What is Vision? (A Save The James Webb Support Video)

Do you love astronomy? Do you appreciate science? Do you have a curiosity about the nature of our Universe, how it came to be and what our place is within it? If you are even reading this I assume your answers to all of those questions is a resounding “yes!” and so I present to you an excellent video created by Brad Goodspeed in support of the James Webb Space Telescope:

“I made Vision because I thought the argument for science could benefit from a passionate delivery,” Brad told Universe Today. “Deep down we’re all moved by the stars, and that passion needs to be expressed by methods outside of science’s typical toolbox.”


Funding for this next-generation telescope is currently on the line in Washington. While a markup bill was passed last month by the House of Representatives that allows for continued funding of the JWST through to launch, it has not yet been ratified by Congress. It’s still very important to maintain support for the JWST by contacting your state representatives and letting them know that the future of space exploration is of concern to you.

A petition against the defunding of the JWST is currently active on Change.org and needs your signature (if you haven’t signed it already.) Signing ends at midnight tonight so be sure to click here to sign and pass it along as well! (You can share this shortened link on Twitter, Facebook, etc.: http://chn.ge/oy4ibI)

You can also show your support and follow the JWST progress by following Save the James Webb Space Telescope on Facebook and on saveJWST.com.

The JWST will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System. It is currently aiming for a 2018 launch date.

“We don’t get to the future by yielding to our most current fears… by being shortsighted.”

Video courtesy of Brad Goodspeed.

Senate Saves the James Webb Space Telescope!

The 2012 fiscal year appropriation bill, marked up today by the Senate, allows for continued funding of the James Webb Space Telescope and support up to a launch in 2018! Yes, it looks like this bird is going to fly.

JWST's mirror segments are prepped for testing at NASA's Marshall Space Flight Center. NASA/Chris Gunn.

The James Webb Space Telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System. JWST will be a large infrared telescope with a 6.5-meter primary mirror.

Thanks to everyone who contacted their representatives and expressed their support of the JWST, to all the websites out there that made it particularly simple to do so, and of course to all the state representatives who stood behind the program and didn’t allow it to get mothballed. The space science community thanks you and the current and future generations of astronomers, physicists, cosmologists and explorers thank you.

“In a spending bill that has less to spend, we naturally focus on the cuts and the things we can’t do. But I’d like to focus on what we can do. The bill invests more than $12 billion in scientific research and high impact research and technology development, to create new products and new jobs for the future.”

– CJS Subcommittee Chairwoman Barbara Mikulski

In addition to continued funding for the telescope the 2012 bill also allots the National Aeronautics and Space Administration $17.9 billion (a reduction of $509 million or 2.8 percent from the 2011 enacted level) and preserves NASA’s portfolio balanced among science, aeronautics, technology and human space flight investments, including the Orion Multipurpose Crew Vehicle, the heavy lift Space Launch System, and commercial crew development.

In this tighter economy, all of the agencies funded under the bill are also called on to be better stewards of taxpayers’ dollars, and waste and overspending will be much more closely monitored.

Read the bill summary here.


NOTE: While the JWST program has been specifically included in today’s markup, the bill itself still needs to be approved by the full appropriations committee and then go to the Senate floor for a vote. It then must be reconciled with the House version before receiving final appropriation. Still, this is definitely one step closer to getting the JWST off the ground! Read more on ScienceInsider here.

You can show your continued support for the JWST by liking the Save the James Webb Space Telescope Facebook page and – even more importantly – by contacting your congressperson and letting them know you care!

Book Review: A Dictionary of the Space Age

Writing a dictionary is not the same as writing a novel. While it might seem difficult to mess up a dictionary, even one with terminology that is as complicated as that used within the space industry – getting it right can be challenging. For those that follow space flight having such a dictionary can be invaluable. While A Dictionary of the Space Age does meet the basic requirements easily it fails somewhat in terms of its comprehensiveness.

When normal folks, even space enthusiasts watch launches and other space-related events (EVAs, dockings, landings and such) there are so many acronyms and jargon thrown about – that it is extremely hard to follow. With A Dictionary of the Space Age on hand, one can simply thumb through and find out exactly what is being said, making it both easier to follow along and making the endeavor being witnessed far more inclusive. That is as long if you are only looking for the most general of terms. The book is far from complete – but given the complex nature of the topic – this might not have been possible.

Crewed, unmanned, military space efforts and satellites – all have key terms addressed within the pages of this book.

The book is published by The Johns Hopkins University Press and was compiled and written by aerospace expert Paul Dickson. One can purchase the book on the secondary market (Amazon.com) for around $12 (new for around $25). The dictionary also has a Kindle edition which is available for $37.76. Dickson’s previous works on space flight is Sputnik: The Shock of the Century.

Weighing in at 288 pages, the book briefly covers the primary terms used within the space community. In short, if you are interested in learning more about space flight – or wish to do so – this is a good book for you.

James Webb Space Telescope Nearing Completion

The James Webb Space Telescope or JWST has long been touted as the replacement for the Hubble Space Telescope. The telescope is considered to be the one of the most ambitious space science projects ever undertaken – this complexity may be its downfall. Cost overruns now threaten the project with cancellation. Despite these challenges, the telescope is getting closer to completion. As it stands now, the telescope has served as a technical classroom on the intricacies involved with such a complex project. It has also served to develop new technologies that are used by average citizens in their daily lives.

Although compared to Hubble, the two telescopes are dissimilar in a number of ways. The JWST is three times as powerful as Hubble in its infrared capabilities. JWST’s primary mirror is 21.3 feet across (this provides about seven times the amount of collecting power that Hubble currently employs).

The JWST’s mirrors were polished using computer modeling guides that allowed engineers to predict that they will enter into the proper alignment when in space. Each of the mirrors on the JWST has been smoothed down to within 1/1000th the thickness of a human hair. The JWST traveled to points across the country to assemble and test the JWST’s various components.

Eventually the mirrors were then sent to NASA’s Marshall Space Flight Center in Huntsville, Alabama. Once there they measured how the mirrors reacted at extremely cold temperatures. With these tests complete, the mirrors were given a thin layer of gold. Gold is very efficient when it comes to reflecting light in the infrared spectrum toward the JWST’s sensors.

A comparison of the primary mirror used by Hubble and the primary mirror array used by the James Webb Space Telescope. Photo Credit: NASA

The telescope’s array of mirrors is comprised of beryllium, which produces a lightweight and more stable form of glass. The JWST requires lightweight yet strong mirrors so that they can retain their shape in the extreme environment of space. These mirrors have to be able to function perfectly in temperatures reaching minus 370 degrees Fahrenheit.

After all of this is done, still more tests await the telescope. It will be placed into the same vacuum chamber that tested the Apollo spacecraft before they were sent on their historic mission’s to the moon. This will ensure that the telescopes optics will function properly in a vacuum.

A life-sized model of the JWST was placed on display in Seattle, Washington - it was several stories tall and weighed several tons. Photo Credit: Rob Gutro/ NASA

With all of the effort placed into the JWST – a lot of spinoff technology was developed that saw its way into the lives of the general populace. Several of these – had to be invented prior to the start of the JWST program.

“Ten technologies that are required for JWST to function did not exist when the project was first planned, and all have been successfully achieved. These include both near and mid-infrared detectors with unprecedented sensitivity, the sunshield material, the primary mirror segment assembly, the NIRSpec microshutter array, the MIRI cryo-cooler, and several more,” said the James Webb Space Telescope’s Deputy Project Scientist Jason Kalirai. Kalirai holds a PhD in astrophysics and carries out research for the Space Telescope Science Institute. “The new technologies in JWST have led to many spinoffs, including the production of new electric motors that outperform common gear boxes, design for high precision optical elements for cameras and cell phones, and more accurate measurements of human vision for people about to undergo Laser Refractive Surgery.”

The James Webb Space Telescope encapsulated atop the Ariane V rocket tapped launch it, next to an early image of the telescope. Image Credit: NASA

If all goes according to plan, the James Webb Space Telescope will be launched from French Guiana atop the European Space Agency’s Arianne V Rocket. The rationale behind the Ariane V’s selection was based on capabilities – and economics.

“The Ariane V was chosen as the launch vehicle for JWST at the time because there was no U.S. rocket with the required lift capacity,” Kalirai said. “Even today, the Ariane V is a better tested vehicle. Moreover, the Ariane is provided at no cost by the Europeans while we would have had to pay for a U.S. rocket.”

It still remains to be seen as to whether or not the JWST will even fly. As of July 6 of this year the project is slated to be cancelled by the United States Congress. The James Webb Space Telescope was initially estimated at costing $1.6 billion. As of this writing an estimated $3 billion has been spent on the project and it is has been estimated that the telescope is about three-quarters complete.

Rumors of Continued Soaring Life-Cycle Costs for Webb Telescope


Under the threat of cancellation because of cost overruns, this is about the worst news the James Webb Space Telescope could get. A report in Aviation Week & Space Technology says the life cycle costs for developing, launching and managing a five-year mission for the giant space telescope has risen to $8.7 billion, up from the previous estimate of $6.5 billion.

This past July, the U.S House of Representatives’ appropriations committee on Commerce, Justice, and Science proposed a budget for fiscal year 2012 that would cancel JWST’s funding. No final decision has been made on the fate of JWST, but this latest increase – just one of many life cycle increases of the telescope – does not bode well for NASA’s successor to the Hubble Space Telescope.

Aviation Week said managers at NASA have been re-planning the James Webb Space Telescope program after an independent cost analysis found it over budget and behind schedule. The independent analysis was headed by John Casani, a special assistant to the director of the Jet Propulsion Laboratory with long experience developing scientific spacecraft, and that report found the $5.1 billion estimate to completion was at least $1.4 billion short.

Now, tack on an additional $2.2 billion.

No details were provided of what the $2.2 billion includes, but the launch of JWST would be no earlier than 2018.

Details of how the agency will pay the cost will be covered in the fiscal 2013 NASA budget request now in preparation, Aviation Week quoted a NASA spokesman.

Of course, NASA’s entire budget is threatened to be cut by at least 10%, as President Obama has asked federal agencies to cut their budgets by that amount to enable a chance at balancing the federal budget.

But today, Nature News reports that NASA is looking at funding the flagship observatory in a different manner. JWST is currently funded entirely through NASA’s science division; now NASA is requesting that more than $1 billion in extra costs be shared 50:50 with the rest of the agency. Nature News said the request reflects administrator Charles Bolden’s view, expressed earlier this month, that the telescope is a priority not only for the science program but for the entire agency.

If ‘creative’ funding for JWST is not worked out, it would mean other programs would suffer greatly or be cut.

NASA made personnel changes at Goddard Spaceflight Center, the home of JWST, after Casani’s group concluded the majority of costs overruns were managerial rather than technical.

Sources: Aviation Week & Space Technology, Nature News

First JWST Instrument Passes Tests


One of many instruments that will fly aboard the James Webb Space Telescope (JWST) has just passed critical testing at ESA facilities in the UK. “MIRI”, the Mid-InfraRed Instrument, is being developed by the ESA as a vital part of the JWST mission. Researchers will use MIRI to study exoplanets, distant galaxies, comets and dust-shrouded star forming regions.  In order to work correctly and provide useful data, MIRI needs to consistently operate at temperatures of around 7 kelvin. (-266° C). How do engineers test these components to make sure they work properly in harsh conditions of space?

At the UK Science and Technology Facilities Council’s RAL Space in Oxfordshire, engineers performed tests to ensure the entire instrument assembly works as designed.  Inside the test chamber, special “targets” were used to help simulate scientific observations. The simulated observations will scientists develop the software necessary to calibrate MIRI after JWST’s launch. Based on the initial results of testing, the engineers believe MIRI is working properly and will perform all required science functions extremely well.

Peter Jakobsen, ESA JWST Project Scientist, said,  “Future users of JWST and MIRI are looking forward to learning more about the detailed performance of the instrument once the test results are analysed further in the coming months. The experience gained by the MIRI test team throughout this campaign has sown the seeds for a rich scientific harvest from the JWST mission.”

In the same ESA press release,  Gillian Wright, Principal Investigator and lead of the MIRI European Science Team added, “It is inspiring to see MIRI working extremely well at its operating temperature after so many years in development. The test campaign has been a resounding success and the whole MIRI team can be very proud of this magnificent achievement.”

Sean Keen making adjustments to MIRI during environmental testing in RAL Space's thermal vacuum chamber on August 16th. 2011.

This past July, the U.S House of Representatives’ appropriations committee on Commerce, Justice, and Science proposed a budget for fiscal year 2012 that would cancel JWST’s funding. In a testament to the dedication of the teams involved in JWST’s construction, work continues despite the uncertain fate of the JWST mission.

Aside from the MIRI instrument passing testing, over half of JWST’s mirrors have been polished and coated. Several of the mirror segments have passed rigorous testing, and at this time, nearly three-quarters of JWST’s hardware is being built or tested.

A screenshot of a JWST mirror segment in the laser testing facility at Ball Aerospace in Boulder, Colorado. Credit: John O'Connor, NASA Tech.

Above is a screenshot of a larger panoramic image from the NASA Tech website, showing one of the JWST mirror segments being tested in a laser testing facility at Ball Aerospace in Boulder, Colorado. You can see several panoramic views of the mirror testing at NASA Tech. These are big files, but are well worth the view! Just go to the main page and scroll down for the JWST panoramas.

If you’d like to learn more about the James Webb Space Telescope, visit: http://www.jwst.nasa.gov or: http://webbtelescope.org/webb_telescope

Resources on how you can contact your representative to express support for JWST can be found at: http://savethistelescope.blogspot.com.

You can also read a statement by the American Astronomical Society regarding JWST at: http://aas.org/node/4483 Source: ESA News Release

New Webb Telescope Technologies Already Helping Human Eyes


Editor’s note: This NASA press release provides just one example of how developing technology for space missions often has practical, beneficial and sometimes unintended applications on Earth.

Even while construction of the James Webb Space Telescope is underway on the most advanced infrared vision of any space observatory, its technologies are already proving useful to human eye health here on Earth.

“The Webb telescope program has enabled a number of improvements in measurement technology for astronomy, mirror fabrication, and measurement of human eyes, diagnosis of ocular diseases and potentially improved surgery,” said Dr. Dan Neal, Research Fellow at Abbott Medical Optics Inc. in Albuquerque, N.M.

The Webb telescope will be the most scientifically powerful telescope NASA has ever built — 100 times more powerful than the Hubble Space Telescope. The Webb telescope will find the first galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way Galaxy. It will also peer through dusty clouds to see stars and planets being born, connecting star formation in our own galaxy with the solar system.

“The advanced wavefront sensing technology developed for testing the Webb telescope’s 18 primary mirrors led to the new applications in other areas,” said Tony Hull of L3 Integrated Optical Systems Division-Tinsley Facility in Richmond, Calif., where the Webb’s mirrors were recently polished to accuracies of less than one millionth of an inch.

“Wavefront sensing” is used to measure shape of the mirrors during fabrication and control the optics once the telescope is in orbit.

Ophthalmologists routinely use wavefront technology to measure aberrations of the eye. Those measurements help with diagnosis, research, characterization and planning treatment of eye health issues.

“The technology also provides more accurate eye measurements for people about to undergo Laser Refractive Surgery,” Neal said. “To date 10-12 million eyes have been treated with Lasik procedures in the U.S. alone. As technology improves, so does the quality of these procedures.”

James Webb Space Telescope. Credit: NASA

A new “scanning and stitching” technology developed for the Webb telescope led to a number of innovative instrument concepts for more accurate measurement for contact lenses and intra-ocular lenses. Another benefit to eye health is that this technique can help “map” the topography of the eye more accurately.

Think of the surface of your eye as being as dented as the surface of the moon. Precise measurements of your eye’s surface are helpful when assessing eyes for contact lenses. The scanning and stitching technology improvements have enabled eye doctors to get much more detailed information about the shape and “topography” of your eye, and do it in seconds rather than hours. Four patents have been issued as result of innovations driven by the Webb telescope program. “These tools are now used to align and build the next generation of measuring devices for human eyes,” Neal said.

“The lasting impact of the Webb telescope may go beyond the vision of astronomers seeking to see the distant universe; the impact may be a better national technology base and better vision for people everywhere,” Hull said.

NASA’s Innovative Partnerships Program Office (IPPO) is making available wavefront sensing and adaptive optics technologies, procedures and lab equipment to private industry through its “Can you See it Now?” campaign. All of the technologies associated with the campaign are available for licensing and can be found at http://ipp.gsfc.nasa.gov/wavefront.

Proposed NASA Budget Bill Would Cancel James Webb Space Telescope


The US House Commerce, Justice, and Science Subcommittee has proposed a NASA spending bill that would put NASA’s budget at pre-2008 levels and cancel the $6.5 billion James Webb Space Telescope. Space News reports that the proposal would cut $1.6 billion from NASA’s current budget, which is nearly $2 billion less than President Obama’s 2012 budget request for NASA, giving the space agency just $16.8 billion to work with.

This news is not sitting well with scientists and researchers, with one astrophysicist saying this move could “kill US space science for decades.” Dr. C. Megan Urry, Director of the Yale Center for Astronomy & Astrophysics and the Chair of the Yale Physics Department said she has already written her congressmen and representatives to stand against this bill, “for the good of science, STEM education, and the nation.”

“I think this is an extremely serious situation,” Urry told Universe Today, “and I think the James Webb Telescope is an extraordinarily important mission. It was recommended in the 2000 Decadal Survey and was strongly endorsed in the 2010 Decadal Survey, so the science community has supported this mission for a long time.”

The Association of Universities for Research in Astronomy (AURA) quickly responded with a statement objecting to the axing of JWST, saying “Over the past year, NASA managers and the science community have undertaken a concerted effort to establish a budget and technology plan that allows the launch of JWST by 2018. The proposal by the Congress to terminate the program comes at a time when these efforts are coming to fruition.”

The press release that came out along with the draft states that that the bill terminates funding for the James Webb Space Telescope because it is “billions of dollars over budget and plagued by poor management.”

Space News reports that the draft appropriations bill, which the subcommittee is scheduled to vote on July 7, also includes $1.95 billion for the Space Launch System — the heavy-lift rocket Congress ordered NASA to build for deep space exploration. The proposed 2012 funding level is $150 million more than the heavy lifter got for 2011, but some $700 million below the amount recommended in the NASA Authorization Act of 2010, which became law in October. The bill would trim $431 million from NASA science, compared to 2011 enacted levels.

NASA may be an easy target for budget cuts in these lean times Reports like the one on NPR that stated the US military spends over $20 billion a year just for air conditioning the tents in Iraq and Afghanistan have many wondering about priorities in government.

“Killing the JWST is not the answer to budget woes,” said astrophysicist Brooke Simmons via Twitter.

It should be noted that JWST is the successor to the Hubble Space Telescope, and there is nothing else even remotely in the works that could replace what JWST is designed to do.

On the proposed JWST cancellation, Dr. William S. Smith, President of AURA said “Against a backdrop of widespread discussion over the future of NASA and the human spaceflight program, it is tragic that the Congress is also proposing to curtail NASA’s science program. JWST is NASA’s premier science facility, unsurpassed by any other telescope now or in the future.”

Sources: Space News, NPR , Appropriations Committee Press Release

Webb Telescope FAQs

How is the James Webb Space Telescope different than the Hubble Space Telescope? What will JWST be looking for when it begins operating? In this short video, NASA astrophysicist Dr. Amber Straughn answers questions, and offers facts and images to explain what the Webb Space Telescope will tell us about the cosmos.

JWST Sunscreen Offers SPF 1,000,000

The James Webb Space Telescope will have a sunshield that is about the size of a tennis court, and mission managers say it will offer the best “SPF” (Sun Protection Factor) in the Universe.

“Each of the five layers of the shield is less than half the thickness of a piece of paper,” said John Durning, Deputy Project Manager for JWST. “The five work together to create an effective SPF of 1,000,000.”

This sunshield protects the observatory from unwanted light, keeping it cool and allowing it to detect heat from faraway objects in the universe. So, how do you get something that large into orbit?
Continue reading “JWST Sunscreen Offers SPF 1,000,000”