Suppressing Starlight: How to Find Other Earths

One underappreciated aspect of the current flood of exoplanet discoveries is the technical marvels that enable it. Scientists and engineers must capture and detect minute signals from stars and planets light years away. With the technologies of even a few decades ago, that would have been impossible – now it seems commonplace. However, there are still some technical hurdles to overcome before finding the “holy grail” of exoplanet hunting – an Earth analog. To help that discussion, a team of researchers led by Bertrand Mennesson at NASA’s Jet Propulsion Laboratory has released a paper detailing the current experimental and theoretical work around one of the most critical technical aspects of researching exoplanet atmospheres – starshades.

Continue reading “Suppressing Starlight: How to Find Other Earths”

What Impact Does Ozone Have on an Exoplanet?

Artist's illustration of Proxima Centauri b. ESO/M. Kornmesser

As we discover more and more exoplanets – and the current total is in excess of 5,200 – we continue to try to learn more about them. Astrobiologists busy themselves analysing their atmospheres searching for anything that provides a sign of life. It is quite conceivable of course that the Universe is teeming with life based on very different chemistry to ours but we often look to life on Earth to know what to look for. On Earth for example, ozone forms through photolysis of molecular oxygen and is an indicator of life. Using the James Webb Space Telescope astronomers are searching stars in the habitable zone of their star for the presence of ozone and how it impacts their climate.

Continue reading “What Impact Does Ozone Have on an Exoplanet?”

A New Deep Learning Algorithm Can Find Earth 2.0

Artist's impression of Proxima Centauri b, which orbits Alpha Centauri C in the triple-star system, Alpha Centauri. (Credit: ESO/M. Kornmesser)

How can machine learning help astronomers find Earth-like exoplanets? This is what a recently accepted study to Astronomy & Astrophysics hopes to address as a team of international researchers investigated how a novel neural network-based algorithm could be used to detect Earth-like exoplanets using data from the radial velocity (RV) detection method. This study holds the potential to help astronomers develop more efficient methods in detecting Earth-like exoplanets, which are traditionally difficult to identify within RV data due to intense stellar activity from the host star.

Continue reading “A New Deep Learning Algorithm Can Find Earth 2.0”

Sorry Spock, But “Vulcan” Isn’t a Planet After All

This artist's illustration shows the exoplanet Eridani b, aka Vulcan, home of Star Trek's Commander Spock. Unfortunately, evidence is mounting that the planet isn't really there. Image Credit: JPL-Caltech

In 2018, astronomers detected an exoplanet around the star 40 Eridani. It’s about 16 light-years away in the constellation Eridanus. The discovery generated a wave of interest for a couple of reasons. Not only is it the closest Super-Earth around a star similar to our Sun, but the star system is the fictional home of Star Trek’s Vulcan science officer, Mr. Spock.

It’s always fun when a real science discovery lines up with science fiction.

Continue reading “Sorry Spock, But “Vulcan” Isn’t a Planet After All”

A Mini-Neptune in the Habitable Zone in a Binary Star System

Sometimes, it seems like habitable worlds can pop up almost anywhere in the universe. A recent paper from a team of citizen scientists led by researchers at the Flatiron Institute might have found an excellent candidate to look for one – on a moon orbiting a mini-Neptune orbiting a star that is also orbited by another star.

Continue reading “A Mini-Neptune in the Habitable Zone in a Binary Star System”

A New Venus-Sized World Found in the Habitable Zone of its Star

The parade of interesting new exoplanets continues. Today, NASA issued a press release announcing the discovery of a new exoplanet in the Gliese 12 system, sized somewhere between Earth and Venus and inside the host star’s habitable zone. Two papers detail the discovery, but both teams think that the planet is an excellent candidate for follow-up with the James Webb Space Telescope (JWST) to try to tease out whether it has an atmosphere and, if so, what that atmosphere is made of.

Continue reading “A New Venus-Sized World Found in the Habitable Zone of its Star”

Webb Explains a Puffy Planet

WASP-107 b

I love the concept of a ‘puffy’ planet! The exoplanets discovered that fall into this category are typically the same size of Jupiter but 1/10th the mass! They tend to orbit their host star at close in orbits and are hot but one has been found that is different from the normal. This Neptune-mass exoplanet has been thought to be cooler but still have a lower density. The James Webb Space Telescope (JWST) has recently discovered that tidal energy from its elliptical orbit keeps its interior churning and puffs it out. 

Continue reading “Webb Explains a Puffy Planet”

Maybe Ultra-Hot Jupiters Aren’t So Doomed After All

Artist's impression of an ultra-hot Jupiter. (Credit: NASA, ESA and G. Bacon)

Ultra-hot Jupiters (UHJs) are some of the most fascinating astronomical objects in the cosmos, classified as having orbital periods of less than approximately 3 days with dayside temperatures exceeding 1,930 degrees Celsius (3,500 degrees Fahrenheit), as most are tidally locked with their parent stars. But will these extremely close orbits result in orbital decay for UHJs eventually doom them to being swallowed by their star, or can some orbit for the long term without worry? This is what a recent study accepted to the Planetary Science Journal hopes to address as a team of international researchers investigated potential orbital decays for several UHJs, which holds the potential to not only help astronomers better understand UHJs but also the formation and evolution of exoplanets, overall.

Continue reading “Maybe Ultra-Hot Jupiters Aren’t So Doomed After All”

Could Alien Solar Panels Be Technosignatures?

This image shows the Westlands Solar Park in the San Joaquin Valley. Could massive solar farms create a distinct technosignature? Image Credit: Westlands Solar Park

If alien technological civilizations exist, they almost certainly use solar energy. Along with wind, it’s the cleanest, most accessible form of energy, at least here on Earth. Driven by technological advances and mass production, solar energy on Earth is expanding rapidly.

It seems likely that ETIs (Extraterrestrial Intelligence) using widespread solar energy on their planet could make their presence known to us.

Continue reading “Could Alien Solar Panels Be Technosignatures?”

Saturn-Sized Exoplanet Isn’t Losing Mass Quickly Enough

Pablo Carlos Budassi - Own work. Simulated view of a mini-Neptune or "gas dwarf"

We have discovered over 5,000 planets around other star systems. Amongst the veritable cosmic menagerie of exoplanets, it seems there is a real shortage of Neptune-sized planets close to their star. A new paper just published discusses a Saturn-sized planet close to its host star which should be experiencing mass loss, but isn’t. Studying this world offers a new insight into exoplanet formation across the Universe. 

Continue reading “Saturn-Sized Exoplanet Isn’t Losing Mass Quickly Enough”