Are Andromeda and the Milky Way Already Exchanging Stars?

Artist's illustration of Andromeda/Milky Way Merger. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger

I often drag out the amazing fact that the Andromeda Galaxy, that faint fuzzy blob just off the corner of the Square of Pegasus, is heading straight for us! Of course I continue to tell people it won’t happen for a few billion years yet but a recent study suggests that we are already seeing hypervelocity stars that have been ejected from Andromeda already. It is just possible that the two galaxies have already started to exchange stars long before they are expected to merge. 

Continue reading “Are Andromeda and the Milky Way Already Exchanging Stars?”

Black Holes Need Refreshing Cold Gas to Keep Growing

A pair of disc galaxies in the late stages of a merger. Credit: NASA

The Universe is filled with supermassive black holes. Almost every galaxy in the cosmos has one, and they are the most well-studied black holes by astronomers. But one thing we still don’t understand is just how they grew so massive so quickly. To answer that, astronomers have to identify lots of black holes in the early Universe, and since they are typically found in merging galaxies, that means astronomers have to identify early galaxies accurately. By hand. But thanks to the power of machine learning, that’s changing.

Continue reading “Black Holes Need Refreshing Cold Gas to Keep Growing”

This Galaxy Was Already Dead When the Universe Was Only 700 Million Years Old

False-color JWST image of a small fraction of the GOODS South field, with the galaxy JADES-GS-z7-01-QU highlighted Credit: JADES Collaboration
False-color JWST image of a small fraction of the GOODS South field, with the galaxy JADES-GS-z7-01-QU highlighted Credit: JADES Collaboration

When a galaxy runs out of gas and dust, the process of star birth stops. That takes billions of years. But, there’s a galaxy out there that was already dead when the Universe was only 700 million years old. What happened to it?

Continue reading “This Galaxy Was Already Dead When the Universe Was Only 700 Million Years Old”

Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe

The JWST used gravitational lensing to search for the sources of light that triggered the Epoch of Reionization and brought darkness to an end. The white hazy blobs are galaxies in Pandora's Cluster, which acts as the gravitational lens. The red objects are the distant and ancient objects magnified by the lens, some of them warped into arcs. Many of them are early dwarf galaxies, some of them responsible for the Epoch of Reionization. Image Credit: NASA/ESA/CSA JWST

During the Universe’s Dark Ages, dense primordial gas absorbed and scattered light, prohibiting it from travelling. Only when the first stars and galaxies began to shine in energetic UV light did the Epoch of Reionization begin. The powerful UV light shone through the Universe and punched holes in the gas, allowing light to travel freely.

New observations with the James Webb Space Telescope reveal how it happened. The telescope shows that faint dwarf galaxies brought an end to the darkness.

Continue reading “Dwarf Galaxies Banished the Darkness and Lit Up the Early Universe”

Powerful Jets From a Black Hole are Spawning Star Clusters

A composite image of cluster of galaxies called SDSS J1531+3414 in X-ray, optical, and radio light. The overall scene resembles a colorful display of lights as if viewed through a wet, glass window. Credit: X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk.

Supermassive black holes are messy feeders, and when they’re gorging on too much material, they can hurl high-energy jets into the surrounding Universe. Astronomers have found one of the most powerful eruptions ever seen, emanating from a black hole 3.8 billion light-years away. The powerful jets are blowing out cavities in intergalactic space and triggering the formation of a huge chain of star clusters.

Continue reading “Powerful Jets From a Black Hole are Spawning Star Clusters”

JWST Sees a Milky Way-Like Galaxy Coming Together in the Early Universe

The ancient Firefly Sparkle galaxy is precursor to galaxies like the Milky Way. The JWST found ten separate clusters in the galaxy that show how the galaxy is growing through mergers. Image Credit: Mowla et al. 2024.

The gigantic galaxies we see in the Universe today, including our own Milky Way galaxy, started out far smaller. Mergers throughout the Universe’s 13.7 billion years gradually assembled today’s massive galaxies. But they may have begun as mere star clusters.

In an effort to understand the earliest galaxies, the JWST has examined their ancient light for clues as to how they became so massive.

Continue reading “JWST Sees a Milky Way-Like Galaxy Coming Together in the Early Universe”

Even if We Can’t See the First Stars, We Could Detect Their Impact on the First Galaxies

Population III stars were the Universe's first stars. They were extremely massive, luminous stars, and many of them exploded as supernovae. How did they shape the early galaxies? Image Credit: DALL-E

For a long time, our understanding of the Universe’s first galaxies leaned heavily on theory. The light from that age only reached us after travelling for billions of years, and on the way, it was obscured and stretched into the infrared. Clues about the first galaxies are hidden in that messy light. Now that we have the James Webb Space Telescope and its powerful infrared capabilities, we’ve seen further into the past—and with more clarity—than ever before.

The JWST has imaged some of the very first galaxies, leading to a flood of new insights and challenging questions. But it can’t see individual stars.

How can astronomers detect their impact on the Universe’s first galaxies?

Continue reading “Even if We Can’t See the First Stars, We Could Detect Their Impact on the First Galaxies”

Hubble Sees a Bridge of Stars Connecting Two Galaxies

The galaxy NGC 5427 shines in this new NASA Hubble Space Telescope image. Image Credits: NASA, ESA, and R. Foley (University of California – Santa Cruz); Processing: Gladys Kober (NASA/Catholic University of America)

The poetic-minded among us like to point out how Nature is a dance. If they’re right, then galaxies sometimes form unwieldy pairs. With the Hubble Space Telescope, we can spot some of these galactic pairs as they approach one another.

Continue reading “Hubble Sees a Bridge of Stars Connecting Two Galaxies”

How Does the Cosmic Web Drive Galaxy Evolution?

A computer simulation of what gas and stars in a galaxy cluster look like, and how they look embedded in the cosmic web. The assembly of galaxy clusters has implications for the clumpiness of the Universe throughout time. Credit: Yannick Bahé.
A computer simulation of what gas and stars in a galaxy cluster look like, and how they look embedded in the cosmic web. The assembly of galaxy clusters has implications for the clumpiness of the Universe throughout time. Credit: Yannick Bahé.

Galaxies experience a long strange trip through the cosmic web as they grow and evolve. It turns out that the neighborhoods they spend time in on the journey change their evolution, and that affects their star formation activity and alters their gas content.

Continue reading “How Does the Cosmic Web Drive Galaxy Evolution?”

A Black Hole Has Cleared Out Its Neighbourhood

An artist's illustration of a supermassive black hole (SMBH.) The SMBH in a distant galaxy expelled all the material in its accretion disk, clearing out a vast area. Image Credit: ESA

We can’t see them directly, but we know they’re there. Supermassive black holes (SMBHs) likely dwell at the center of every large galaxy. Their overwhelming gravity draws material toward them, where it collects in an accretion disk, waiting its turn to cross the event horizon into oblivion.

But in one galaxy, the SMBH has choked on its meal and spit it out, sending material away at high speeds and clearing out the entire neighbourhood.

Continue reading “A Black Hole Has Cleared Out Its Neighbourhood”