Rare “Ring Galaxy” Seen in the Early Universe

One of the greatest benefits to come from space telescopes and ground-based observatories that take advantage of advanced imaging techniques is their ability to see farther into space (and hence, further back in time). In so doing, they are revealing things about the earliest galaxies, which allows astronomers to refine theories of how the cosmos formed and evolved.

For example, new research conducted by the ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) has found a “ring galaxy” that existed 11 billion years ago (about 3 billion years after the Big Bang). This extremely rare structure, which the team describes as a “cosmic ring of fire,” is likely to shake up cosmological theories of how the cosmos has changed over time.

Continue reading “Rare “Ring Galaxy” Seen in the Early Universe”

A Massive Rotating Disc Discovered in the Early Universe

If we want to understand how the Universe evolves, we have to understand how its large structures form and evolve. That’s why astronomers study galaxy formation. Galaxies are enormous structures of stars, planets, gas, dust, and dark matter, and understanding how they form is critical to understanding the Universe itself.

In 2017, astronomers working with ALMA (Atacama Large Millimeter/sub-millimeter Array) discovered an ancient galaxy. This massive rotating disk galaxy was born when the Universe was only about 1.5 billion years old. According to the most accepted understanding of how galaxies form and evolve, it shouldn’t exist.

But there it is.

Continue reading “A Massive Rotating Disc Discovered in the Early Universe”

Hundreds of New Gravitational Lenses Discovered to Help Study the Distant Universe

These two columns show side-by-side comparisons of gravitational lens candidates imaged by the ground-based Dark Energy Camera Legacy Survey (color) and the Hubble Space Telescope (black and white). (Credit: Dark Energy Camera Legacy Survey, Hubble Space Telescope)

General relativity tells us that everything, even light, is affected by the mass of an object. When a beam of light passes near a large mass, its path is deflected. This shift in the direction of light is known as gravitational lensing, and it was one of the first confirmed effects of Einstein’s theory.

Continue reading “Hundreds of New Gravitational Lenses Discovered to Help Study the Distant Universe”

Galaxies Like the Milky Way are the Best for Life

Scientists have speculated that given the sheer number of galaxies in our Universe – modern estimates are as high as 2 trillion – that there must be infinite opportunities for life to emerge. It has also been theorized that galaxies (like stars) have habitable zones, where star systems located too close to the core or too far out in the spiral arms will be exposed to too much radiation for life to emerge.

But are certain types of galaxies more likely to produce intelligent life? Not that long ago, scientists believed that giant elliptical galaxies – which are substantially larger than spiral galaxies (like the Milky Way) – are a far more likely place to find advanced civilizations. But according to new research from the University of Arkansas, these galaxies may not be the cradles of civilization they were previously thought to be.

Read morTo e

This Galaxy is the Very Definition of “Flocculent”

I know you’re Googling “flocculent” right now, unless you happen to be a chemist, or maybe a home brewer.

You could spend each day of your life staring at a different galaxy, and you’d never even come remotely close to seeing even a tiny percentage of all the galaxies in the Universe. Of course, nobody knows for sure exactly how many galaxies there are. But there might be up to two trillion of them. If you live to be a hundred, that’s only 36,500 galaxies that you’d look at. Puts things in perspective.

Continue reading “This Galaxy is the Very Definition of “Flocculent””

Blazar Found Blazing When the Universe was Only a Billion Years Old

Since the 1950s, astronomers have known of galaxies that have particularly bright centers – aka. Active Galactic Nuclei (AGNs) or quasars. This luminosity is the result of supermassive black holes (SMBHs) at their centers consuming matter and releasing electromagnetic energy. Further studies revealed that there are some quasars that appear particularly bright because their relativistic jets are directed towards Earth.

In 1978, astronomer Edward Speigel coined the term “blazar” to describe this particular class of object. Using the telescopes at the Large Binocular Telescope Observatory (LBTO) in Arizona, a research team recently observed a blazar located 13 billion light-years from Earth. This object, designated PSO J030947.49+271757.31 (or PSO J0309+27), is the most distant blazar ever observed and foretells the existence of many more!

Continue reading “Blazar Found Blazing When the Universe was Only a Billion Years Old”

Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars

This galaxy looks a lot like our own Milky Way galaxy. But while our galaxy is actively forming lots of new stars, this one is birthing stars at only half the rate of the Milky Way. It’s been mostly quiet for billions of years, feeding lightly on the thin gas in intergalactic space.

Continue reading “Hubble Captured a Photo of This Huge Spiral Galaxy, 2.5 Times Bigger than the Milky Way With 10 Times the Stars”