Kepler’s Universe: More Planets in Our Galaxy Than Stars

Kepler space telescope's field of view. Credit: NASA

Astronomers estimate that the Milky Way contains up to 400 billion stars and thanks to the Kepler mission, we can now estimate that every star in our galaxy has on average 1.6 planets in orbit around it.

This new video from our friends Tony Darnell and Scott Lewis focuses on the discoveries that the Kepler Space Telescope has made, which has opened up a whole new universe and a new way of looking at stars as potential homes for other planets. Only about 20 years ago, we didn’t know if there were any other planets around any other stars besides our own. But now we know we live in a galaxy that contains more planets than stars.

If you extrapolate that number to the rest of the Universe, it’s mind-blowing. According to astronomers, there are probably more than 170 billion galaxies in the observable Universe, stretching out into a region of space 13.8 billion light-years away from us in all directions.

And so, if you multiply the number of stars in our galaxy by the number of galaxies in the Universe, you get approximately 1024 stars. That’s a 1 followed by twenty-four zeros, or a septillion stars.

However, it’s been calculated that the observable Universe is a bubble of space 47 billion years in all directions… or it could be much bigger, possibly infinite. It’s just that we can’t detect those stars because they’re outside the observable Universe.

So, there’s a lot of stars out there.

As the video says, space telescopes give us “a glimpse of our humble place in the cosmic ocean.”

‘Wobbly’ Alien Planet Has Weird Seasons And Orbits Two Stars

Diagram of Kepler-413b's unusual orbit around red and orange dwarf stars. Its orbit "wobbles" or precesses around the stars every 11 years. Credit: NASA, ESA, and A. Feild (STScI)

We’re lucky to live on a planet where it’s predictably warmer in the summer and colder in the winter in many regions, at least within a certain range. On Kepler-413b, it’s a world where you’d have to check the forecast more frequently, because its axis swings by a wild 30 degrees every 11 years. On Earth, by comparison, it takes 26,000 years to tilt by a somewhat lesser amount (23.5 degrees).

The exoplanet, which is 2,300 light-years away in the constellation Cygnus, orbits two dwarf stars — an orange one and a red one — every 66 days. While it would be fun to imagine a weather forecast on this planet, in reality it’s likely too hot for life (it’s close to its parent stars) and also huge, at 65 Earth-masses or a “super-Neptune.”

What’s even weirder is how hard it was to characterize the planet. Normally, astronomers spot these worlds either by watching them go across the face of their parent star(s), or by the gravitational wobbles they induce in those stars. The orbit, however, is tilted 2.5 degrees to the stars, which makes the transits far more unpredictable. It took several years of Kepler space telescope data to find a pattern.

“What we see in the Kepler data over 1,500 days is three transits in the first 180 days (one transit every 66 days), then we had 800 days with no transits at all,” stated Veselin Kostov, the principal investigator on the observation. “After that, we saw five more transits in a row,” added Kostov, who works both with the  the Space Telescope Science Institute and  Johns Hopkins University  in Baltimore, Md.

It will be an astounding six years until the next transit happens in 2020, partly because of that wobble and partly because the stars have small diameters and aren’t exactly “edge-on” to our view from Earth. As for why this planet is behaving the way it does, no one is sure. Maybe other planets are messing with the orbit, or a third star is doing the same thing.

The next major question, the astronomers added, is if there are other planets out there like this that we just can’t see because of the gap between transit periods.

You can read more about this finding in The Astrophysical Journal (a Jan. 29 publication that doesn’t appear to be on the website yet) or in preprint version on Arxiv.

Source: Space Telescope Science Institute

The Most Common Exoplanets Might be “Mini-Neptunes”

Chart of Kepler planet candidates as of January 2014. Image Credit: NASA Ames

If the dataset from the Kepler mission is any indication, the most common type of exoplanets in our galaxy aren’t Earth-sized rocky worlds or hot Jupiters. In fact, the most common type of exoplanet isn’t one that we see in our own neighborhood at all.

“Perhaps the most remarkable discovery by Kepler is the amount of planets between the size of Earth to four times the size of Earth,” said Geoff Marcy, professor of astronomy at University of California, speaking at the American Astronomical Society meeting this week in Washington D.C. “This is a size range that dominates the planet inventory from Kepler and it a size range not represented in our own Solar System. We don’t know for sure what these planets are made of and we don’t know how they form.”

These “mini-Neptunes” as Marcy called them, represent a huge sample in the Kepler data; about 75% of the planets found by Kepler vary in size between the Earth and Neptune, and for four years since the Kepler data have been rolling in, scientists have been trying to understand these planets.

“There’s been an enormous amount of measurements and quantitative work by the NASA Ames Kepler team,” Marcy said.

While masses and planet densities emerged from the work, astronomers still aren’t certain how they form or if they are made of rock, water or gas.

Mini Neptunian planets range in size from about 1.5 to 4 times the size of Earth and have a rocky core and puffy gaseous shell of varying thickness. Credit: Geoff Marcy
Mini Neptunian planets range in size from about 1.5 to 4 times the size of Earth and have a rocky core and puffy gaseous shell of varying thickness.
Credit: Geoff Marcy

The team focused on about 42 of these planets. Two planets highlighted by Marcy in his presentation are thought to be rocky, and are named Kepler-99b and Kepler-406b. Both are forty percent larger in size than Earth and have a density similar to lead. The planets orbit their host stars in less than five and three days respectively, making these worlds too hot for life as we know it.

The team used Doppler measurements of the planets’ host stars to measure the reflex wobble of the host star, caused by the gravitational tug on the star exerted by the orbiting planet. The measured wobble reveals the mass of the planet: the higher the mass of the planet, the greater the gravitational tug on the star and hence the greater the wobble.

They also the measured transit timing variations (TTV) to determine how much neighboring planets can tug on one another causing one planet to accelerate and another planet to decelerate along its orbit.

These measurements allow for computing mass and densities of the planets, as well as figuring out the possible chemical composition of these worlds. The majority of the measurements suggest that the mini-Neptunes have a rocky core but some may have a gaseous outer shell of hydrogen or helium. Some might just be rocky with no outer envelope at all.

“What we think is happening is that some of these planets may have water on top of a rocky core,” Marcy said. “Larger planets might have the same rocky core with added gas. That’s how you get planets measuring from 1 to 4 earth radii. The planets with lower densities imply increasing amounts of gas on top of a rocky core.”

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

“Kepler’s primary objective is to determine the prevalence of planets of varying sizes and orbits. Of particular interest to the search for life is the prevalence of Earth-sized planets in the habitable zone,” said Natalie Batalha, Kepler mission scientist at NASA’s Ames Research Center. “But the question in the back of our minds is: are all planets the size of Earth rocky? Might some be scaled-down versions of icy Neptunes or steamy water worlds? What fraction are recognizable as kin of our rocky, terrestrial globe?”

The team said that the mass measurements produced by Doppler and TTV will help to answer these questions. The results hint that a large fraction of planets smaller than 1.5 times the radius of Earth may be comprised of the silicates, iron, nickel and magnesium that are found in the terrestrial planets here in the Solar System.

Armed with this type of information, scientists will be able to turn the fraction of stars harboring Earth-sizes planets into the fraction of stars harboring bona-fide rocky planets. And that’s a step closer to finding a habitable environment beyond the Solar System.

Marcy added later in the discussion that there’s one type of telescope that would most helpful: a Terrestrial Planet Finder type mission that would measure the temperature, size, and the orbital parameters of planets as small as our Earth in the habitable zones of distant solar systems. Alas, TPF was canceled.

Read more about the study of mini-Neptunes here.

Kepler Finds an Earth-Sized “Gas Giant”

Artist's impression of KOI-xxx, fjkdshfkdsajhkfdkfd

Gas planets aren’t always bloated, monstrous worlds the size of Jupiter or Saturn (or larger) they can also apparently be just barely bigger than Earth. This was the discovery announced earlier today during the 223rd meeting of the American Astronomical Society in Washington, DC, when findings regarding the gassy (but surprisingly small) exoplanet KOI-314c were presented.

“This planet might have the same mass as Earth, but it is certainly not Earth-like,” said David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA), lead author of the discovery. “It proves that there is no clear dividing line between rocky worlds like Earth and fluffier planets like water worlds or gas giants.”

Discovered by the Kepler space telescope — ironically, during a hunt for exomoons — KOI-314c was found transiting a red dwarf star only 200 light-years away — “a stone’s throw by Kepler’s standards,” according to Kipping. (Kepler’s observation depth is about 3000 light-years.)

Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)
Relative size comparison of KOI-314c and Earth; both have similar mass. (J. Major)

Kipping used a technique called transit timing variations (TTV) to study two of three exoplanets found orbiting KOI-314. Both are about 60% larger than Earth in diameter but their respective masses are very different. KOI-314b is a dense, rocky world four times the mass of Earth, while KOI-314c’s lighter, Earthlike mass indicates a planet with a thick “puffy” atmosphere… similar to what’s found on Neptune or Uranus.

Unlike those chilly worlds, though, this newfound exoplanet turns up the heat. Orbiting its star every 23 days, temperatures on KOI-314c reach 220ºF (104ºC)… too hot for water to exist in liquid form and thus too hot for life as we know it.

In fact Kipping’s team found KOI-314c to only be 30 percent denser than water, suggesting that it has a “significant atmosphere hundreds of miles thick,” likely composed of hydrogen and helium.

It’s thought that KOI-314c may have originally been a “mini-Neptune” gas planet and has since lost some of its atmosphere, boiled off by the star’s intense radiation.

Not only is KOI-314c the lightest exoplanet to have both its mass and diameter measured but it’s also a testament to the success and sensitivity of the relatively new TTV method, which is particularly useful in multiple-planet systems where the tiniest gravitational wobbles reveal the presence and details of neighboring bodies.

(Watch the latest Kepler Orrery video here)

“We are bringing transit timing variations to maturity,” Kipping said. He added during the closing remarks of his presentation at AAS223: “It’s actually recycling the way Neptune was discovered by watching Uranus’ wobbles 150 years ago. I think it’s a method you’ll be hearing more about. We may be able to detect even the first Earth 2.0 Earth-mass/Earth-radius using this technique in the future.”

Source: Harvard Smithsonian CfA press release

How Scientists Confirmed The Mass Of An Invisible Exoplanet

Artist's conception of Kepler-88. Credit: Center for Astrophysics of the University of Porto

Planets are so very tiny next to stars outside of the solar system, making it really hard to spot exoplanets unless they transit across the face of their star (or if they are very, very big). Often, astronomers can only infer the existence of planets by their effect on the host star or other stars.

That’s especially true of the curious case of Kepler-88 c, which researchers using the Kepler space telescope said was a possible planet due to its effects on the orbit of Kepler-88 b, a planet that goes across the host of its host star. European astronomers just confirmed the Kepler data using the SOPHIE spectrograph  at France’s Haute-Provence Observatory.

It’s the first time scientists have successfully used a technique to independently verify a planet’s mass based on what was found from the transit timing variation, or how a planet’s orbit varies from what is expected as it goes across the face of its sun. That means TTV can likely be used as a strong method on its own, advocates say.

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

SOPHIE’s technique relies on measuring star velocity, which also can reveal a planet’s mass by seeing its effect on the star.

“This independent confirmation is a very important contribution to the statistical analyzes of the Kepler multiple planet systems,” stated Magali Deleuil, an exoplanet researcher at Aix-Marseille University who participated in the research. “It helps to better understand the dynamical interactions and the formation of planetary systems.”

Actually, the two planets behave similarly to Earth and Mars in our own solar system in terms of orbits, according to work from a previous team (led by David Nesvorny of the Southwest Research Institute). They predicted the planets have a two-to-one resonance, which is approximately true of our own solar system since Mars takes about two Earth years to orbit the sun.

The new research was led by S.C.C. Barros at Aix-Marseille University in France. You can read the study in the Dec. 17 edition of Astronomy & Astrophysics, or in preprint version on Arxiv.

Source: Center for Astrophysics at the University of Porto

Second Planetary System Like Ours Discovered

A comparison between our solar system and a second solar system: KOI-351. Image Credit:

A team of European astronomers has discovered a second planetary system, the closest parallel to our own solar system yet found. It includes seven exoplanets orbiting a star with the small rocky planets close to their host star and the gas giant planets further away. The system was hidden within the wealth of data from the Kepler Space Telescope.

KOI-351 is “the first system with a significant number of planets (not just two or three, where random fluctuations can play a role) that shows a clear hierarchy like the solar system — with small, probably rocky, planets in the interior and gas giants in the (exterior),” Dr. Juan Cabrera, of the Institute of Planetary Research at the German Aerospace Center, told Universe Today.

Three of the seven planets orbiting KOI-351 were detected earlier this year, and have periods of 59, 210 and 331 days — similar to the periods of Mercury, Venus and Earth.

But the orbital periods of these planets vary by as much as 25.7 hours. This is the highest variation detected in an exoplanet’s orbital period so far, hinting that there are more planets than meets the eye.

In closely packed systems, the gravitational pull of nearby planets can cause the acceleration or deceleration of a planet along its orbit. These “tugs” cause the variations in orbital periods.

They also provide indirect evidence of further planets. Using advanced computer algorithms, Cabrera and his team detected four new planets orbiting KOI-351.

But these planets are much closer to their host star than Mercury is to our Sun, with orbital periods of 7, 9, 92 and 125 days. The system is extremely compact — with the outermost planet having an orbital period less than the Earth’s. Yes, the entire system orbits within 1 AU.

While astronomers have discovered over 1000 exoplanets, this is the first solar system analogue detected to date. Not only are there seven planets, but they display the same architecture — rocky small planets orbiting close to the sun and gas giants orbiting further away — as our own solar system.

Most exoplanets are strikingly different from the planets in our own solar system. “We find planets in any order, at any distance, of any size; even planetary classes that don’t exist in the solar system,” Cabrera said.

Several theories including planet migration and planet-planet scattering have been proposed to explain these differences. But the fact of the matter is planet formation is still poorly understood.

“We don’t know yet why this system formed this way, but we have the feeling that this is a key system in understanding planetary formation in general and the formation of the solar system in particular,” Cabrera told Universe Today.

The team is extremely hopeful that the upcoming mission PLATO will receive funding. If so, it will allow them to take a second look at this system — determining the radius and mass of each planet and even analyzing their compositions.

Follow-up observations will not only allow astronomers to determine how this planetary system formed, it will provide hints as to how our own solar system formed.

The paper has been accepted for publication in the Astrophysical Journal and is available for download here.

Here’s the Latest Kepler Orrery Video: the Orbits of the Planets Go ‘Round and ‘Round

If you’ve ever wanted to know what 3,538 exoplanets look like spinning around their stars, here you go!

This is the third and latest installment of the mesmerizing Kepler Orrery videos by Daniel Fabrycky from the Kepler science team. It shows the relative sizes of the orbits and planets in the multi-transiting planetary systems discovered by Kepler up to November 2013 (according to the Kepler site, 3,538 candidates so far.) According to Daniel “the colors simply go by order from the star (the most colorful is the 7-planet system KOI-351). The terrestrial planets of the Solar System are shown in gray.”

Not that our Solar System is boring, of course, but well, ya know… there are an awful lot of planets out there.

Check out Daniel’s previous version here.

22% of Sun-like Stars have Earth-sized Planets in the Habitable Zone

The "Goldilocks" zone around a star is where a planet is neither too hot nor too cold to support liquid water. Ilustration by Petigura/UC Berkeley, Howard/UH-Manoa, Marcy/UC Berkeley.

How common are planets like Earth? That’s been a question astronomers and dreamers have pondered for decades, and now, thanks to the Kepler spacecraft, they have an answer. One in five Sun-like stars in our galaxy have Earth-sized planets that could host life, according to a recent study of Kepler data.

“What this means is, when you look up at the thousands of stars in the night sky, the nearest sun-like star with an Earth-size planet in its habitable zone is probably only 12 light years away and can be seen with the naked eye. That is amazing,” said UC Berkeley graduate student Erik Petigura, who led the analysis of the Kepler and Keck Observatory data.


The Kepler telescope’s mission was to try and find small rocky planets with the potential for hosting liquid water and perhaps the ingredients needed for biology to take hold. For four years, the space telescope monitored the brightness of more than 150,000 stars, recording a measurement every 30 minutes.


Analysis by UC Berkeley and University of Hawaii astronomers shows that one in five sun-like stars have potentially habitable, Earth-size planets. (Animation by UC Berkeley/UH-Manoa/Illumina Studios)

For a recent focused study, scientists concentrated on 42,000 sun-like stars (G and K type stars), looking for periodic dimmings that occur when a planet transits — or crosses in front of — its host star. A team of scientists from the Kepler mission and the Keck telescope in Hawaii have announced that from that survey, they found 603 planets, 10 of which are Earth size and orbit in the habitable zone, where conditions permit surface liquid water.

Since there are about 200 billion stars in our galaxy, with 40 billion of them like our Sun, noted planet-hunter Geoff Marcy said that gives us about 8.8 billion Earth-size planets in the Milky Way.

But Marcy also cautioned that Earth-size planets in Earth-size orbits are not necessarily hospitable to life, even if they orbit in the habitable zone of a star where the temperature is not too hot and not too cold.

“Some may have thick atmospheres, making it so hot at the surface that DNA-like molecules would not survive. Others may have rocky surfaces that could harbor liquid water suitable for living organisms,” Marcy said. “We don’t know what range of planet types and their environments are suitable for life.”

Analysis of four years of precision measurements from Kepler shows that 22±8% of Sun-like stars have Earth-sized planets in the habitable zone. If these planets are as prevalent locally as they are in Kepler field, then the distance to the nearest one is around 12 light-years.Credit: Petigura/UC Berkeley, Howard/UH-Manoa, Marcy/UC Berkeley.
Analysis of four years of precision measurements from Kepler shows that 22±8% of Sun-like stars have Earth-sized planets in the habitable zone. If these planets are as prevalent locally as they are in Kepler field, then the distance to the nearest one is around 12 light-years.Credit: Petigura/UC Berkeley, Howard/UH-Manoa, Marcy/UC Berkeley.

All of the potentially habitable planets found in their survey are around K stars, which are cooler and slightly smaller than the sun, Petigura said. But the team’s analysis shows that the result for K stars can be extrapolated to G stars like the sun.

The Kepler spacecraft is now crippled because of faulty gyroscopes, but scientists say had Kepler survived for an extended mission, it would have obtained enough data to directly detect a handful of Earth-size planets in the habitable zones of G-type stars.

If the stars in the Kepler field are representative of stars in the solar neighborhood, then the nearest (Earth-size) planet is expected to orbit a star that is less than 12 light-years from Earth and can be seen by the unaided eye. Future instrumentation to image and take spectra of these Earths need only observe a few dozen nearby stars to detect a sample of Earth-size planets residing in the habitable zones of their host stars.

“For NASA, this number – that every fifth star has a planet somewhat like Earth – is really important, because successor missions to Kepler will try to take an actual picture of a planet, and the size of the telescope they have to build depends on how close the nearest Earth-size planets are,” said Andrew Howard, astronomer with the Institute for Astronomy at the University of Hawaii. “An abundance of planets orbiting nearby stars simplifies such follow-up missions.”

Further reading: Institute for Astronomy, University of Hawaii; UC Berkeley; Keck Observatory; NASA; PNAS.

Rocky Earth-sized World is a ‘Sungrazing’ Exoplanet

This illustration compares our Earth with the newly confirmed lava planet Kepler-78b. Kepler-78b is about 20 percent larger than Earth, with a diameter of 9,200 miles, and weighs roughly 1.8 times as much as Earth. David A. Aguilar (CfA)

A newly verified planet found in data from the Kepler mission delivers on the space telescope’s task of finding Earth-size planets around other stars. The new planet, called Kepler-78b, is the first Earth-sized exoplanet discovered that has a rocky composition like that of Earth. Similarities to Earth, however, end there. Kepler-78b whizzes around its host star every 8.5 hours at a distance of about 1.5 million kilometers, making it a blazing inferno and not suitable for life as we know it.

“We’ve been hearing about the sungrazing Comet ISON that will go very close to the Sun next month,” said Andrew Howard, of the University of Hawaii at Manoa’s Institute for Astronomy. “Comet ISON will approach the Sun about the same distance that Kepler-78b orbits its star, so this planet spends its entire life as a sungrazer.”

Howard is the lead author on one of two papers published in Nature that details the discovery of the new planet. He spoke during a media webcast discussing the finding.

“This is a planet that exists but shouldn’t,” added astronomer David Latham of the Harvard-Smithsonian Center for Astrophysics (CfA), also discussing the discovery during the webcast.

Kepler-78b is 1.2 times the size of Earth with a diameter of 14,800 km (9,200 miles) and 1.7 times more massive. As a result, astronomers say it has a density similar to Earth’s, which suggests an Earth-like composition of iron and rock. A handful of planets the size or mass of Earth have been discovered, but Kepler-78b is the first to have both a measured mass and size. With both quantities known, scientists can calculate a density and determine what the planet is made of.

Its star is slightly smaller and less massive than the sun and is located about 400 light-years from Earth in the constellation Cygnus.

However, the close-in orbit of Kepler-78b poses a challenge to theorists. According to current theories of planet formation, it couldn’t have formed so close to its star, nor could it have moved there. Back when this planetary system was forming, the young star was larger than it is now. As a result, the current orbit of Kepler-78b would have been inside the swollen star.

This diagram illustrates the tight orbit of Kepler-78b, which orbits its star every 8.5 hours at a distance of less than a million miles. It is only 2.7 stellar radii from the center of the star, or 1.7 stellar radii from the star's surface. David A. Aguilar (CfA)
This diagram illustrates the tight orbit of Kepler-78b, which orbits its star every 8.5 hours at a distance of less than a million miles. It is only 2.7 stellar radii from the center of the star, or 1.7 stellar radii from the star’s surface. David A. Aguilar (CfA)

“It couldn’t have formed in place because you can’t form a planet inside a star,” said team member Dimitar Sasselov, also from CfA. “It couldn’t have formed further out and migrated inward, because it would have migrated all the way into the star. This planet is an enigma.”

One idea, suggested Howard, is that the planet is the remnant core of a former gas giant planet, but that turns out to be a problem as well. “We just don’t know what the origin of this planet is,” Howard said.

However, the two teams of planet hunters feel that its existence bodes well for future discoveries of habitable planets.

The two independent research teams used ground-based telescopes for follow-up observations to confirm and characterize Kepler-78b. The team led by Howard used the W. M. Keck Observatory atop Mauna Kea in Hawaii. The other team led by Francesco Pepe from the University of Geneva, Switzerland, did their ground-based work at the Roque de los Muchachos Observatory on La Palma in the Canary Islands.

To determine the planet’s mass, the teams employed the radial velocity method to measure how much the gravitation tug of an orbiting planet causes its star to wobble. Kepler, on the other hand, determines the size or radius of a planet by the amount of starlight blocked when it passes in front of its host star.

“Determining mass of an Earth-sized planet is technically daunting,” Howard said during the webcast, explaining how they used the HIRES (High Resolution Echelle Spectrometer) on Keck. “We pushed HIRES to its limit. The observations were difficult because the star is young with many more star spots (just like sunspots on our Sun) than our Sun, and we have to remove them from our data. But since this planet orbits every eight and a half hours, we were able to watch an entire orbit in one night. We clearly saw the planet’s signal, and we watched it eight different nights.”

David Aguilar from CfA said both teams knew the other team was studying this star, but they didn’t compare their work until both teams were ready to submit their papers so that they wouldn’t influence each other. “It was very encouraging both teams got the same result,” Aguilar said.

Howard also thought having two separate teams work on the same target was great. “We didn’t have to wait for further confirmation of the planet, because the two teams confirmed each other,” he said. “In science, this is as good as it gets.”

Francesco Pepe from the second team said they benefitted from using a twin of the original HARPS (High Accuracy Radial velocity Planet Searcher) which has found nearly 200 exoplanets. “HARPS North at La Palma has the same precision and efficiency as its twin,” Pepe explained during the webcast, “and we decided to guarantee time to follow up on small exoplanet candidates from Kepler. We optimized our observing strategy and we expect many more confirmations in the coming years from this technique.”

As for Kepler-78b, this is a doomed world. Gravitational tides will continue to pull Kepler-78b even closer to its star. Eventually it will move so close that the star’s gravity will rip the world apart. Theorists predict that the planet will vanish within three billion years. Interestingly, astronomers say, our solar system could have held a planet like Kepler-78b. If it had, the planet would have been destroyed long ago leaving no signs for astronomers today.

“We did not detect additional planets in this system,” said Howard, “but we hope to observe this system more in the future.”

Paper by Howard et al.: A Rocky Composition for an Earth-sized Exoplanet

Paper by Pepe et al.: An Earth-sized planet with an Earth-like density

Additional info: CfA, NASA, MIT, Keck, Nature.

Tilt-A-Whirl! A Tale Of Strange Planetary Orbits In Kepler-56

Artist's conception of Kepler-56, which has two planets orbiting at a tilt to their star despite the fact that scientists found no bigger gas giant planet to alter their orbits. Credit: Daniel Huber/NASA's Ames Research Center.

A faraway group of planets is puzzling scientists. Newly reported Kepler-56’s system has three planets — two smaller ones close by, and a much larger one further out. The inner planets are orbiting at a tilt to the equator of the host star.

Scientists have seen that tilt before in other systems, but they thought you would need a “hot Jupiter” — a huge gas giant planet close to the star — to make that happen. Here, that’s not the case. The outer planet’s gravity, distant as it is, is pulling the two planets into their tilted orbits.

“This is a very puzzling result that is sure to challenge our understanding of how solar systems form,” stated co-author Tim Bedding, a physics researcher at the University of Sydney.

Kepler-56 is 3,000 light-years away from Earth and has a mass about 30% greater than that of our Sun. As the name implies, astronomers used the Kepler space telescope to make the discovery.

You can read more details in the Oct. 18 edition of Science.

Sources: Iowa State and University of Sydney