be critical in future considerations. The details of the wheel friction are under analysis.”

Too much friction from the reaction wheels can cause vibration and impact the pointing precision of the telescope.

Kepler has found over 2,700 planetary candidates, with 130 confirmed planets, from the size of Earth’s moon to larger than Jupiter. There are two years of data that has yet to be combed through to detect the faint periodic dimming of distant starlight – the telltale sign of a planet transiting the face of its host star.

Still, the loss of Kepler would be a blow to the search for planets orbiting other stars. Earlier this year, Kepler team members said if the spacecraft could no longer do planet-hunting, there’s a chance it could do something else , such as asteroid hunting or other astronomical observations…just something that doesn’t need as precise ability for pointing.

Source: Kepler Mission Manager Update

Water-Trapped Worlds Possible Around Red Dwarf Stars?

An artist's concept of a rocky world orbiting a red dwarf star. (Credit: NASA/D. Aguilar/Harvard-Smithsonian center for Astrophysics).

Hunters of alien life may have a new and unsuspected niche to scout out.

A recent paper submitted by Associate Professor of Astronomy at Columbia University Kristen Menou to the Astrophysical Journal suggests that tidally-locked planets in close orbits to M-class red dwarf stars may host a very unique hydrological cycle. And in some extreme cases, that cycle may cause a curious dichotomy, with ice collecting on the farside hemisphere of the world, leaving a parched sunward side. Life sprouting up in such conditions would be a challenge, experts say, but it is — enticingly — conceivable.

The possibility of life around red dwarf stars has tantalized researchers before. M-type dwarfs are only 0.075 to 0.6 times as massive as our Sun, and are much more common in the universe. The life span of these miserly stars can be measured in the trillions of years for the low end of the mass scale. For comparison, the Universe has only been around for 13.8 billion years. This is another plus in the game of giving biological life a chance to get underway. And while the habitable zone, or the “Goldilocks” region where water would remain liquid is closer in to a host star for a planet orbiting a red dwarf, it is also more extensive than what we inhabit in our own solar system.

Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).
Gliese 581- an example of a potential habitable zone around a red dwarf star contrasted with our own solar system. (Credit: ESO/Henrykus under a Wikimedia Creative Commons Attribution 3.0 Unported license).

But such a scenario isn’t without its drawbacks. Red dwarfs are turbulent stars, unleashing radiation storms that would render any nearby planets sterile for life as we know it.

But the model Professor Menou proposes paints a unique and compelling picture. While water on the permanent daytime side of a terrestrial-sized world tidally locked in orbit around an M-dwarf star would quickly evaporate, it would be transported by atmospheric convection and freeze out and accumulate on the permanent nighttime side. This ice would only slowly migrate back to the scorching daytime side and the process would continue.

Could these types of “water-locked worlds” be more common than our own?

The type of tidal locking referred to is the same as has occurred between the Earth and its Moon. The Moon keeps one face eternally turned towards the Earth, completing one revolution every 29.5 day synodic period. We also see this same phenomenon in the satellites for Jupiter and Saturn, and such behavior is most likely common in the realm of exoplanets closely orbiting their host stars.

The study used a dynamical model known as PlanetSimulator created at the University of Hamburg in Germany. The worlds modeled by the author suggest that planets with less than a quarter of the water present in the Earth’s oceans and subject to a similar insolation as Earth from its host star would eventually trap most of their water as ice on the planet’s night side.

Kepler data results suggest that planets in close orbits around M-dwarf stars may be relatively common. The author also notes that such an ice-trap on a water-deficient world orbiting an M-dwarf star would have a profound effect of the climate, dependent on the amount of volatiles available. This includes the possibility of impacts on the process of erosion, weathering, and CO2 cycling which are also crucial to life as we know it on Earth.

Thus far, there is yet to be a true “short list” of discovered exoplanets that may fit the bill. “Any planet in the habitable zone of an M-dwarf star is a potential water-trapped world, though probably not if we know the planet possesses a thick atmosphere.” Professor Menou told Universe Today. “But as more such planets are discovered, there should be many more potential candidates.”

Hard times in harsh climes-an artist's conception of the daytime side of a world orbiting a red dwarf star.
Hard times in harsh climes-an artist’s conception of the daytime side of a world orbiting a red dwarf star. (Credit: NASA/JPL-Caltech).

Being that red dwarf stars are relatively common, could this ice-trap scenario be widespread as well?

“In short, yes,” Professor Menou said to Universe Today. “It also depends on the frequency of planets around such stars (indications suggest it is high) and on the total amount of water at the surface of the planet, which some formation models suggest should indeed be small, which would make this scenario more likely/relevant. It could, in principle, be the norm rather than the exception, although it remains to be seen.”

Of course, life under such conditions would face the unique challenges. The daytime side of the world would be subject to the tempestuous whims of its red dwarf host sun in the form of frequent radiation storms. The cold nighttime side would offer some respite from this, but finding a reliable source of energy on the permanently shrouded night side of such as world would be difficult, perhaps relying on chemosynthesis instead of solar-powered photosynthesis.

On Earth, life situated near “black smokers” or volcanic vents deep on the ocean floor where the Sun never shines do just that. One could also perhaps imagine life that finds a niche in the twilight regions of such a world, feeding on the detritus that circulates by.

Some of the closest red dwarf stars to our own solar system include Promixa Centauri, Barnard’s Star and Luyten’s Flare Star. Barnard’s star has been the target of searches for exoplanets for over a century due to its high proper motion, which have so far turned up naught.

The closest M-dwarf star with exoplanets discovered thus far is Gliese 674, at 14.8 light years distant. The current tally of extrasolar worlds as per the Extrasolar Planet Encyclopedia stands at 919.

This hunt will also provide a challenge for TESS, the Transiting Exoplanet Survey Satellite and the successor to Kepler due to launch in 2017.

Searching for and identifying ice-trapped worlds may prove to be a challenge. Such planets would exhibit a contrast in albedo, or brightness from one hemisphere to the other, but we would always see the ice-covered nighttime side in darkness. Still, exoplanet-hunting scientists have been able to tease out an amazing amount of information from the data available before- perhaps we’ll soon know if such planetary oases exist far inside the “snowline” orbiting around red dwarf stars.

Read the paper on Water-Trapped Worlds at the following link.

60 Billion Habitable Planets in the Milky Way Alone? Astronomers say Yes!

An artist's conception of how common exoplanets are throughout the Milky Way Galaxy. Image Credit: Wikipedia

A new study suggests that the number of habitable exoplanets within the Milky Way alone may reach 60 billion.

Previous research performed by a team at Harvard University suggested that there is one Earth-sized planet in the habitable zone of each red dwarf star. But researchers at the University of Chicago and Northwestern University have now extended the habitable zone and doubled this estimate.

The research team, lead by Dr. Jun Yang considered one more variable in their calculations: cloud cover. Most exoplanets are tidally locked to their host stars – one hemisphere continually faces the star, while one continuously faces away. These tidally locked planets have a permanent dayside and a permanent nightside.

One would expect the temperature gradient between the two to be very high, as the dayside is continuously receiving stellar flux, while the nightside is always in darkness. Computer simulations that take into account cloud cover show that this is not the case.

The dayside is covered by clouds, which lead to a “stabilizing cloud feedback” on climate.  It has a higher cloud albedo (more light is reflected off the clouds) and a lower greenhouse effect. The presence of clouds actually causes the dayside to be much cooler than expected.

“Tidally locked planets have low enough surface temperatures to be habitable,” explains Jang in his recently published paper. Cloud cover is so effective it even extends the habitable zone to twice the stellar flux. Planets twice as close to their host star are still cool enough to be habitable.

But these new statistics do not apply to just a few stars. Red dwarfs “represent about ¾ of the stars in the galaxy, so it applies to a huge number of planets,” Dr. Abbot, co-author on the paper, told Universe Today. It doubles the number of planets previously thought habitable throughout the entire galaxy.

Not only is the habitable zone around red dwarfs much larger, red dwarfs also live for much longer periods of time. In fact, the Universe is not old enough for any of these long-living stars to have died yet. This gives life the amount of time necessary to form. After all, it took human beings 4.5 billions years to appear on Earth.

Another study we reported on earlier also revised and extrapolated the habitable zone around red dwarf stars.

Future observations will verify this model by measuring the cloud temperatures. On the dayside, we will only be able to see the high cool clouds. A planet resembling this model will therefore look very cold on the dayside. In fact, “a planet that does show the cloud feedback will look hotter on the nightside than the dayside,” explains Abbot.

This effect will be testable with the James Webb Space Telescope.  All in all, the Milky Way is likely to be teeming with life.

The results will be published in Astrophysical Journal Letters (preprint available here).

The Hunt for Exomoons Begins!

An artist's conception of a potentially-habitable exomoon. Credit: NASA

The latest exciting undertaking in exoplanet research is the search for exomoons. A team led by Dr. David Kipping at the Harvard-Smithsonian Center for Astrophysics has jumped at this challenge. After having theoretically proven that detecting an Earth-sized exomoon is possible, the team carried out the first detailed search for an exomoon.

Are you leaning forward on the edge of your seat awaiting the results? Well here you go: the data show no evidence of a moon. That’s simply the luck of the draw. We didn’t discover an exoplanet on our first try either. I believe that this non-detection shows that we’re on the verge of our next greatest discovery.

The reasons for searching for exomoons are abundant. “Exomoons may be frequent, habitable abodes for life and so far we know next to nothing about the underlying frequency of such objects in the cosmos,” Dr. Kipping told Universe Today. “They also play an important role in the habitability of those planets which they orbit, for example the Moon is thought to stabilize the axial tilt of the Earth and so too the climate.”

The project titled “The Hunt of Exomoons with Kepler,” more commonly known as HEK, was formed with these reasons in mind. As such, the HEK project will search for exomoons that are likely to be habitable.

The first target is Kepler-22b – the first transiting exoplanet to have been detected in the habitable zone of its host star. At 2.4 Earth radii, it is too large to be considered an Earth-analog, but it could easily have an Earth-sized moon

There are currently two methods in which we may detect exomoons.

1.) Dynamic effects – the exomoon tugs the planet, which causes deviations in the times and durations of the host planet’s transits. This is similar to the radial velocity technique for detecting exoplanets.

2.) Transit effects – the exomoon may transit the star immediately before or just after the planet does. This will cause an added dip in the observed light. See this video for a great demonstration. This is similar to the light curve technique for detecting exoplanets.

The team modeled the initial transit light curves of Kepler-22b. They then injected an Earth-sized moon into the system in order to analyze the effects. While this caused clear variations in the light curve, such variations had to be above the level of noise.

As such, they also injected noise in the light curves, which mirrors that of the Kepler data. In the end, the variations in a star’s light curve due to the presence of an exomoon are much higher than the noise. The team is able to recover the correct answer with extremely high confidence.

Here Kipping et al. presents injected moon fits.  As an example, the upper left-hand figure shows an exoplanet transit, with a moon transiting as well. Here the moon transits first, causing the light to be blocked, then the planet follows, causing more of the light to be blocked.
Here Kipping et al. presents injected moon fits. As an example, the upper left-hand figure shows an exoplanet transit, with a moon transiting as well. Here the moon transits first, causing the light to be blocked, then the planet follows, causing more of the light to be blocked. Source: Kipping et al. 2013

The real data does not show deviations like the previous figure does. This non-detection implies that there is no moon with a mass greater than 0.54 times the mass of the Earth. While there is no Earth-analog in this system, there may be a smaller undetectable moon.

I asked Dr. Kipping about our chances of success in other systems. His answer: “That depends upon nature herself!” We have no idea how regularly nature produces moons in other solar systems. “There is nothing more exciting than working on a project where the answer is wholly unknown.”

But remember: two decades ago we were unsure if nature regularly produced planets. We have since observed them in abundance. I have to believe that with 168 moons in our solar system alone, we’re likely to find them in other systems.  We’re on the verge of the next greatest discovery. So stay tuned because I promise I’ll be writing about it when it happens.

Source: Kipping et al. 2013

Flying Space Toasters: Electrified Exoplanets Really Feel the Heat

Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)
Artist's concept of Jupiter-sized exoplanet that orbits relatively close to its star (aka. a "hot Jupiter"). Credit: NASA/JPL-Caltech)

Overheated and overinflated, hot Jupiters are some of the strangest extrasolar planets to be discovered by the Kepler mission… and they may be even more exotic than anyone ever thought. A new model proposed by Florida Gulf Coast University astronomer Dr. Derek Buzasi suggests that these worlds are intensely affected by electric currents that link them to their host stars. In Dr. Buzasi’s model, electric currents arising from interactions between the planet’s magnetic field and their star’s stellar wind flow through the interior of the planet, puffing it up and heating it like an electric toaster.

In effect, hot Jupiters are behaving like giant resistors within exoplanetary systems.

Many of the planets found by the Kepler mission are of a type known as “hot Jupiters.” While about the same size as Jupiter in our own solar system, these exoplanets are located much closer to their host stars than Mercury is to the Sun — meaning that their atmospheres are heated to several thousands of degrees.

One problem scientists have had in understanding hot Jupiters is that many are inflated to sizes larger than expected for planets so close to their stars. Explanations for the “puffiness” of these exoplanets have generally involved some kind of extra heating process — but no model successfully explains the observation that more magnetically active stars tend to have puffier hot Jupiters orbiting around them.

“This kind of electric heating doesn’t happen very effectively on planets in our solar system because their outer atmospheres are cold and don’t conduct electricity very well,” says Dr. Buzasi. “But heat up the atmosphere by moving the planet closer to its star and now very large currents can flow, which delivers extra heat to the deep interior of the planet — just where we need it.”

More magnetically active stars have more energetic winds, and would provide larger currents — and thus more heat — to their planets.

The currents start in the magnetosphere, the area where the stellar wind meets the planetary magnetic field, and enter the planet near its north and south poles. This so-called “global electric circuit” (GEC) exists on Earth as well, but the currents involved are only a few thousand amps at 100,000 volts or less.

On the hot Jupiters, though, currents can amount to billions of amps at voltages of millions of volts — a “significant current,” according to Dr. Buzasi.

A Spitzer-generated exoplanet weather map showing temperatures on a hot Jupiter HAT-P-2b.
A Spitzer-generated exoplanet weather map showing temperatures on hot Jupiter HAT-P-2b.

“It is believed that these hot Jupiter planets formed farther out and migrated inwards later, but we don’t yet fully understand the details of the migration mechanism,” Dr. Buzasi says. “The better we can model how these planets are built, the better we can understand how solar systems form. That in turn, would help astronomers understand why our solar system is different from most, and how it got that way.”

Other electrical heating processes have previously been suggested by other researchers as well, once hints of magnetic fields in exoplanets were discovered in 2003 and models of atmospheric wind drag — generating frictional heating — as a result of moving through these fields were made in 2010.

(And before anyone attempts to suggest this process supports the alternative “electric universe” (EU) theory… um, no.)

“No, nothing EU-like at all in my model,” Dr. Buzasi told Universe Today in an email. “I just look at how the field aligned currents that we see in the terrestrial magnetosphere/ionosphere act in a hot Jupiter environment, and it turns out that a significant fraction of the resulting circuit closes inside the planet (in the outer 10% of the radius, mostly) where it deposits a meaningful amount of heat.”

This work will be presented at the 222nd meeting of the American Astronomical Society on June 4, 2013.

More Insight on How NASA Might Revive the Kepler Space Telescope

Artst concept of the Kepler telescope in orbit. Credit: NASA

The future of NASA’s Kepler space telescope mission is in doubt, NASA announced yesterday, as it suffered a failure of a second reaction wheel, losing its ability to precisely point to look for planets orbiting other stars. Reaction wheels enable the spacecraft to aim in different directions without firing thrusters, and the spacecraft needs at least three of the four wheels working to provide the ability to point precisely enough to continue the mission.

But, as we pointed out in our article yesterday, the Kepler team said there are still possibilities of keeping the spacecraft in working order, or perhaps even finding other opportunities for different science for Kepler, something that doesn’t require such precise pointing abilities.

“We’re not ready to call the mission down and out just yet,” said John Grunsfeld, NASA’s associate administrator for the Science Mission Directorate, “but by any measure it’s been a spectacular mission.”

Space expert Scott Hubbard has provided additional insight on the possible ways that NASA could bring the spacecraft back online, and what planet hunters will do next if that’s not possible. Hubbard is a consulting professor of aeronautics and astronautics at Stanford’s School of Engineering, and served as director of NASA Ames Research Center during much of the building phase of the Kepler space telescope. He also worked on the project alongside William Borucki, the Kepler science principal investigator at Ames and the driving force behind the effort, for the decades leading up to formal approval of the mission.

Standford University provided this conversation Hubbard:

Q: How big of a loss will it be if the Kepler space telescope can’t be repaired?

Hubbard: The science returns of the Kepler mission have been staggering and have changed our view of the universe, in that we now think there are planets just about everywhere.

It will be very sad if it can’t go on any longer, but the taxpayers did get their money’s worth. Kepler has, so far, detected more than 2,700 candidate exoplanets orbiting distant stars, including many Earth-size planets that are within their star’s habitable zone, where water could exist in liquid form.

Kepler has done what the program managers said it would do, and that is to give us an inventory of extrasolar planets. It completed its primary observation phase, and had entered its extended science phase. We’re already in the gravy train period – there’s still a year and a half’s worth of data in the pipeline that scientists will analyze to identify other candidate planets, and there will continue to be Kepler science discoveries for quite some time.

Kepler space telescope's field of view. Credit: NASA
Kepler space telescope’s field of view. Credit: NASA

Q: How might NASA engineers go about getting Kepler functional again?

Hubbard: There are two possible ways to salvage the spacecraft that I’m aware of. One is that they could try turning back on the reaction wheel that they shut off a year ago. It was putting metal on metal, and the friction was interfering with its operation, so you could see if the lubricant that is in there, having sat quietly, has redistributed itself, and maybe it will work.

The other scheme, and this has never been tried, involves using thrusters and the solar pressure exerted on the solar panels to try and act as a third reaction wheel and provide additional pointing stability. I haven’t investigated it, but my impression is that it would require sending a lot more operational commands to the spacecraft.

Q: If neither of these options works, Kepler is still an amazing space instrument. Could it conduct other types of experiments?

Hubbard: People have asked about using it to find near-Earth objects, or asteroids. Kepler carries a photometer, not a camera, that looks at the brightness of stars, and so its optics deliberately defocus light from stars to create a nice spread of light on the detector, which is not ideal for spotting asteroids.

Whether or not it could function as a detector for asteroids is something that would have to be studied, but since it wasn’t built as a camera, I would say that I’m skeptical. That said, certainly between Ames Research Center and the Jet Propulsion Laboratory, they’ve got the best people in the world working on it.

Visualization of Kepler's planet candidates shown in transit with their parent stars. Credit: Jason Rowe/Kepler Mission/NASA
Visualization of Kepler’s planet candidates shown in transit with their parent stars. Credit: Jason Rowe/Kepler Mission/NASA

Q: What’s next for exoplanet hunters?

Hubbard: As I said earlier, there is still a year and a half’s worth of data in the pipeline to analyze to identify candidate planets, so there are still discoveries to be made.

It’s important to make clear, though, that in the original queue of missions aimed at finding life elsewhere, a mission like Kepler was a survey mission to establish the statistical frequency of whether these planets are rare or common. It lived the length of its prime mission, and was extremely successful during that time at achieving this goal. It has paved the way for additional missions, such as TESS – Transiting Exoplanet Survey Satellite – and TPF – Terrestrial Planet Finder – which will continue the search for Earth-like exoplanets in the near future.