Oldest Planetary System Discovered, Improving the Chances for Intelligent Life Everywhere

An artist rendition of Kepler-444 planetary system, which hosts five planets, all smaller than Earth. Credit: Tiago Campante, University of Birmingham, UK.

Using data from the Kepler space telescope, an international group of astronomers has discovered the oldest known planetary system in the galaxy – an 11 billion-year-old system of five rocky planets that are all smaller than Earth. The team says this discovery suggests that Earth-size planets have formed throughout most of the Universe’s 13.8-billion-year history, increasing the possibility for the existence of ancient life – and potentially advanced intelligent life — in our galaxy.

“The fact that rocky planets were already forming in the galaxy 11 billion years ago suggests that habitable Earth-like planets have probably been around for a very long time, much longer than the age of our Solar System,” said Dr. Travis Metcalfe, Senior Research Scientist Space Science Institute, who was part of the team that used the unique method of asteroseismology to determine the age of the star.

The star, named Kepler-444, is about 25 percent smaller than our Sun and is 117 light-years from Earth. The system of five known planets is very compact, and all five planets orbit the parent star in less than 10 days, or within 0:08 AU, roughly one-fifth the size of Mercury’s orbit.

“The star is slightly cooler than the Sun (around 5000 K at the surface, compared to 5800 K),” Metcalfe told Universe Today, “but the planets in this system are still expected to be highly irradiated and inhospitable to life,” with little to no atmospheres.

The team wrote in their paper that the system’s habitable zone lies 0:47 AU from the parent star and so all planets orbit well interior to the inner edge of Kepler-444’s ‘Goldilocks zone.’

The team was led by Tiago Campante, a research fellow at the University of Birmingham in the UK.

The planets were found by analyzing four years of Kepler data, as the spacecraft had nearly continuous observations of Kepler-444 during Kepler’s active mission. The space telescope took high-precision measurements of changes in brightness in stars in its field of view. There are tiny changes in brightness when planets pass in front of their stars.

Transit signals indicated five planets orbiting Kepler-444, although this star has a binary companion, an M-dwarf, and it was a tedious process to tease out all the data to determine what were planets and not other stars, as well as which star the planets were orbiting.

An image of the Kepler-444 star system using the NIRC2 near-infrared imager on the Keck II telescope. Credit: Tiago Campante et al.
An image of the Kepler-444 star system using the NIRC2 near-infrared imager on the Keck II telescope. Credit: Tiago Campante et al.

Metcalfe said the the job of “validating” the planets by ruling out all of the other possible “false positive” scenarios is always a big challenge for Kepler targets.

But asteroseismology was used to directly measure the precise age of the star. Asteroseismology, or stellar seismology is basically listening to a star by measuring sound waves. The sound waves travel into the star and bring information back up to the surface. The waves cause oscillations that Kepler observes as a rapid flickering of the star’s brightness.

How can this help determine a star’s age?

“As a star ages, it converts hydrogen into helium in the core,” Metcalfe said via email. “This changes the mean density of the star over time, and asteroseismology provides a very precise measure of the mean density (from the regular spacing of the individual oscillation frequencies).”

Metcalfe said that in this case, the uncertainty on the age of the star (and thus the planets, which formed essentially at the same time) is only 9%, compared to a typical uncertainty of 30-50% from other methods based on rotation (gyrochronology) or other properties of the star.

The team also noted in their paper that this finding may also help to pinpoint the beginning of the era of planet formation.

“I think this system has a lot to teach us about planet formation and the long-term evolution of planetary systems,” said Darin Ragozzine, a professor at Florida Institute of Technology and a a member of the discovery team, who specializes in multi-transiting systems. “With an age of 11.2 billion years, it means that this system formed near the beginning of the age of the Universe.”

The team wrote that this finding implies that small, Earth-size, planets may have readily formed at early epochs in the Universe’s history, even when metals were more scarce.

“By the time Earth formed, this star and its planetary system were already older than our planet is today,” Ragozzine told Universe Today. “We don’t know for sure if this system has stayed the same the whole time, but it is amazing to think that the little inner planet has gone around the star about a trillion times!”

To find out more about asteroseismology, check out a website called the Pale Blue Dot Project. Metcalfe launched a non-profit organization to help raise research funds for the Kepler Asteroseismic Science Consortium. The Pale Blue Dot Project allows people to adopt a star to support asteroseismology, since there is no NASA funding for asteroseismology.

“Much of the expertise for this exists in Europe and not in the US, so as a cost saving measure NASA outsourced this particular research for the Kepler mission,” said Metcalfe, “and NASA can’t fund researchers in other countries.”

Metcalfe added that the “adopt a star” program supported the asteroseismic analysis of Kepler-444, “determining the precise age that makes this ancient planetary system so interesting… This private funding from citizens around the world has been an invaluable resource to facilitate our research and fuel amazing discoveries like this one.”

You can help this research by adopting one of the Kepler stars or planetary systems.

This research was published today in the Astrophysical Journal.

The team’s paper is titled, “An Ancient Extrasolar System with Five Sub-Earth-Size Planets.”

Gallery: Some Of Kepler’s Strange New Worlds Outside The Solar System

Artist's conception of the Kepler 16 system, where the planet Kepler 16-b orbits two stars, much like Tatooine from Star Wars. Credit: NASA/JPL-Caltech/R. Hurt

With the latest Kepler space telescope exoplanet finding announced yesterday, the mighty planet hunter has now found 1,000 confirmed worlds — with about 3,000 more planetary candidates just waiting for confirmation.

The NASA observatory has found exoplanets of many sizes — smaller than Mercury, the size of our Moon, the size of Jupiter or larger, and in a couple of cases, Earth-sized worlds in the habitable regions of their stars. Below is a gallery of some of the observatory’s notable finds.

An artist's conception of a planet in a star cluster. Credit: Michael Bachofner
An artist’s conception of a planet in a star cluster. Credit: Michael Bachofner
An artist's conception of one of the newly released exo-worlds, a planet orbiting an ancient planetary nebula. Credit: David A. Aguilar/CfA.
An artist’s conception of one of the newly released exo-worlds, a planet orbiting an ancient planetary nebula. Credit: David A. Aguilar/CfA.
Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA
Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA
NASA's Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
NASA’s Kepler mission has discovered a new planetary system that is home to the smallest planet yet found around a star like our sun, approximately 210 light-years away in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Artist's Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech
Artist’s Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech
Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech
Kepler-37b, a moon-sized exoplanet. Credit: NASA/Ames/JPL-Caltech
Artist's conception of the Kepler-35 system where a Saturn-sized planet orbits its two stars. Credit: © Mark A. Garlick / space-art.co.uk
Artist’s conception of the Kepler-35 system where a Saturn-sized planet orbits its two stars. Credit: © Mark A. Garlick / space-art.co.uk
The "invisible" world Kepler-19c, seen in the foreground of this artist's conception, was discovered solely through its gravitational influence on the companion world Kepler-19b - the dot crossing the star's face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a "mini-Neptune." Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)
The “invisible” world Kepler-19c, seen in the foreground of this artist’s conception, was discovered solely through its gravitational influence on the companion world Kepler-19b – the dot crossing the star’s face. Kepler-19b is slightly more than twice the diameter of Earth, and is probably a “mini-Neptune.” Nothing is known about Kepler-19c, other than that it exists. Credit: David A. Aguilar (CfA)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

New Finds From Kepler: 8 New Worlds Discovered in the Habitable Zone

An artist's conception of one of the newly released exo-worlds, a planet orbiting an ancient planetary nebula. Credit: David A. Aguilar/CfA.

A fascinating set of finds was announced today at the 225th meeting of the American Astronomical Society (AAS), currently underway this week in Seattle, Washington. A team of astronomers announced the discovery of eight new planets potentially orbiting their host stars in their respective habitable zones. Also dubbed the ‘Goldilocks Zone,’ this is the distance where — like the tempting fairytale porridge — it’s not too hot, and not too cold, but juuusst right for liquid water to exist.

And chasing the water is the name of the game when it comes to hunting for life on other worlds. Two of the discoveries announced, Kepler-438b and Kepler-442b, are especially intriguing, as they are the most comparable to the Earth size-wise of any exoplanets yet discovered.

“Most of these planets have a good chance of being rocky, like Earth,” said Guillermo Torres in a recent press release. Guillermo is the lead author in the study for the Harvard-Smithsonian Center for Astrophysics (CfA).

This also doubles the count of suspected terrestrial exo-worlds — planets with less than twice the diameter of the Earth — inferred to orbit in the habitable zone of their host stars.

Fans on exoplanet science will remember the announcement of the first prospective Earth-like world orbiting in the habitable zone of its host star, Kepler-186f announced just last year.

The Kepler Space Telescope looks for planets used a technique known as the transit method. If a planet is orbiting its host star along our line of sight, a small but measurable dip in the star’s brightness occurs. This has advantages over the radial velocity technique because it allows researchers to pin down the hidden planet’s orbit and size much more precisely. The transit method is biased, however, to planets close in to its host which happen to lie along our solar system-bound line of sight. Kepler may miss most exo-worlds inclined out of its view, but it overcomes this by staring at thousands of stars.

Kepler launch
The launch of Kepler from the Cape in 2009. Credit: NASA/Kim Shiflett.

Launched in 2009, Kepler has wrapped up its primary phase of starring at a patch of sky along the plane of the Milky Way in the directions of the constellations of Cygnus, Lyra and Hercules, and is now in its extended K2 mission using the solar wind pressure as a 3rd ‘reaction wheel’ to carry out targeted searches along the ecliptic plane.

Both newly discovered worlds highlighted in today’s announcement orbit distant red dwarf stars. Kepler-438 b is estimated to be 12% larger in diameter than the Earth, and Kepler-442 b is estimated by the team to be 33% larger. These worlds have a 70% and 60% chance of being rocky, respectively. For comparison, Ice giant planet Uranus is 4 times the diameter of the Earth, and over 14 times more massive.

A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.
A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.

“We don’t know for sure whether any of the planets in our sample are truly habitable,” Said CfA co-researcher in the study David Kipping. All we can say is that they’re promising candidates.”

The idea of habitable worlds around red dwarf stars is a tantalizing one. These stars are fainter and cooler than our Sun, and 7.5% to 50% as massive. They also have two primary factors going for them: they’re the most common type of stars in the universe, and they have life spans measured in trillions of years, much longer than the current age of the universe. If life could go from muck to making microwave dinners here on Earth in just a few billion years, it’s had lots longer to do the same on worlds orbiting red dwarf stars.

There is, however, one catch: the habitable zone surrounding a red dwarf is much closer in to its host star, and any would-be planet is subject to frequent surface-sterilizing flares. Perhaps a world with a synchronous rotation might be spared this fate and feature a habitable hemisphere well inside the snow line permanently turned away from its host.

The team made these discoveries by sifting though Kepler’s preliminary finds that are termed KOI’s, or Kepler Objects of Interest. Though these potential discoveries were far too small to pin down their masses using the traditional method, the team employed a program named BLENDER to statically validate the finds. BLENDER has been employed before in concert with backup observations for extremely tiny exoplanet discoveries. Torres and Francois Fressin developed the BLENDER program, and it is currently run on the massive Pleiades supercomputer at NASA Ames.

It was also noted in today’s press conference that two KOIs awaiting validation — 5737.01 and 2194.03 — may also prove to be terrestrial worlds  orbiting Sun-like stars that are possibly similar in size to the Earth.

The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.
The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.

But don’t plan on building an interstellar ark and heading off to these newly found worlds just yet. Kepler-438b sits 470 light years from Earth, and Kepler-442b is even farther away at 1,100 light years. And we’ll also add our usual caveat and caution that, from a distance, the planet Venus in our own solar system might look like a tempting vacation spot. (Spoiler alert: it’s not).

Still, these discoveries are fascinating finds and add to the growing menagerie of exoplanet systems. These will also serve as great follow up targets for TESS, Gaia and LSST survey, all set to add to our exoplanet knowledge in the coming decade.

The LSST mirror in the Tuscon Mirror Lab. (Photo by author).
The LSST mirror in the Tuscon Mirror Lab. (Photo by author).

And to think, I remember growing up as a child of the 1970s reading that exoplanet detections were soooo difficult that they might never occur in our lifetime… now, fast-forward to 2015, and we’re beginning to classify and characterize other brave new solar systems in the modern Age of Exoplanet Science.

-Looking to observe red dwarf stars with your backyard scope? Check out our handy list.

Universe Today’s Top 10 Space Stories of 2014

Images from the Rosetta spacecraft show Philae drifting across the surface of its target comet during landing Nov. 12, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It seems a lot of the space stories of this year involve spacecraft making journeys: bouncing across a comet, or making their way to Mars. Private companies also figure prominently, both in terms of successes and prominent failures.

These are Universe Today’s picks for the top space stories of the year. Disagree? Think we forgot something? Let us know in the comments.

10. End of Venus Express

Artist's impression of Venus Express performing aerobreaking maneuvers in the planet's atmosphere in June and July 2014. Credit: ESA–C. Carreau
Artist’s impression of Venus Express performing aerobreaking maneuvers in the planet’s atmosphere in June and July 2014. Credit: ESA–C. Carreau

This month saw the end of Venus Express’ eight-year mission at the planet, which happened after the spacecraft made a daring plunge into part of the atmosphere to learn more about its properties. The spacecraft survived the aerobraking maneuvers, but ran out of fuel after a few engine burns to raise it higher. Soon it will plunge into the atmosphere for good. But it was a productive mission overall, with discoveries ranging from a slowing rotation to mysterious “glories”.

9. Continued discoveries by Curiosity and Opportunity

1 Martian Year on Mars!  Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014.    Navcam camera raw images stitched and colorized.   Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com
1 Martian Year on Mars! Curiosity treks to Mount Sharp in this photo mosaic view captured on Sol 669, June 24, 2014. Navcam camera raw images stitched and colorized. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer – kenkremer.com

Methane? Organics? Water? Mars appears to have had these substances in abundance over its history. Continued work from the Curiosity rover — passing its second Earth year on Mars — found methane fluctuating in Gale Crater, and the first confirmed discovery of organics on the Martian surface. Opportunity is almost 11 years into its mission and battling memory problems, but the rover is still on the move (passing 41 kilometers) to an area that could be full of clay.

8. Siding Spring at Mars and the level of study of the comet by other missions at Mars

Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA
Comet Siding Spring near Mars in a composite image by the Hubble Space Telescope, capturing their positions between Oct. 18 8:06 a.m. EDT (12:06 p.m. UTC) and Oct. 19 11:17 p.m. EDT (Oct. 20, 3:17 a.m. UTC). Credit: NASA, ESA, PSI, JHU/APL, STScI/AURA

We had a rare opportunity to watch a comet make a grazing pass by Mars, not close enough to pose significant danger to spacecraft, but definitely close enough to affect its atmosphere! Siding Spring caught everyone’s attention throughout the year, and did not disappoint. The numerous spacecraft at the Red Planet caught glimpses, including from the surface and from orbit. It likely created a meteor shower and could alter the Martian atmosphere forever.

7. Kepler K2

Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)
Illustration of the Kepler spacecraft (NASA/Kepler mission/Wendy Stenzel)

The Kepler space telescope lost the second of its four pointing devices last year, requiring a major rethink for the veteran planet hunter. The solution was a new mission called K2 that uses the pressure of the Sun to maintain the spacecraft’s direction, although it has to flip every 83 days or so to a new location to avoid the star’s glare. It’s not as precise as before, but with the mission approved we now know for sure K2 can locate exoplanets. The first confirmed one is a super-Earth.

6. MAVEN at Mars

An artist's conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center
An artist’s conception of MAVEN orbiting Mars. Image Credit: NASA / Goddard Space Flight Center

Where did the Martian atmosphere go? Why was it so thick in the past, allowing water to flow on the surface, and so thin right now? The prevailing theory is that the Sun’s pressure on the Martian atmosphere pushed lighter isotopes (such as that of hydrogen) away from the planet, leaving heavier isotopes behind. NASA is now investigating this in more detail with MAVEN (Mars Atmosphere and Volatile Evolution), which arrived at the planet this fall.

5. India’s MOM

Artist's impression of India’s Mars Orbiter Mission (MOM). Credit ISRO
Artist’s impression of India’s Mars Orbiter Mission (MOM). Credit ISRO

India made history this year as only the third entity to successfully reach the Red Planet (after the United States and Europe). While updates from the Mars Orbiter Mission have been slow in recent weeks, we know for sure that it observed Siding Spring at Mars and it has been diligently taking pictures of the Red Planet, such as this one of the Solar System’s largest volcano and a huge canyon on Mars.

4. Accidents by Virgin and Orbital

NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)
NTSB investigators are seen making their initial inspection of debris from the Virgin Galactic SpaceShipTwo. The debris field stresses over a fiver mile range in the Mojave desert. (Credit: Getty Images)

In one sobering week in October, the dangers of space travel were again made clear after incidents affected Virgin Galactic and Orbital Sciences. Virgin lost a pilot and seriously injured another when something went seriously awry during a flight test. Investigators have so far determined that the re-entry system turned on prematurely, but more details are being determined. Orbital meanwhile suffered the catastrophic loss of one of its Antares rockets, perhaps due to Soviet-era-designed engines, but the company is looking at other ways to fulfill its NASA contractual obligations to send cargo to the International Space Station.

3. SpaceX rocket landing attempts

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX

SpaceX is attempting a daunting technological feat, which is bringing back its rocket first stages for re-use. The company is hoping that this will cut down on the costs of launch in the long term, but this technological innovation will take some time. The Falcon 9 rocket stage that made it back to the ocean in July was deemed a success, although the force of the landing broke it apart. Next, SpaceX is trying to place its rocket on an ocean platform.

2. Orion flight

Orion Service Module fairing separation. Credit: NASA TV
Orion Service Module fairing separation. Credit: NASA TV

NASA’s spacecraft for deep space exploration (Orion) successfully finished its first major uncrewed test this month, when it rode into orbit, made a high-speed re-entry and successfully splashed down in the ocean. But it’s going to be a while before Orion flies again, likely in 2017 or even 2018. NASA hopes to put a crew on this spacecraft type in the 2020s, potentially for trips to the Moon, an asteroid or (more distantly) Mars.

1. Rosetta

New Rosetta mission findings do not exclude comets as a source of water in and on the Earth's crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)
New Rosetta mission findings do not exclude comets as a source of water in and on the Earth’s crust but does indicate comets were a minor contribution. A four-image mosaic comprises images taken by Rosetta’s navigation camera on 7 December from a distance of 19.7 km from the centre of Comet 67P/Churyumov-Gerasimenko. (Credit: ESA/Rosetta/Navcam Imager)

It’s been an exciting year for the Rosetta mission. First it woke up from a lengthy hibernation, then it discovered that Comet 67P/Churyumov-Gerasimenko looks a bit like a rubber duckie, and then it got up close and released the Philae lander. The soft touchdown did not go as planned, to say the least, as the spacecraft bounced for two hours and then came to rest in a spot without a lot of sunlight. While Philae hibernates and controllers hope it wakes up again in a few months, however, science results are already showing intriguing things. For example, water delivered to Earth likely came mostly from other sources than comets.

Kepler ‘K2’ Finds First Exoplanet, A ‘Super-Earth’, While Surfing Sun’s Pressure Wave For Control

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

It’s alive! NASA’s Kepler space telescope had to stop planet-hunting during Earth’s northern-hemisphere summer 2013 when a second of its four pointing devices (reaction wheels) failed. But using a new technique that takes advantage of the solar wind, Kepler has found its first exoplanet since the K2 mission was publicly proposed in November 2013.

And despite a loss of pointing precision, Kepler’s find was a smaller planet — a super-Earth! It’s likely a water world or a rocky core shrouded in a thick, Neptune-like atmosphere. Called HIP 116454b, it’s 2.5 times the size of Earth and a whopping 12 times the mass. It circles its dwarf star quickly, every 9.1 days, and is about 180 light-years from Earth.

“Like a phoenix rising from the ashes, Kepler has been reborn and is continuing to make discoveries. Even better, the planet it found is ripe for follow-up studies,” stated lead author Andrew Vanderburg of the Harvard-Smithsonian Center for Astrophysics.

Kepler ferrets out exoplanets from their parent stars while watching for transits — when a world passes across the face of its parent sun. This is easiest to find on huge planets that are orbiting dim stars, such as red dwarfs. The smaller the planet and/or brighter the star, the more difficult it is to view the tiny shadow.

Infographic showing how the Kepler space telescope continued searching for planets despite two busted reaction wheels. Credit: NASA Ames/W Stenzel
Infographic showing how the Kepler space telescope continued searching for planets despite two busted reaction wheels. Credit: NASA Ames/W Stenzel

The telescope needs at least three reaction wheels to point consistently in space, which it did for four years, gazing at the Cygnus constellation. (And there’s still a lot of data to come from that mission, including the follow-up to a bonanza where Kepler detected hundreds of new exoplanets using a new technique for multiple-planet systems.)

But now, Kepler needs an extra hand to do so. Without a mechanic handy to send out to telescope’s orbit around the Sun, scientists decided instead to use sunlight pressure as a sort of “virtual” reaction wheel. The K2 mission underwent several tests and was approved budgetarily in May, through 2016.

The drawback is Kepler needs to change positions every 83 days since the Sun eventually gets in the telescope’s viewfinder; also, there are losses in precision compared to the original mission. The benefit is it can also observe objects such as supernovae and star clusters.

Kepler-62f, an exoplanet that is about 40% larger than Earth. It's located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech
Kepler-62f, an exoplanet that is about 40% larger than Earth. It’s located about 1,200 light-years from our solar system in the constellation Lyra. Credit: NASA/Ames/JPL-Caltech

“Due to Kepler’s reduced pointing capabilities, extracting useful data requires sophisticated computer analysis,” CFA added in a statement. “Vanderburg and his colleagues developed specialized software to correct for spacecraft movements, achieving about half the photometric precision of the original Kepler mission.”

That said, the first nine-day test with K2 yielded one planetary transit that was confirmed with measurements of the star’s “wobble” as the planet tugged on it, using the HARPS-North spectrograph on the Telescopio Nazionale Galileo in the Canary Islands. A small Canadian satellite called MOST (Microvariability and Oscillations of STars) also found transits, albeit weakly.

A paper based on the research will appear in the Astrophysical Journal.

Alien Planet’s Clear Weather Could Show Way To ‘Super-Earth’ Atmospheres

Artist's concdption of a Neptune-sized planet with a clear atmosphere, passing across the face of its star. Credit: NASA/JPL-Caltech

In an encouraging find for habitability researchers, astronomers have detected molecules on the smallest planet ever — a Neptune-sized planet about 120 light-years from Earth. The team behind the discovery says this means the dream of understanding the atmospheres on planets even closer to size of Earth is getting closer.

“The work we are doing now is important for future studies of super-Earths and even smaller planets, because we want to be able to pick out in advance the planets with clear atmospheres that will let us detect molecules,” stated co-author Heather Knutson, of the California Institute of Technology.

This particular world is not life-friendly as we understand it, however. Called HAT-P-11b, it’s not only a gas giant but also a planet that orbits extremely close to its star — making one circle every five days. And unusually among planets of its size that were previously probed by astronomers, it appears to have clear skies.

The team examined the world using the Hubble Space Telescope’s Wide Field Camera 3, looking at the planet as it passed across the face of its star. The team compared the signature of elements observed when the planet was in front of the star and when it was not, and discovered telltale signs of water vapor in its atmosphere.

Artist's conception of what the weather may look like on HAT-P-11b, a Neptune-sized exoplanet. The upper atmosphere (right) appears clear while the lower atmosphere may host clouds. Credit: NASA/JPL-Caltech
Artist’s conception of what the weather may look like on HAT-P-11b, a Neptune-sized exoplanet. The upper atmosphere (right) appears clear while the lower atmosphere may host clouds. Credit: NASA/JPL-Caltech

While other planets outside our solar system are known to have water vapor, the ones previously examined are much larger. Jupiter-sized planets are much easier to examine not only because they are larger, but their atmospheres puff up more (making them more visible from Earth.)

To confirm the water vapor was not a false signal from sunspots on the parent star (which also can contain it), the team used the Kepler and Spitzer space telescopes to confirm the information. (Kepler’s single field of view around the constellation Cygnus, which it had been peering at for about four years, happily included the zone where HAT-P-11b was orbiting.) The infrared information from Spitzer and the visible-light data from Kepler both showed the sunspots were too hot for water vapor.

Further, the discovery shows there were no clouds in the way of the observations — a first for planets of that size. The team also hopes that super-Earths could have clear skies, allowing astronomers to analyze their atmospheres.

“When astronomers go observing at night with telescopes, they say ‘clear skies’ to mean good luck,” stated lead author Jonathan Fraine, of the University of Maryland, College Park. “In this case, we found clear skies on a distant planet. That’s lucky for us because it means clouds didn’t block our view of water molecules.”

The research was published in the journal Nature.

Source: NASA

‘Venus Zone’: The Anti-Habitable Area Around A Star That Can Breed Hell

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

Our hothouse planet of the solar system, Venus, is possibly a product of how close it is to the Sun, new research reveals. The team who have come up with a definition of a “Venus zone” around stars, saying that knowing where this area is could help pin down other areas that are more habitable for potential life.

“We believe the Earth and Venus had similar starts in terms of their atmospheric evolution,” stated lead author Stephen Kane, an astronomer at San Francisco State University. “Something changed at one point, and the obvious difference between the two is proximity to the Sun.”

The habitable region around a star is poorly understood because scientists don’t quite know what conditions are necessary for life. It usually refers to the area where liquid water is possible, although this also depends on the climate of the planet itself. Clouds, terrain and atmospheric composition are just some of the variables that could affect habitability.

Artist’s impression of a massive asteroid belt in orbit around a star. Credit: NASA-JPL / Caltech / T. Pyle (SSC)
Artist’s impression of a massive asteroid belt in orbit around a star. Credit: NASA-JPL / Caltech / T. Pyle (SSC)

To better figure out where potential Venus-like exoplanets lurk, Kane’s team used data from the planet-hunting Kepler Space Telescope and examined solar flux — or how much solar energy a planet gets — to figure out where the Venus zone would be. The zone is then defined between two regions: where a planet could have the “runaway greenhouse effect” seen on Venus, and the spot where the planet is so close to its star that energy would wear away its atmosphere.

The first step would be pinpointing which planets reside within these zones. In future decades, astronomers could then examine the planetary atmospheres with telescopes to learn more about how they are composed — and how similar they are to Earth or Venus. Meanwhile, Kane’s team plans to model if carbon in the planet’s atmosphere could affect the boundaries of the zone.

“If we find all of these planets in the Venus Zone have a runaway greenhouse-gas effect, then we know that the distance a planet is from its star is a major determining factor,” Kane stated. “That’s helpful to understanding the history between Venus and Earth.”

A preprint version of the paper is available on the Arxiv website. The research has been accepted for publication in Astrophysical Journal Letters.

Source: San Francisco State University

Threatened Spitzer Telescope Gets NASA Nod For Extension, Subject To Congress Funding

Artist's concept of NASA's Spitzer Space Telescope surrounded by examples of exoplanets it has looked at. Credit: NASA/JPL-Caltech

After NASA recommended in May that Spitzer space telescope officials send in a revised budget or face possible termination of operations, in a turnaround, the agency’s science mission directorate has now agreed to extend the mission for another two years.

The news broke on Twitter yesterday when the NASA Spitzer account shared the news. An update posted on its website said the decision is “subject to the availability of Congressional appropriations in FY [fiscal year] 2015”, but added that there will soon be a call out for observing time in that period.

Previously, NASA informed Spitzer officials that due to “constrained budget conditions” that their initial request to extend operations past fiscal 2015 was not approved, in line with recommendations from the NASA senior astrophysics review. While the mission was not terminated at that time, officials were asked to “respond with a request for a budget augmentation to conduct continued operations with reduced operations costs.”

The mission was being reviewed at the same time as other astrophysics missions, such as the Kepler planet-hunting space telescope that was asking for (and received) a new mission that would allow it to do useful science despite two busted reaction wheels, or pointing devices. The review said Spitzer was the most expensive of the missions reviewed, and that the telescope’s abilities were “significantly reduced” after it ran out of coolant in 2009.

The bow shock of Zeta Ophiuchi, another runaway star observed by Spitzer (NASA/JPL-Caltech)
The bow shock of Zeta Ophiuchi, another runaway star observed by Spitzer (NASA/JPL-Caltech)

In an update on the Spitzer website, officials shared more details but did not say if the budget had been reformulated in response to NASA’s suggestion.

We are very happy to report that Spitzer operations have been extended by the NASA Science Mission Directorate for two more years! The letter of direction states: “The Science Mission Directorate has made the decision to extend Spitzer operations for the next two years. The Spitzer observatory is an important resource for on-going infrared observations for research programs across the Science Mission Directorate, and, subject to the availability of Congressional appropriations in FY 2015, it will be continued. Both the Astrophysics and the Planetary Science Divisions have requested observing time commitments for FY 2015, and both Divisions have committed funding to support their observations.” We are working hard to get a call for observing proposals issued by the end of July. And thank you to all the people at NASA Headquarters and in the community that have worked so hard to support science with Spitzer.

In recent months, some of Spitzer’s work has included searching for targets for NASA’s asteroid mission, helping to find the coldest brown dwarf ever discovered, and assisting in challenging views about star cluster formation.

‘Mega-Earth’ And Doomed Planets Top Today’s Exoplanet Finds

Artist's impression of "mega-Earth" Kepler 10c. Credit: David A. Aguilar (CfA)

Can you imagine a world that is 17 times as massive as Earth, but still rocky? Or two planets that are doomed to be swallowed up by their parent star in just a blink of astronomical time?

While these scenarios sound like science fiction, these are real-life finds released today (June 2) at the American Astronomical Association meeting in Boston.

Here’s a rundown of the finds about these planets in our ever-more-amazing universe.

‘Mega-Earth’ Kepler-10c

Spinning around its star every 45 days is Kepler-10c, which is about 2.3 times as large as Earth but a heavyweight, at 17 times more massive. The planet was discovered by the prolific NASA Kepler space telescope (which was sidelined after a reaction wheel failed last year, but now has been tasked with a new planet-hunting mandate.)

While initially astronomers thought Kepler-10c was a “mini-Neptune”, or a world that is similar to that planet in our solar system, its mass measured by the HARPS-North instrument on the Galileo National Telescope showed it was a rocky world. What’s more, astronomers believe the planet did not “let go” of any atmosphere over time, which implies the planet’s past is similar to what it was today.

Here’s the other neat thing: astronomers found that the system was 11 billion years old, at a time when the universe was young (it was formed 13.7 billion years ago) and the elements needed to make rocky planets were scarce. This implies that rocky planets could have formed earlier than previously thought.

“I was wrong that old stars do not have rocky planets, which has consequences about the Fermi Paradox,” the Harvard-Smithsonian Center for Astrophysics’s (CfA) Dimitar Sasselov said in a webcast press conference today (June 2).  The Fermi Paradox, simply put, refers to the question of why we can’t see civilizations since they are assumed to have spread quite a ways since the universe was formed.

Artist's impression of Kepler-56b being torn apart by its star about 130 million years from today. Its sibling planet, Kepler-56c, will last until 155 million years from now. Credit: David A. Aguilar (CfA)
Artist’s impression of Kepler-56b being torn apart by its star about 130 million years from today. Its sibling planet, Kepler-56c, will last until 155 million years from now. Credit: David A. Aguilar (CfA)

‘We’re doomed!’ Kepler-56b and Kepler-56c

If there was anybody in the vicinity of these two planets, you’d want to move out of the way fairly quickly — at least when talking about astronomical time. Both of these planets, whose orbits are within the equivalent distance of Mercury to the sun, are expected to be swallowed up by their star in 130 million years (for Kepler-56b) and 155 million years (Kepler-56c). It’s the first time two doomed planets have been found in a single system.

“Possibly the core of planet will be left behind and you [will] see this dead corpse floating behind in the universe,” said CfA’s Gongjie Li in the press conference.

There are two factors behind this: the size of the star will enlarge as it gets older (which is typical among stars) and the tidal forces between the planets and their star will also cause them to slow down in their orbits and rip apart. Interestingly enough, another gas giant planet called Kepler-56d will remain safe from most of the chaos since its orbit is equivalent to the asteroid belt in our own solar system.

“Looking at this system is like foreseeing our own solar system,” added Li, referring to the fact that in another five billion years or so our sun will enlarge and swallow Mercury and Venus at the least, boiling off all the oceans on our planet and killing anything left.

Artist's conception of an exoplanet orbiting a red dwarf star. Credit: David A. Aguilar (CfA)
Artist’s conception of an exoplanet orbiting a red dwarf star. Credit: David A. Aguilar (CfA)

Windy City: Why living near a red dwarf might be a bad idea

One fertile ground for exoplanet discoveries — particularly when looking for planets about Earth’s size in the habitable zone — is red dwarfs, because they are smaller and therefore have less light to obscure any rocky worlds orbiting nearby. A new study warns that they could be less friendly to life than previously believed.

CfA’s Ofer Cohen said that red dwarfs can have intense stellar winds, when looking at the model of a known red dwarf with three planets around it: KOI 1422.02, KOI 2626.01, KOI 584.01. Even a magnetic field the size of Earth would not be able to protect the planet from being stripped of its atmosphere assuming a certain intensity of stellar flares.

A member of the audience pointed out that the red dwarf star under study likely has stronger winds than 95% of all red dwarfs, however. Cohen acknowledged that, but added “the main effect is not the stellar activity, but these giants are close to the star.” All the same, this could require a more nuanced understanding of the habitable zone around these stars, he added.

Artist's impression of exoplanets. Credit: J. Jauch
Artist’s impression of exoplanets. Credit: J. Jauch

Heavy metal: Figuring out how much planets have

In astronomical terms, any elements heavier than hydrogen and helium are considered to be “metallic”. Past research found that metal-rich stars tend to have hot Jupiter exoplanets, while the smaller planets have a larger span of metal possibilities.

A team led by CfA’s Lars Buchhave surveyed more than 400 stars with 600 exoplanets, and found that planets smaller than 1.7 times the size of Earth are more likely to be rocky, while those than are 3.9 times the size of Earth or larger are likely gassy.

In between is a zone called “gas dwarfs”, which are planets 1.7 and 3.9 times the size of Earth that likely have hydrogen and helium atmospheres blanketing their surface.

Also intriguing: the researchers discovered that planets far away from their stars can get larger before picking up a lot of gas and becoming a “gas dwarf”, presumably because there isn’t as much gas material out there.

The team also discovered that stars with smaller, Earth-like worlds metallicities like our sun, while stars with “gas dwarfs” have more metals, and stars with gas giants have even more metals. But bear in mind these are for planets close to their host star, which are easiest for Kepler to find. Buchhave plans to do work for planets further away.

The papers for these findings are on arVix: Kepler 10b, habitable planets orbiting M-dwarfs, exoplanets around metal-rich stars.

Kepler Has Found the First Earth-Sized Exoplanet in a Habitable Zone!

Artist's rendering of Kepler-186f (Credit: NASA Ames/SETI Institute/Caltech)

It’s truly a “eureka” moment for Kepler scientists: the first rocky Earth-sized world has been found in a star’s habitable “Goldilocks” zone, the narrow belt where liquid water could readily exist on a planet’s surface without freezing solid or boiling away. And while it’s much too soon to tell if this really is a “twin Earth,” we can now be fairly confident that they do in fact exist.

The newly-confirmed extrasolar planet has been dubbed Kepler-186f. It is the fifth and outermost planet discovered orbiting the red dwarf star Kepler-186, located 490 light-years away. Kepler-186f completes one orbit around its star every 130 days, just within the outer edge of the system’s habitable zone.

The findings were made public today, April 17, during a teleconference hosted by NASA.

“This is the first definitive Earth-sized planet found in the habitable zone around another star,” says lead author Elisa Quintana of the SETI Institute at NASA Ames Research Center. “Finding such planets is a primary goal of the Kepler space telescope. The star is a main-sequence M-dwarf, a very common type.  More than 70 percent of the hundreds of billions of stars in our galaxy are M-dwarfs.”

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA)
A visualization of the many “unseen” red dwarfs in the night sky. (CLICK FOR ANIMATION) Credit: D. Aguilar & C. Pulliam (CfA)

Unlike our Sun, which is a G-type yellow dwarf, M-dwarf stars (aka red dwarfs) are much smaller and dimmer. As a result their habitable zones are much more confined. But, being cooler stars, M-dwarfs have long lifespans, offering planets in their habitable zones — like Kepler-186f — potentially plenty of time to develop favorable conditions for life.

In addition, M-dwarfs are the most abundant stars in our galaxy; 7 out of 10 stars in the Milky Way are M-dwarfs, although most can’t be seen by the naked eye. Finding an Earth-sized planet orbiting one relatively nearby has enormous implications in the hunt for extraterrestrial life.

“M dwarfs are the most numerous stars,” said Quintana. “The first signs of other life in the galaxy may well come from planets orbiting an M dwarf.”

Read more: Earthlike Exoplanets Are All Around Us

Still, there are many more conditions on a planet that must be met for it to be actually habitable. But size, composition, and orbital radius are very important first steps.

“Some people call these habitable planets, which of course we have no idea if they are,” said Stephen Kane, an assistant professor of physics and astronomy at San Francisco State University in California. “We simply know that they are in the habitable zone, and that is the best place to start looking for habitable planets.”

Scale comparison of the Kepler-186 system to our inner Solar System (
Scale comparison of the Kepler-186 system and the inner Solar System (NASA Ames/SETI Institute/Caltech)

As far as the planetary system’s age is concerned — which relates to how long life could have potentially had to evolve on Kepler-186f’s surface — that’s hard to determine… especially with M-dwarf stars. Because they are so stable and long-lived, once they’re formed M-dwarfs essentially stay the same throughout their lifetimes.

“We know it’s probably older than a few billion years, but after that it’s very difficult to tell,” BAERI/Ames scientist Tom Barclay told Universe Today. “That’s the problem with M-dwarfs.”

A comparison of the Kepler 186 and Solar systems (NASA/Ames)
A comparison of the Kepler 186 and Solar systems (Presentation slide, NASA/Ames)

The exoplanet was discovered via the transit method used by NASA’s Kepler spacecraft, whereby stars’ brightnesses are continually monitored within a certain field of view. Any dips in luminance reveal the likely presence of a passing planet.

Because of its small size — just slightly over 1 Earth radius — and close proximity to its star, Kepler-186f can’t be observed directly with current telescope technology.

The Gemini North telescope on the summit of Mauna Kea (Gemini Observatory/AURA)
The Gemini North telescope on the summit of Mauna Kea (Gemini Observatory/AURA)

“However, what we can do is eliminate essentially all other possibilities so that the validity of these planets is really the only viable option,” said Steve Howell, Kepler project scientist and a co-author on the paper.

Using the latest advanced imaging capabilities of the Gemini North and Keck II observatories located atop Mauna Kea in Hawaii, astronomers were able to determine that the signals detected by Kepler were from a small orbiting planet and not something else, such as a background or companion star.

“The Keck and Gemini data are two key pieces of this puzzle,” Quintana said. “Without these complementary observations we wouldn’t have been able to confirm this Earth-sized planet.”

Kepler-186f joins the other 20 extrasolar worlds currently listed in the Habitable Exoplanets Catalog, maintained by the Planetary Habitability Laboratory at the University of Puerto Rico at Arecibo. To date 961 exoplanets have been confirmed through Kepler observations, with 1,696 total confirmed altogether. (Source)

Artist's conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech
Artist’s conception of the Kepler Space Telescope. Credit: NASA/JPL-Caltech

Read more: Mega Discovery! 715 Alien Planets Confirmed Using a New Trick on Old Kepler Data

Whether Kepler-186f actually resembles Earth or not, this discovery provides more information on the incredible variety of planetary systems to be found even in our little corner of the galaxy.

“The diversity of these exoplanets is one of the most exciting things about the field,” Kane said. “We’re trying to understand how common our solar system is, and the more diversity we see, the more it helps us to understand what the answer to that question really is.”

The SETI Institute’s Allen Telescope Array has surveyed the Kepler-186 system for any potential signals but so far none has been detected. Further observations are planned.

“Kepler-186f is special because we already know that a planet of its size and distance is capable of supporting life.”
– Elisa Quintana, research scientist, SETI Institute

The team’s paper, “An Earth-sized Planet in the Habitable Zone of a Cool Star” by Elisa V. Quintana et al., will be published in the April 18 issue of Science.

Learn more about the Kepler mission here, and read more about this discovery in NASA’s news release here and on the W.M. Keck website here.

Watch some video excerpts of team interviews and data renderings below:

Also, you can download the slides used in the NASA teleconference here.

Sources: San Francisco State University, Gemini Observatory, W.M. Keck Observatory, and SETI news releases